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The Grassmann manifold G, ,, _, consists of k-dimensional linear subspaces ¥~
in R™. To each ¥" in Gy , _,. corresponds a unique m x m orthogonal projection
matrix P idempotent of rank k. Let P, ,_, denote the set of all such orthogonal
projection matrices. We discuss distribution theory on P, ,, ,, presenting the
differential form for the invariant measure and properties of the uniform distribu-
tion, and suggest a general family F'** of non-uniform distributions. We are mainly
concerned with large sample asymptotic theory of tests for uniformity on Py ,, _,.
We investigate the asymptotic distribution of the standardized sample mean matrix
U taken from the family F'¥' under a sequence of local alternatives for large sample
size n. For tests of uniformity versus the matrix Langevin distribution which
belongs 10 the family F'”', we consider three optimal tests—the Rayleigh-style, the
likelihood ratio, and the locally best invariant tests. They are discussed in relation
to the statistic U, and are shown to be approximately, near uniformity, equivalent
to one another. Zonal and invariant polynomials in matrix arguments are utilized
in derivations. € 1995 Academic Press. Inc.

1. INTRODUCTION

The Grassmann manifold G, ,, _, consists of k-planes, ie., k-dimensional
linear subspaces in R™. To each k-plane ¥ in G, _,, corresponds a
unique m x m orthogonal projection matrix P idempotent of rank k. If &
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column vectors of an m x k matrix Y are orthonormal (Y'Y =1,), ie, Y
belongs to the Stiefel manifold ¥V, ,,, and span ¥, then we have

YY' =P, (1.1)

which is invariant under the transformation Y — YQ, for Qe O(k), where
O(k) denotes the orthogonal group, ie., ¥V, ,. Let P, ,, _, denote the set of
all such orthogonal projection matrices.

In this paper, we present some results of distribution theory on Py ,,_,,
and discuss large sample asymptotic theory for the problem of testing
uniformity of distributions on P, _,.

In Section 2, we derive the differential form for the invariant measure
(namely the uniform distribution) on P, ,,_,, based on that on G, _,,, _, due to
James [ 15], and discuss properties of the uniform distribution and methods for
generating non-uniform distributions. We suggest “a general family F© of non-
uniform distributions”, which includes “the matrix Langevin L'®(m, k; F)
distribution” (see (2.13)), having properties analogous to the Downs’ [13]
distribution on the Stiefel manifold, and the uniform distribution (F = 0).

In Section 3, we consider the test for uniformity of distributions on
P, .. _.. and investigate, for large sample size n, asymptotic behavior of the
sample mean matrix P=3"_, P;/n taken from the general family F'"; we
note that P is a sufficient statistic for the L®(m, k; F) distribution. Under
a sequence of local alternatives for large n, we derive an asymptotic
distribution of the elements of the “standardized” sample mean matrix U,
which is a degenerate r-variate normal distribution (r = m(m + 1)/2).

Section 4 is concerned with testing the uniformity (4 =0) for the
L™®(m, k; F) distribution, with the spectral decomposition (sd) F= Al
We consider three optimal tests, the Rayleigh-style, the likelihood ratio,
and the locally best invariant tests. They are discussed in relation to the
statistic U considered in Section 3, and are shown to be approximately,
near uniformity, equivalent to one another and distributed asymptotically,
for large n, as y2_,. The maximum likelihood estimates (mle’s) of the
parameters I" and A are also discussed.

A brief discussion is given in the Appendix of the zonal C,(4) and
invariant Cy “(4, B) polynomials in matrix arguments together with the
hypergeometric functions ,F (a;,1; by,y; 4) and ,F™(a 15 be,y; A, B) of
matrix arguments, which are utilized in derivations throughout the paper.

Before closing this section, we note related works. For asymptotic theory
for large concentration A in connection with tests on the L‘¥(m, k; F)
distributions, see Chikuse [ 7]. On the problem of testing uniformity on Stiefel
manifolds, there exists some literature. See Mardia [ 18], Watson [21], and
many others on the hypersphere V| ,,, and Mardia and Khatri [ 19], Chikuse
[5, 6], and the references in these and the present article on the general V, .
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2. DiISTRIBUTION THEORY ON THE GRASSMANN MANIFOLD

The Invariant Measure

Let P be an mxm orthogonal projection matrix in P, _., corre-
sponding to a k-plane ¥ in the Grassmann manifold G, ,,_,. We write
Y=(y,,., ) for the matrix YeV, , satisfying (1.1). An invariant
measure on Gy , _, is given by the differential form (James [15])

(dY) =

m—k
1

B
AN Via, dy., (2.1)
i=1

j=

where we choose an mx(m—k) matrix Y, ={(y,,,,..»,) such that
[ Y:Y,]eO(m). Here, for any matrix X( =(x,)), dX( :(dx:,)) denotes the
matrix of differentials. The volume of G, ,,_, 1s given, for [i(a)=
nk(k— 14 k I"(a-(j~1)/2), by

/=1

glk, my=a" =02 (kj2) /T (mf2). (2.2)

Let us derive the invariant measure on P, ,, _,. Differentiating P=
YY' =34y y; yields
&
dP= 3 (y;dy+dy,y)), (23)

i=1

which is now used to express (2.1) in terms of dP. We thus obtain the
differential form for the invariant measure on P;_,, , as

m—k &

dPy= N\ A ¥ dP yi ;s (2.4)

J=1 i=1
which certainly has the invariance property. Let [dP] denote the
normalized invariant measure (dP)/g(k, m) of unit mass on P, _,;
namely, [¢P] is the uniform distribution on P, ,, .. Probability density

functions (Pdf’s) of distributions on P, ,, _, are expressed with respect
to [dP].

The Uniform Distribution

We present some results on the uniform distribution on P, ,,_,.

ProposITION 2.1. (i) If P is uniformly distributed on P, ., _., so is
HPH' for all He O(m), fixed or random independent of P, and hence
E(P)y=HE(P)H', so that we have

E(P)=(kjm)1,,. (2.5)
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(11)  From the definitions of invariant measures, it follows that
P=7YY' is uniform on P, ,, _, iff YisuniformonV, ,, (26)

and, hence that any uniformly distributed P on P,_,, _, is written as
P=2(Z'Z)'Z, (2.7)

where all the elements of an m x k random matrix Z are i.id. normal N(0, 1)
(see e.g., Muirhead [20]).

Proof. The results (i) and (ii) can be proved readily by the known
results, and alternatively via the characteristic functions (c.f.’s). We present
a formal proof of (ii). The c.f. @,(T)= E(etr iPT) of P when P is uniform
on P, ,, ., for an m xm symmetric matrix T, is given by | F,(k/2; m/2; iT),
which is the same as the cf @,,(7T)=E(etriYY'T) of YY' when Y is
uniform on V, ,,, where etr 4 =exp(tr 4).

Non-uniform Distributions

Non-uniform distributions may be generated by several methods. Let-us
give a motivation before suggesting a general family of distributions. Let Z
be an m x k random matrix having the pdf of the form proportional to

JFa; 13 bigy: Z'AZ) etr( — Z' BZ), (2.8)

with the hypergeometric function ,F, of a matrix argument, 4 and B being
symmetric constant matrices. We shall consider the distribution of the
“orientation” H,=Z(Z'Z)"'? (eV,_,,) of Z (e.g., Chikuse [4]). In view of
Herz [ 14, Lemma 1.4] (see also Muirhead [ 20, Theorem 2.1.14]) and the
Laplace transform (James [ 16, (28)]) of the »F, function, we obtain the
pdf of H,, which is proportional to

|H',BH | =", \F a1, m/2;b s H,AH,(H',BH ;) "),

It is noted that 4=0 gives the matrix angular central Gaussian
distribution (Chikuse [4]), and B=1,, gives the pdf proportional to
n+1F drpy. M m/2; b[a]’ AH z H).

The above argument may suggest “a general family F* of distributions”
on P, ,, _, with the pdf being a symmetric homogeneous function, i.e.,

g0 '(F) g(FP), F being an m x m symmetric matrix, (2.9)
where

18

g(FP)=Y Y d,C,(FP)/I', with dg =1, (2.10)
A

1=0

I
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and the normalizing constant, which is obtained in view of (A.2),
go(F) =) > [di(k/2),/(m/2),1'] Ci(F), (2.11)
=0 4

where the C,; are zonal polynomials (see the Appendix). We may be
interested, in particular, in the distribution whose pdf is of the form

pFar 0500015 FPY,  F o lag .y, k12, by, m/2; F), (2.12)
whose simple special cases are
etr(FP)/, F\(k/2, m/2; F), (2.13)
oFllk/2; FP)/o F\(m/2; F),
1 Folmj2; FP)/o F\(k/2; F),

(2.14)

and
Fi(m/2; k/2; FP)/etr F.

We note that, if Ye V, ,, has the matrix Langevin distribution (Downs
(13],), then YY'eP, , _, has the distribution (2.14). The distribution
(2.13) is a slight modification of Downs’ [13] distribution on the Stiefel
manifold, and may be called “the matrix Langevin distribution on
P x> which is denoted by L'"(m,k;F). It is noted that the
L'P(m, k; F) distribution is derived as the distribution of P= XX’ where X
is distributed as matrix Bingham; see Jupp and Mardia [ 17] for the matrix
Bingham distribution. We let the sd of F be

F=TAI'=} Ayvis with I=(py, ., 7,,) € O(m),
j=1

and A=diag(A,, .., A ) Ay =z - 24, (2.15)

Writing the sd of D=F,— F, for mxm symmetric matrices F, and F,
as D=3%" 6,dd;, we have that tr DP=37 6,(Pd) (Pd;), where
7~ 1 (Pd;)' (Pd;)=k, which is constant for all Pe P, ,, , ilf 6,=--- =7,
Thus, the restriction tr F=tr A =0 is imposed to ensure the identifiability
of F. We will be concerned with testing the uniformity A =0.
The distribution L'"'(m, k; F) has a unique mode P, =3¥_, 7,75 which is
the closest idempotent of rank k to F, iff

rank F> k and Ak Z At (2.16)

and we have max,tr FP=tr FP,=3"_, 4,
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It might be possible to suggest other families of non-uniform distribu-
tions on P, ,, .. We could make use of (2.6) and (2.7), where Y has some
suitable non-uniform distributions on V, ,, and the elements of Z are not
necessarily i.1.d. normal N(0, 1).

3. AsymMpTOTIC DISTRIBUTIONS FOR THE SAMPLE MEAN MATRIX

Given a random sample P, .., P, from the general family F'® (2.9)
of distributions on P, ,_,, we put the “standardized” sample mean
matrix

U=(no) [P—(kjm)I,,), with P=3 Pn

j=1

and  a=2k(m—k)/m(m—1)(m+2), (3.1)

where we have tr U=0, and, in particular, E(U)=0 for the uniform
distribution F=0 (see (2.5)). Here, we note that the sample mean matrix
P is a sufficient statistic for the L‘®)(m, k; F) distribution (2.13). We are
concerned with testing the null hypothesis of uniformity H,: F =0, against
a sequence of local alternatives,

H,. F=F,/n, with F, an m x m symmetric constant matrix. (3.2)
We shall investigate asymptotic behavior of the statistic U under the

alternative hypothesis H, (3.2) for large n.
Rearrange the r( =m(m + 1)/2) distinct elements u

g LS, of U=(u,;) as
U={Uyyy oy Upps Uy oy Uiy Uz ey Uy ) (3.3)
For an r x 1 vector
E=(T11s coos Lo £12s oves Eimes £235 coos Eon— 1) s (3.4)
the cf. @,(1)(= E(exp it'u)) of u is expressed as the c.f. of U

& (T) = Eetr(iTU) = etr[ —i(kn'?/ma'?) T]{ E etr[i(na) =2 TP]}",
(3.5)

where the elements 7'; of the m x m symmetric matrix 7= (7 ;) are given by

T,=(1+6,),/2, with & being Kronecker’s delta.



24 CHIKUSE AND WATSON

From (2.9), we have

Eetr[i(na) ' TP]

— g5 M(F) J etr[i(ne) 2 TYY'] g(FYY')[dY]

Vi, m

:go‘l(F){l-}-

o lod}

Z Z Z n*i.\:f’2+l)a74\y’2
0 1 geo-t

X d 07 b, C3 (T, Fy)js! z!}, (3.6)

with b, =(k/2),/(m/2),,where [dY] denotes the normalized invariant
measure of unit mass on V, ,,. and the second equality is obtained by
utilizing the expansion (A.3) for the ,F, (=etr) function and (2.10), on
making the transformation Y — HY, He O(m), and integrating over O(m)
in view of (A.6). Utilizing the discussion of the zonal C, and invariant C*
polynomials in matrix arguments given in the Appendix and referring to
the table of zonal polynomials (James [16]), we obtain (though the
detailed calculation ts omitted)

D (Ty=exp('ZH/2)[1 4+ O(n~"?)], (3.7)

where

2 =diag(2,,1,_,,/2), with X, =1, —m~']l, 1, beingof rank m —1,

~nt

for 1,,=(1,..,1)eR™ (3.8)
We note that X, is diagonalized as
Q(’IZIQOZdiag(OS 1,,,,1), fOr QU:[nli 1“21”, Q]]EO(”I), (39)

namely, Q,Q\=1,—m '], 1,(=%,). We now consider the (r—1)x1
random vector

(3.10)

0 0
w= Gu, with G=

0 2V

r—m

The cf of w,® (s)=FEexpli(G's) u], for an (r—1)x1 vector s=
{(5,.., 5, 1), is expressed as @, (T), where, for the r x 1 vector

Glé‘ 21 = (tlls ey lnmw f]"# iy t[nn 1233 ey ’,,,, l,m)'* (31 l)
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we put the m xm matrix T=(T), with T,,=(146,)t,/2. Hence, @ (s) is
given by the right-hand side of (3.7) with 't =5'GXG's=5's. ’
Thus, we establish

THEOREM 3.1.  We consider the standardized sample mean matrix U,
defined by (3.1} constructed from a random sample of size n from the general
Samily F'P ((29)) of distributions on P,_,,_,, under the local alternative
hypothesis (3.2). The vector u, defined by (3.3) consisting of the
r(=m(m+ 1)/2) distinct elements of U, is distributed as degenerate multi-
variate normal N (0, X), asymptotically for large n, where X is given in (3.8).
Therefore, the (r—1)x 1 vector w defined by (3.10) has the multivariate

normal N,_ (0, 1,_ ) distribution, asymptotically for large n.

For certain distributions (including the L'"(m, k; F) distribution)
on P,, ., the best critical region by the Neyman-Pearson lemma
for testing uniformity may be given based on tr FP. We give the
following

COROLLARY 3.1. Under the condition of Theorem 3.1, the statistic
w=c "2 tr(BU), where B is an arbitrary m x m symmetric and non-spherical
constant matrix, and ¢ = tr B? — (tr B)*/m, is distributed as normal N(0, 1),
asymptotically for large n.

Remark 3.1. We employed the local alternatives of order O(n~'); the
case of the local alternatives of order O(n ') may be valid also, though.
This fact may be compared with the local alternative hypothesis of order
O(n~'?) for the uniformity test on the Stiefel manifold (see Chikuse [6]).

Remark 3.2. The correction terms of O(n~?), j=1,2 , in Theorem 3.1
and Corollary 3.1 are obtained by utilizing the theory of zonal and
invariant polynomials in matrix arguments. These are expressed in terms of
the zonal and invariant polynomials and the classical Hermite polynomials,
but are omitted here, since our interest is the asymptotic property of the
matrix variate U which plays important roles in the tests for uniformity on
P, ... in Section 4.

Remark 33. We can give an alternative proof of Theorem 3.1,
following the method of Anderson and Stephens [1]. Deriving the pdf of
the matrix variate

V=U+m Yl

ms
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where v is a normal N(0, 1) variate independent of U, transforming the
distinct elements of ¥ to (w, v), and then integrating v out from the pdf of
(w, v), we obtain the desired asymptotic pdf of w.

4. APPROXIMATE PROPERTIES OF OPTIMAL TESTS FOR UNIFORMITY

Rayleigh-Style Test

It has been established, from Theorem 3.1, that the (r —1) x 1 vector w
defined by (3.10) is asymptotically distributed as multivariate normal
N,_ (0, I,_)) for large »n under the null hypothesis H, of uniformity. Thus,
the statistic w'w can be regarded as a “Raleigh-style test statistic” for
testing uniformity on P, ,,_,, and has, for large n, the asymptotic 32 ,
distribution under H,.

Following the notation in Section 3, with ¥ = (4!, u3)’ for 4, being m x 1,
we can express w'w =u| 2 u, +2u5u,, and hence

tr U2 = gy, + 23, =w'w + 2o, with  zo=u\(1,— ) u,. (41)

From the definitions of ¥, and X', it is readily seen that -, =0, yielding
that

ww=tr % (4.2)

Maximum Likelihood Estimates and Likelihood Ratio Test

Letting P, .., P, be a random sample from the L"(m, k; F) distribution
with the sd F=TIAl", the log-likelihood is given by

logL=ntr AI"PI'—nlog | F(A),

with the notation | F\(A4) = F,(k/2; m/2; A)and P= ) P,/n.
j=1

(4.3)

Using the sd P=RDR’, where Re O(m) and D =diag(d,, ...d,), d, >
- > d_,,1 >0 (with probability one), it is seen that max,tr A" PI'=
tr AR PR=37_, 1,d; and we have the mle /"= R of I'. Next, differentiating

7

ny di,—nlog ([Fi(A)+nn Y 4, with 5 the Lagrange’s multiplier,
j=1 Jj=1

(44)
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with respect to 4, j=1, .., m, we can show that the mle A= diag(il, . i,,,)
of A satisfies

dlog \Fy(A)ol,=d,+n, j=1,..,m, with ¥ 1=0. (45)
j=1

Jj=

We are concerned with testing the null hypothesis of uniformity
H,: A =0 against the alternative H, = A4 # 0, when I is unknown. We have
the likelihood ratio test statistic

—2log L*=2n| —log ,F\(A)+ ):jdj}, (4.6)
j=1

which is known to be distributed approximately as x> | for large n.
For small 4, that is, for a slight departure from the null hypothesis H,,, on
expanding the (F, function in terms of the Ai’s referring to the
table of zonal polynomials (James [16]) and then differentiating, (4.5)
becomes

ok, + O(A=d;+n,  j=1,.,m, with ¥ 1,=0, (4.7)
=1

j=

where a is given in (3.1). Ignoring the terms of O(A4?), we have the solution
of (4.7) as

4= [d—(k/m) L, ]/a, (48)
where £=(21, s Ap) and d=(d,, .., d,). Substituting the approximate
solution (4.8) into (4.6) we have

—2log L* = (nja)[d—(k/m) 1,.) [d— (k/m) L,,]=tr U?,  (49)

where the second identity is obtained from the fact that the elements
of (nfa)'”? [d—(k/m)]1,,] are the latent roots of U in the notation of
Section 3.

Locally Best Invariant Test

We consider the locally best invariant test (Beran [2]) for the null
hypothesis H, of uniformity against the invariant hypothesis H; of the
L®(m, k; F) distribution with the sd F=TIAI'" with the restriction
tr A =0. Given a random sample P,, ..., P,, the likelihood ratio L(P,, .., P,)
is, with the statistic U defined by (3.1),

L(P,, .., P,) o etr nFP =etr[ (nk/m)F] etr(nx)"* FU. (4.10)
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The Neyman-Pearson lemma shows that the best invariant test is to reject
H, for large values of

j L(HP,H’,...,HP,,H’)[dH]ocf etr(na)'? FHUH'[ dH )
Oinr)

Oinn)

= o FP(na) 2 A, Uy=1+nx Y CyA) CoU)2C,(1,,) + O(A7),
é+2
(4.11)

from (A.5) and the fact tr U=0.
Thus, the locally best invariant test statistic must be a suitable increasing
function of

Y. ColA) CyU)/Cyl1,),  with ¢ =(2),(1%),
g12

=2(tr A%) tr U%/(m — 1)(m + 2), (4.12)

where we refer to the table (James [ 16]) of zonal polynomials, utilizing the
fact tr 4 =0.
Summarizing the above results, we establish

THEOREM 4.1.  Three optimal tests can be proposed for testing the unifor-
mity (A =0) for the L'"(m, k; F) distribution, that is, the Rayleigh-style, the
likelihood ratio, and the locally best invariant tests. It is shown that the latter
two test statistics are approximately, near the uniformity (ie., for small A),
equivalent to the former test statistic tr U*, which is distributed asymptolti-
cally, for large n, as ;(f -

We are, in the present paper, concerned with the tests for uniformity
(A =0) without any knowledge of the other parameters than A (e.g., I for
the L'7(m, k; F) distribution with F=IAI""). We shall consider, in the
other paper, inferential problems on A including the test for uniformity
(A =0), when knowledge of the other parameters than A is given or when
the form of the population distribution is partially specified.

APPENDIX: ZoNAL AND INVARIANT POLYNOMIALS IN MATRIX ARGUMENTS

The zonal polynomials C;(A) in an m xm symmetric matrix 4 were
defined by the theory of group representations of the real linear group
GL(m, R) of mxm nonsingular matrices on the vector space of
homogeneous polynomials of degree / on the space of m xm symmetric
matrices (James [ 16]). Here, [ 21] indexes each irreducible representation,
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where A}/, that is, A is an ordered partition of I ie, A=
(ys o b) v 2 - 21, 20,37 ;=1 The polynomials C;(4),A}-I=
0,1, .., are invanant under the transformation 4 - HAH' K He O(m). We
note that, when the rank of A4 is r(<m), then C,(4)=0if I, ,, #0. The
polynomial (tr A)’ has a unique decomposition

(tr A)' =Y Ci(A), (A1)

where the sum )", ranges over all 4 |-/ The following is a basic property:
[ cuamBr)aH] = Ci(4) CUBYCAL,) (A2)
O(m)

The hypergeometric function ,F (a;,y; b,y A) of an m xm symmetric
matrix 4 has a series representation (Constantine [9])

¥ Z[ I1 (a,-n/_n (b,)zl!] Ci(4), (A3)

I1=0 4 Lj=1 =1

where the a; and b, are real or complex numbers, and (a),=
Tita=(j=1)/2),, with (a);=a(a+1)---(a+{—1). The hypergeo-
metric function of two symmetric matrix arguments 4 and B is defined by

SF™(ay 75 brag A, B) =j SFa; brs AHBH')[dH], (A4)

O(m)

and has a series representation

5 z[ (1 () / [T (5, 1 C;(lm)J CAACiB).  (AS)

(=G 1 Ljj=1 J=i

The invariant polynomials C3 *(4, B) in two m xm symmetric matrix
arguments 4 and B were defined (Davis [10,11]), extending the zonal
polynomials, by the theory of group representations of GL(m, R) on the
vector space of polynomials in two arguments, homogeneous of degree s, ¢
on the space of m xm symmetric matrices. We write ¢ €0 -7 to indicate
that the irreducible representation indexed by [2¢1(¢ | (s+1¢)) occurs
(possibly with multiplicity greater than one) in the decomposition of the
Kronecker product [20] ® [21] of the irreducible representations indexed
by [20] and [21] into a direct sum of irreducible representations of
GL(m, R). The Cg' (A, B) are invariant under the simultaneous transfor-
mations 4> HAH', B— HBH', He O(m). The C3° polynomials were
extended to the invariant polynomials cgh “(A4,, .., A,) in more than two
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matrix arguments A,, .., A, by Chikuse [3]; also see Chikuse and Davis
[8]. The polynomials have been tabulate up to three matrices and the first
few degrees in Davis [ 10, 12].

We have a basic result (Davis [10, (1.2)]),

f CAAHSH') C(BHTH')[dH]= 3}, Cy (A, B) C3 (S, T)/Cyll,,),
Of{m) peoc 1

(A.6)
where the sum 3, . . ranges over all [2¢] occurring in [26] ® [27], and

C3 (A4, A)=077Cy(4),  Davis [10, (2.1)]). (A7)
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