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SUMMARY

Close to 50 genetic loci have been associated with
type 2 diabetes (T2D), but they explain only 15% of
the heritability. In an attempt to identify additional
T2D genes, we analyzed global gene expression in
human islets from 63 donors. Using 48 genes located
near T2D risk variants, we identified gene coexpres-
sion and protein-protein interaction networks that
were strongly associated with islet insulin secretion
and HbA1c. We integrated our data to form a rank
list of putative T2D genes, of which CHL1, LRFN2,
RASGRP1, and PPM1K were validated in INS-1 cells
to influence insulin secretion, whereas GPR120
affected apoptosis in islets. Expression variation
of the top 20 genes explained 24% of the variance
in HbA1c with no claim of the direction. The data
present a global map of genes associated with islet
dysfunction and demonstrate the value of systems
genetics for the identification of genes potentially
involved in T2D.

INTRODUCTION

Type 2 diabetes (T2D) is one of the fastest increasing diseases

worldwide, with an estimated prevalence of 280 million affected

patients in 2011 (http://www.diabetesatlas.org/). This epidemic

has been ascribed to an interaction between common genetic

variants and environmental factors like obesity and a sedentary

lifestyle. To date, genome-wide association studies (GWAS)

have identified 47 common genetic variants associated with

T2D or glucose/insulin levels (Dupuis et al., 2010; Saxena

et al., 2007, 2010; Scott et al., 2007; Sladek et al., 2007; Stein-

thorsdottir et al., 2007; Voight et al., 2010; Zeggini et al., 2008).
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Despite this apparent success, these variants explain only about

10%–15% of the heritability of T2D, emphasizing the need for

novel approaches to identify susceptibility genes. One alterna-

tive strategy is to use genetic loci associated with expression

traits in disease-relevant tissues to identify previously unrecog-

nized susceptibility variants (Schadt et al., 2008). Although T2D

is characterized by both impaired insulin secretion and action

in target tissues like muscle, fat, and liver (Defronzo, 2009),

most of the known disease-associated variants seem to influ-

ence insulin secretion rather than action (Florez, 2008; Ingelsson

et al., 2010; Lyssenko et al., 2008). In most cases the causal

variant is not known, nor is it known how the identified variants

may influence islet function in man. One of the obstacles

in human diabetes research has been the inaccessibility of

pancreatic islets. Recently, this hurdle has to some extent

been circumvented by research using islets from cadaver donors

intended for islet transplantation.

We have systematically characterized donated human islets

by performing cDNA microarray and GWAS in addition to

measuring insulin response to glucose and glycemic control

(HbA1c) from the same individuals. Here, we have combined

data from human islet gene expression, genetics, and function

to build a global map of genes associated with islet dysfunction

in T2D. We form a rank list of potential T2D genes, highlighting

several candidate genes that might affect islet function in man.
RESULTS

Expression Pattern of 48 Putative T2D-Associated
Genes in Human Islets
Using microarray data from human islets from 63 cadaver

donors (nine with T2D), we studied the expression of 48 genes

(47 SNPs) located in the vicinity of the known single-nucleotide

polymorphisms (SNPs) that to date have been associated

with T2D or glycemic traits (hereafter referred to as T2D seeder

genes). The expression of IGF1, CHCHD9, PPARG, and HMGA2
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Figure 1. Expression of Putative T2D-Associated Genes in Human Pancreatic Islets

(A) Microarray gene expression profile showing mean expression of 48 putative T2D genes in human pancreatic islets. Background signal was estimated by

calculating the mean value of all negative control probe sets (�2,900) represented on the array. All probe sets signal indicate mean expression of all probe sets on

the array (�20,000). Bars represent mean ± SEM.

(B) Lower expression of KCNJ11 (p = 0.01),WFS1 (p = 0.03), SLC2A2 (p = 0.008), JAZF1 (p = 0.004), andG6PC2 (p = 0.03) was observed in diabetic donors (n = 9;

5male, 4 female) compared to nondiabetic (n = 54; 31male, 23 female) donors.ADAMTS9 (p = 0.01) showed higher expression level. Bars representmean ± SEM.

(C) Lower expressions of KCNJ11 (p = 0.03),WFS1 (p = 0.01), SLC2A2 (p = 0.0001), JAZF1 (p = 0.02), and G6PC2 (p = 0.0009) were observed in hyperglycemic

donors (n = 20; 11male, 9 female) compared to normoglycemic (n = 30; 18male, 12 female).ADAMTS9 (p = 0.01) was shown to have higher expression level. Bars

represent mean ± SEM.

(D–I) Correlations between expression of the differential gene expressions with HbA1c level (n = 51) and insulin secretion (ng/islet/hr) measured at 16.7 mM

glucose (n = 53): SLC2A2 (D), KCNJ11 (E), G6PC2 (F), WFS1 (G), JAZF1 (H), and ADAMTS9 (I).
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did not differ significantly from background (after Bonferroni

correction). Twenty-one genes starting from ARAP1 showed

higher expression than the mean expression of all genes on

the array (p < 0.05). The highest transcript levels were seen for

G6PC2 and SLC30A8 (Figure 1A), whose expression was

restricted to islets and absent in peripheral blood leukocytes

(Figure S1). At genome-wide level, 72 genes showed higher

expression than SLC30A8 in pancreatic islets. We then studied

transcript abundance in donors with known T2D or hypergly-

cemia (HbA1c R 6%) compared with normoglycemic donors

(no known T2D and HbA1c < 6%) (Figures 1B and 1C). The

expression of KCNJ11, WFS1, SLCA2A, JAZF1, and G6PC2

was decreased in islets from T2D donors. Furthermore,
increased expression of these genes in islets was associated

with higher insulin secretion and lower HbA1c (Figures 1D–1I).

cis and trans Effects of T2D-Associated SNPs
on Gene Expression in Human Islets
Themajority of known risk variants for T2D are located in intronic

or intergenic regions, suggesting that they may influence gene

expression. We therefore analyzed whether any of the 47 T2D-

associated SNPs would influence gene expression in cis (within

1 Mb of the SNP) or in trans (further than 1 Mb away or on

a different chromosome) by applying a linear model with additive

effects. For cis eQTLs a significance threshold of p < 0.001 was

defined based upon 1,000 permutations. For trans eQTLs with
Cell Metabolism 16, 122–134, July 3, 2012 ª2012 Elsevier Inc. 123
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a very large number of tests (901,863), we applied a p value

threshold of p < 0.00019 using the best p values of 1,500 random

SNPs, referring to the 5% showing the strongest trans eQTLs.

We observed 5 cis and 176 trans eQTLs (Figure S2 and Table

S1). Of the trans eQTLs, the highest numbers were seen for

the G6PC2 (rs560887) (n = 66) and the GCKR (rs780094) (n =

31) variants (Table S1). None of the five cis eQTLs showed

different expression in islets from normo- and hyperglycemic

donors. By slightly relaxing the p values for cis effects, we

observed that risk T allele carriers of rs5912 in the KCJN11

gene were associated with decreased expression of KCJN11

(p = 0.005) in human islets. We also confirmed the previously

shown elevated expression of the TCF7L2 gene in carriers of

risk genotype (T) for rs7903146 (p = 0.02).

Pathways Based upon Coexpression Analysis
with Putative T2D Associated Genes
Genes with similar expression patterns are hypothesized to

share functional relationships and may represent pathways of

interest for the pathogenesis of islet dysfunction in T2D (Inouye

et al., 2010). Thus, we correlated the expression of the 48 T2D

seeder genes with the �20,000 genes on the array. Genes

showing strong correlation with the T2D seeder genes were

considered coexpressed (rs > 0.8 or < �0.8; genome-wide p =

4.73 3 10�8). Of individual genes, SLC30A8, G6PC2, and GCK

showed the largest number of coexpressed genes (130, 142,

and 167) (Figure 2A and Table S2), while for 26 genes expression

did not correlate with any gene. By restricting the analysis to

genes coexpressedwith at least two of the 48 T2D seeder genes,

we observed a strongly connected network of 248 genes

(including 14 seeder genes), whichwe called T2DNet (Figure 2B).

To investigate whether this network represented a relevant

collection of T2D-associated genes in human islets, we analyzed

coexpression of 48 randomly selected genes in a set of 10,000

randomly selected networks of the same size. As shown in Fig-

ure S3, the T2DNet showed significantly more coexpressed

genes than the randomly selected networks (p < 0.01).

We next plotted the centroid (mean expression of the coregu-

lated genes) of T2DNet gene expression against insulin secretion

and HbA1c levels (Figure 2C). The mean centroid showed a posi-

tive correlation with insulin release and an inverse correlation

with HbA1c. These correlations could not be reproduced in

a set of 1,000 randomly selected gene networks of the same

size. Also, the mean centroid of the T2DNet gene expression

was markedly decreased in islets from T2D compared with

nondiabetic donors (Figure 2D). Next, we restricted the network

to genes that were coexpressed with at least four known T2D

seeder genes. This generated a more condensed network (Fig-

ure 2E), which we call T2DNet core. Of the 23 genes in this

restricted network, 14 candidate genes for T2D were identified

(KLHDC5, SNAP91, MAFB, PPM1K, RGAG4, SH3GL2,

FAM46C, RPS6KA6, MAPRE3, CLCN4, NMNAT2, TMEM63C,

ELAVL4, and NOL4). Expression of these genes differed sig-

nificantly between normoglycemic and hyperglycemic donors

(Figure 2F and Table S3). Furthermore, they correlated positively

with insulin secretion and negatively with HbA1c (Figures 2G and

S3) (permuted 1,000 times by randomly selected lists of 14

genes at a p < 0.01). These 14 genes were included in the ranking

of T2D-associated genes (see below). The mean centroid of
124 Cell Metabolism 16, 122–134, July 3, 2012 ª2012 Elsevier Inc.
the T2DNet core was significantly decreased in islets from dia-

betic versus nondiabetic donors (Figure 2H). Finally, we analyzed

whether SNPs within a region spanning ± 50 kb up and down-

stream of 234 T2DNet genes (excluding the 14 seeder genes,

in total 44,319 SNPs) were associated with T2D in the

DIAGRAM+ database (Voight et al., 2010) using an arbitrary

p value of > 0.001. Of the 133 SNPs showing an association at

this significance level, we selected 12 SNPs with the lowest

p values in or around KLHDC5, LRFN2, ACVR1C, RASGRF1,

PARD3, MTSS1, RAB3C, DACH1, NF1B, RIN2, PLCB4, and

PAM (Table S4). These 12 genes were included in the ranking

of T2D-associated genes (see below).

Molecular Interaction Networks
To obtain information on functional pathways that may charac-

terize the T2DNet, we subdivided the network into modules

using the EAGLE algorithm (Shen et al., 2009). Four functional

modules were identified. Module 1 consisted of WFS1,

KCNJ11, GCK, and MADD, while module 2 included G6PC2,

SLC30A8, FADS1, and SLC2A2. The other two modules were

smaller; module 3 included IGFBP2 and JAZF1 and module 4

NOTCH2 and GCKR (Figure 3A). These modules were enriched

for genes regulating b cell function (p = 1.4 3 10�6) in the

Reactome database (http://david.abcc.ncifcrf.gov/). To verify

the functional connectivity of these modules, we interrogated

the public STRING database compiling predicted protein-

protein interactions (PPI). T2DNet genes were found to interact

with each other more often than expected by chance alone in

the PPI database (p = 0.000012) (Figure S5). Expansion of

the four modules to the global PPI network indicated a 4- to

10-fold enrichment of T2D seeder genes (Table S5). In general,

disease genes tend to be tissue-specific and functionally located

in the periphery of the network (Barabási et al., 2011), which was

also seen here for the T2D seeder genes. In the PPI network,

2,607 genes were first-order neighbors of the T2DNet seeder

genes. Using network topology to prioritize these 2,607 genes,

we identified 162 genes showing significant connectivity within

the PPI network (hypergeometric distribution p < 0.05). Of

them, 142 genes had significant connection with only one T2D

seeder gene, 11 with 2 genes, and 9 with R 3 genes. The nine

genes showing connection with R 3 T2D genes (LGR5, PDX1,

CDC123, NEUROD1, INS, FOXA2, ABCC8, PAX6, and GCG)

were included in the ranking of T2D associated genes (see

below). Of note, expression of PDX1, FOXA2, ABCC8, and

PAX6 differed between islets from hyperglycemic and normogly-

cemic donors (Figure 3B) and correlated with insulin secretion

and HbA1c levels (Figure S4).

Genes Differentially Expressed in Pancreatic Islets
from Hyperglycemic and Normoglycemic Donors
Next we analyzed differential expression of genes in islets by

stratifying the donors on T2D status or HbA1c (normoglycemic

< 6% and hyperglycemic R 6%). Using a cutoff of p < 0.001,

we observed 118 genes that were differentially expressed in

donors with known diabetes and 129 in hyperglycemic donors

(Table S6). Of them, 18 genes were differentially expressed in

both comparisons and were included in the subsequent ranking

(Figure 4A). To exclude that these differences were due to differ-

ences in purity between diabetic and nondiabetic islets, we also

http://david.abcc.ncifcrf.gov/
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Figure 2. Pathways Based upon Coexpression Analysis of T2D-Associated Genes

(A) Number of coexpressed genes in the arrays that correlated with each of the 48 T2D genes using cutoff values of r > 0.8 or < �0.8.

(B) Illustration of the coexpression network (T2DNet) in Cytoscape. T2DNet was created by identifying genes in the arrays that correlated with at least 2 genes of

the 48 seeder T2D-associated with a cutoff value of r > 0.8 or <�0.8. The T2DNet includes 14 T2D genes (known T2D-associated genes shown as yellow nodes),

which were correlated with 234 genes (blue nodes).

(C) Correlations of mean centroid expression of T2DNet genes (248) with HbA1c level and insulin secretion (ng/islet/hr). A negative correlation was observed to

HbA1c level and positive to insulin secretion.

(D) Low expression of T2DNet mean centroid in diabetic compared to nondiabetic pancreatic islets (p = 0.01). Bars represent mean ± SEM.

(E) Illustration of T2DNet core in Cytoscape. T2DNet core was formed by restricting the coexpression analysis to at least four seeder genes of the 48 T2D with

a cutoff value of r > 0.8 or <�0.8. We identified 14 genes whose expression was correlated to a cluster of 4–6 seeder T2D genes. Yellow nodes are the T2D genes

and blue nodes are the identified 14 genes.

(F) Fold change in mean expression of the 14 genes (from T2DNet core) in 20 donors with hyperglycemia versus 30 donors with normoglycemia. A significantly

reduced expression of KLHDC5 (p = 0.04), SNAP91 (p = 0.01), MAFB (p = 0.01), PPM1K (p = 0.02), RGAG4 (p = 0.03), SH3GL2 (p = 0.01), FAM46C (p = 0.01),

RPS6KA6 (p = 0.04),MAPRE3 (p = 0.03),CLCN4 (p = 0.06),NMNAT2 (p = 0.04), TMEM63C (p = 0.02),ELAVL4 (p = 0.009), andNOL4 (p = 0.03) was observed. Bars

represent mean ± SEM.

(G) Correlation of mean centroid expression of T2DNet core genes (23) with HbA1c level and insulin secretion (ng/islet/hr). A negative correlation was observed to

HbA1c level and positive to insulin secretion.

(H) Low expression of T2DNet core mean centroid in diabetic compared to nondiabetic pancreatic islets (p = 0.02). Bars represent mean ± SEM.
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adjusted the results for purity measured by dithizon and DNA

content of the islets, but results remained virtually unchanged

(data not shown). Those 18 genes included the receptors
IL1R2, GLP1R, GPR120, BDKRB1, and the Wnt signaling

regulator SFRP4. For GPR120, CHL1, GLP1R, and LRNF2,

high expression in islets was associated with increased insulin
Cell Metabolism 16, 122–134, July 3, 2012 ª2012 Elsevier Inc. 125
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Figure 3. Molecular Interaction Networks of Known T2D Genes

(A) Protein-protein interaction network for the 248 genes in the T2DNet. Using EAGLE algorithm, four modules were identified. Module 1 includedWFS1,MADD,

KCNJ11, and GCK; module 2 SLC30A8, SLC2A2, G6PC2, and FADS1; module 3 IGF2BP2 and JAZF1; and module 4 NOTCH2, HNF1B, and GCKR. Expansion

of modules using STRING interaction data revealed 29-known T2D genes (nodes colored in blue). Genes prioritized from network topology are colored in

yellow.

(B) Out of the nine genes prioritized from the network topology, expression of PDX1 (p = 0.0001), FOXA2 (p = 0.03), ABCC8 (p = 0.006), and PAX6 (p = 0.01) was

shown to have significantly lower expression in hyperglycemic compared to normoglycemic donors. Bars represent mean ± SEM.
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secretion and lower HbA1c (Figures 4B–4E and 4J). In contrast,

the expression of IL1R2, PDGFRA, SFRP4, and PTGES was

positively correlated with reduced insulin secretion and higher

HbA1c levels (Figures 4F–4I and 4K). We also tested whether

3,122 SNPs within a region of ± 50 kb of the 18 differentially

expressed genes would show association with T2D in the

DIAGRAM+ database at p < 0.001. As seen for the T2DNet, a

SNP in the LRFN2 gene (rs892367) showed nominal association

with T2D (p = 0.0001).

Genes Associated with T2D Based upon Bioinformatic
Ranking
Finally, we included the 14 genes from the T2DNet core, 8 genes

from the PPI network (Ins gene was excluded from ranking as
126 Cell Metabolism 16, 122–134, July 3, 2012 ª2012 Elsevier Inc.
it was not annotated in our Affymetrix chip), 18 genes showing

differential expression between hyperglycemic and normogly-

cemic patients and 10 genes with top-ranked SNPs in the

DIAGRAM database together with the 48 T2D seeder genes to

make a final rank list of 98 putative T2D genes. We used five

different criteria to rank the genes: (1) correlation of gene expres-

sion in human islets with insulin secretion, (2) correlation of

gene expression in human islets with HbA1c, (3) SNPs within

a region of ± 50 kb of the gene associated with T2D in the

DIAGRAM+ database (with the lowest p value), (4) differential

expression in intact pancreatic islets from diabetic and nondia-

betic donors, and (5) bioinformatic analysis of a published data

set on differential expression in pancreatic b cells from diabetic

and nondiabetic individuals (Marselli et al., 2010). The genes
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Figure 4. Genes Differentially Expressed in Human Islets

(A) Fold change in mean expression of the 18 overlapped differentially expressed genes in pancreatic islets between donors with hyperglycemia versus nor-

moglycemia and donors with T2D versus nondiabetic donors. Bars represent mean ± SEM.

(B–I) Correlations between expression of eight of the differentially expressed genes and HbA1c (n = 51) and insulin secretion (n = 53) (ng/islet/hr): GPR120 (B),

CHL1 (C), GLP1R (D), LRFN2 (E), IL1R2 (F), PDGFRA (G), SFRP4 (H), and PTGES (I). Genes in (B)–(E) negatively correlated to HbA1c and positively to insulin

secretion. Genes in (F)–(I) positively correlated to HbA1c.

(J) Correlations of mean centroid of the downregulated genes (GPR120, CHL1, GLP1R, LRFN2, FAM105A, PKIB, FLJ40142, and RASGRP1) to HbA1c level and

insulin secretion (ng/islet/hr) in nondiabetic or normoglycemic donors.

(K) Correlations of mean centroid expression of the upregulated genes (FST, PDLIM4, PTGES, IL1R2, PDGFRA, SFRP4, BDKRB1, FGF7, ASAM, and SERPINE2)

in nondiabetic or normoglycemic donors to HbA1c level and insulin secretion (ng/islet/hr).
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Table 1. Top 20 Ranked Genes

Gene

SNP in DIAGRAM

T2D versus

Healthy (b cell)

T2D versus

Healthy (Islets)

Correlation with

HbA1c

Correlation with

Insulin

P value Rank P value Rank P value Rank P value Rank P value Rank Sum of rank

JAZF1a 2.06E-08 8 0.03783304 11 0.0036 23 0.00106 24 0.0047 18 84

CHL1b 0.0015 52 0.00049799 3 0.0005 6 0.00000016 1 0.0338 32 94

LRNF2b, d 0.000106 35 0.36704424 41 0.0009 11 0.00000442 5 0.0077 22 114

RASGRP1b 0.00153 53 0.0032154 6 0.0001 1 0.000021 10 0.073 46 116

ABCC8e 1.60E-05 30 0.0005337 4 0.0067 27 0.017 49 0.00217 7 117

RASGRF1d 0.000216 38 0.00015519 2 0.0153 38 0.0054 39 0.0009 2 119

KLHDC5d 0.000003 20 0.14133106 24 0.0078 32 0.001406 28 0.02 29 133

ELAVL4c 0.003 58 0.28240375 33 0.0016 16 0.000885 22 0.0026 11 140

KCNJ11a 1.00E-06 14 0.62536277 64 0.0129 36 0.001016 23 0.0012 3 140

SLC2A2a 0.0287 74 4.46E-05 1 0.0085 34 0.0000024 4 0.034 33 146

FAM105Ab 0.285 89 0.01057317 8 0.0038 24 0.00000968 9 0.0045 17 147

G6PC2a 0.0127 66 0.06640844 15 0.0330 41 0.001362 26 0.00142 4 152

CLCN4c 0.01956 71 0.08389617 17 0.0030 20 0.00152 29 0.0061 21 158

GLP1Rb 0.00165 54 0.80635639 79 0.0011 13 0.00000829 8 0.00169 5 159

PLCB4d 0.000834 48 0.15950804 26 0.0518 45 0.00139 27 0.00353 13 159

GPR120b 0.00673 63 0.454 52 0.0004 2 0.00000823 7 0.0434 38 162

PDGFRAb 0.00565 62 0.06524248 14 0.0004 3 0.00000164 3 0.585 85 167

MAPRE3c 0.017 70 0.39069714 45 0.0011 12 0.004728 37 0.00213 6 170

PPM1Kc 0.0105 65 0.1134122 21 0.0145 37 0.00371 35 0.0039 15 173

SLC30A8a 1.52E-08 7 0.20966361 30 0.2307 66 0.01847 52 0.0055 19 174

Genes were ranked based on their expression correlation with insulin secretion, HbA1c, SNP associated with T2D in DIAGRAM+ database, and differ-

ential expression in donors with T2D versus healthy (in intact islets and pancreatic b cells). The genes were ranked for each parameter, and the sum

score is denoted (low sum means highly ranked genes).
aGenes derived from the 48 T2D genes.
bGenes derived from the differential expression in islets from hyper/normoglycemic donors.
cGenes derived from the T2DNet.
dGenes derived from the top ten genes in the DIAGRAM data set.
eGenes derived from the PPI.
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were given a rank from 1 to 98 according to the above-listed

criteria (Table S7); genes with the lowest ranking sum will be

the top-ranked genes. Out of the top 20 ranked genes, 7 genes

were among the genes showing differential expression in islets

from hyperglycemic and/normoglycemic donors (RASGRP1,

CHL1, PDGFRA, LRFN2, FAM105A, GLP1R, and GPR120), 5

genes were derived from the T2DNet (PPM1K, ELAVL4,

KLHDC5, CLCN4, and MAPRE3), 5 genes from the 48 T2D

seeder genes (JAZF1, SLC2A2, G6PC2, KCNJ11, and

SLC30A8), 3 genes from the top 10 in the DIAGRAM data set

(RASGRF1, LRFN2, and PLCB4), and one gene from the PPI

network (ABCC8) (Table 1).

The gene encoding JAZF1 (zinc finger 1) was top ranked,

followed by CHL1 (cell adhesion molecule with homology to

L1CAM), LRFN2 (leucine-rich repeat and fibronectin type III

domain containing 2) and RASGRP1 (RAS guanyl releasing

protein 1). Interestingly, the top 20 genes explained 7% and

24% of the variance in insulin secretion and HbA1c. Moreover,

the mean centroid of these 20 genes differed strongly between

hyperglycemic and normoglycemic donors (p = 0.005) and was

positively correlated with insulin secretion (R = 0.45; p = 0.001)

and negatively with HbA1c levels (R =�0.50; p = 0.0001) (Figures

5A and 5B).
128 Cell Metabolism 16, 122–134, July 3, 2012 ª2012 Elsevier Inc.
GPR120 Knockdown Increased Apoptosis
in Human Islets
GPR120 is an omega-3 fatty acid receptor and has been

shown to mediate GLP-1 secretion (Hirasawa et al., 2005).

Culturing of human islets with eicosapentaenoic acid (EPA),

a GPR120 activating agent, prevented palmitate and linoleic

acid-induced apoptosis and increased cell viability, but did

not appreciably influence glucose-induced apoptosis. Knock-

down of GPR120 in human islets diminished the ability of

EPA to prevent apoptosis induced by palmitate or linoleic

acid by 50% (Figures 5C and 5D). However, we did not observe

a significant effect of EPA on insulin secretion during the 1 hr

incubation period.

Functional Studies in Clonal Rat b Cells
To obtain some insight into whether any of the other top-ranked

genes would influence glucose-stimulated insulin secretion, we

used RNA interference to silence expression of JAZF1, CHL1,

LRNF2, RASGRP1, RASGRF1, KLHDC5, PLCB4, ELAVL4,

IL1R2, PDGFRA, and the PPM1K genes in INS-1 cells (831/13).

Silencing of CHL1, LRFN2, and PPM1K resulted in reduced

glucose-stimulated insulin secretion, whereas RASGRP1 silenc-

ing resulted in increased insulin secretion (Figures 6 and S6). No
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Figure 5. GPR120 Knockdown Enhanced Apoptosis in Human Islets

(A) Low expression of the mean centroid of the top 20 ranked hyperglycemic donors compared to normoglycemic donors (p = 0.005). Bars represent

mean ± SEM.

(B) Correlations ofmean centroid expression of the top 20 ranked geneswith HbA1c level and insulin secretion (ng/islet/hr). A negative correlation was observed to

HbA1c level and positive to insulin secretion.

(C–E) Human islets transfected with scrambled (Scr) or shRNA forGPR120 (KD) were treated with 5.5 mM glucose, 100 mM eicosapentaenoic acid (EPA), 250 mM

palmitate, or 250 mM linoleic acid for 1 hr prior to measurement of cell apoptosis by MTS. Treatment of human islets with EPA GPR120 prevented palmitate and

linoleic acid-induced apoptosis and increased cell viability but had only amodest effect on insulin secretion (C). Knockdown ofGPR120 in human islets resulted in

diminished ability of EPA to prevent apoptosis induced by palmitate or linoleic acid by 50%. No effect was observed on insulin secretion (D). The knockdown of

GPR120 was estimated to be 65% as measured by RT-PCR (E). Bars represent mean ± standard deviation (SD).
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effect on secretion was seen after siRNA silencing of JAZF1,

RASGRF1, PLCB4, KLHDC5, ELAVL4, IL1R2, and PDGFRA. In

an independent study, we observed that overexpression of

SFRP4 (Figure 4A) was associated with increased expression

of inflammatory markers and impaired insulin secretion.

DISCUSSION

The current paper presents a comprehensive map linking

genetic variation with gene expression and function in a large

number of well-characterized human islets. The analyses

provide a list of potential T2D genes based upon coexpression

with known T2D genes, differential expression in islets from

T2D and nondiabetic islet donors, and correlation with metabolic

phenotypes.
The PPI network extended the analysis of transcripts to pre-

dicted proteins and protein pathways. Most of the proteins

identified as having strong connection to known T2D-associated

genes encode key genes in pancreatic development (PDX1,

NEUROD1, FOXA2, and PAX6) in addition to insulin and

glucagon. The genes involved in pancreatic development have

also been suggested to cause monogenic forms of diabetes

(MODY) (Malecki et al., 1999; Stoffers et al., 1997).

To summarize the findings from the different subanalyses,

we ranked the identified genes based upon five different criteria.

The ten top-ranked genes explained 22% of the variance in

HbA1c, which is higher than 2.4%, explained by ten SNPs in a

GWAS of HbA1c concentrations in > 46,000 Europeans (Soranzo

et al., 2010). HbA1c provides a robust estimate of glycemic

excursions during the preceding weeks and has been suggested
Cell Metabolism 16, 122–134, July 3, 2012 ª2012 Elsevier Inc. 129
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Figure 6. Glucose-Stimulated Insulin Secretion in Transfected Clonal b Cells

(A) Knockdown efficiency of siRNA of CHL1, LRNF2, PPM1K, RASGRP1, JAZF1, IL1R2, KLHDC5, PDGRFA, ELAVL4, RASGRF1, and PLCB4 in INS-1 cells.

(B–L) individual siRNA experiments for the above-listed genes show insulin secretion in response to 2.8 mM and 16.7 mM glucose 72 hr after siRNA transfection

as measured during 1 hr static incubation. Secretion was expressed as fold increase (insulin secreted at 16.7 mM/insulin secreted at 2.8 mM glucose) and

normalized for protein content (ng/mg/hr). Data are shown from three independent experiments for each siRNA. Bars represent mean ± SEM. * < 0.05, ** < 0.01.
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as a diagnostic test for diabetes (http://www.who.int/diabetes/

publications/report-hba1c_2011). HbA1c also has the advantage

that it is unlikely to be influenced by the ultimate treatment the

donors have received.

We acknowledge that the use of HbA1c to differentiate

between expressions in islets from hyperglycemic and normo-

glycemic individuals may infer a circular element to the ranking.

However, excluding the 18 genes derived from this analysis for

the ranking did not alter the results markedly; the top 20 genes

still explained 22% of the variance in HbA1c. The cutoff for

ranking is of course arbitrary, but increasing the number of

top-ranked genes from ten to 20 or 40 did not significantly

change the proportion of the variance of HbA1c explained.

It remains to be shown whether this is an indication that the

first ten top-ranked genes already picked key pathways
130 Cell Metabolism 16, 122–134, July 3, 2012 ª2012 Elsevier Inc.
contributing to abnormal glucose tolerance and that most

additional genes from the ranking list came from the same

pathways, thereby adding little to the explanation of the vari-

ance in HbA1c.

Importantly, the correlation between gene expression in

human islets and HbA1c and insulin secretion cannot be inter-

preted as evidence of causality, i.e., the changes in gene ex-

pression precede the changes observed in insulin secretion

and HbA1c. It could also be the other way around, that elevated

glucose induces changes in gene expression. There is some

further information to clarify these relationships. Of the 50 top-

ranked genes, 84% (6% after Bonferroni correction) and

34.1% of the 48 T2D seeder genes (2%) correlated with HbA1c

compared with 12% (0.7%) of all 20,000 genes on the array.

The corresponding figures for genes correlating with both

http://www.who.int/diabetes/publications/report-hba1c_2011
http://www.who.int/diabetes/publications/report-hba1c_2011
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HbA1c and insulin secretion were 54% for the top-ranked genes,

12% for the T2D seeder genes, and 3.4% for all genes on

the array. From these data we can conclude that more of the

48 seeder genes and particularly the top-ranked 50 genes are

associated with measures of glucose homeostasis, the direction

of which cannot be inferred from the data.

To gain insight into the direction of the effect, we silenced

expression of 12 genes, JAZF1, CHL1, LRNF2, RASGRP1,

RASGRF1, KLHDC5, PLCB4, ELAVL4, IL1R2, PDGFRA, and

PPM1K, using siRNA in INS-1 cells, as well as of GPR120 using

shRNA in human islets. These results obtained in a clonal rat

insulinoma cell line suggest that disruption of CHL1, LRFN2,

RASGRP1, and PPM1K results in altered insulin secretion. The

CHL1 gene encodes for a neural adhesion molecule, which has

been ascribed a role in regulation of GABA and activation of

the MAP/ERK pathway (Huang et al., 2011). The gene has

been shown to be differentially expressed in pancreas from

patients with pancreatic cancer (Senchenko et al., 2011).

Expression of CHL1 in human islets was strongly related to

HbA1c and insulin secretion (Figure 4C) and decreased in islets

and b cells from patients with T2D (Marselli et al., 2010)

(Figure 4A). Additionally, expression of CHL1 was significantly

correlated with the insulin content (R = 0.30; p = 0.02). It has

been suggested that adhesion molecules might be involved in

the development of islet structure and determine distribution of

b, a, and d cells in pancreatic islets (Cirulli et al., 1994).

LRFN2 (leucine-rich repeat and fibronectin type III) encodes

a protein known to promote growth of hippocampal neurons

and regulate cell surface expression of NMDA receptor subunits.

High expression of LRFN2 in islets was associated with better

insulin secretion and lower HbA1c (Figure 4E).

The PPM1K gene encodes for the mitochondrial branched-

chain a-ketoacid dehydrogenase phosphatase, which catalyzes

oxidative decarboxylation of branched-chain a-ketoacids from

leucine, isoleucine, and valine (Wynn et al., 2012). Given the

central role ascribed to branched-chain amino acids in the

pathogenesis of T2D and insulin resistance (Newgard et al.,

2009; Wang et al., 2011) and a recent finding demonstrating

that SNPs in the PPM1K gene showed strong association with

the Fisher ratio (ratio of branched-chain amino acids to aromatic

amino acids) (Kettunen et al., 2012), it is interesting to speculate

that similar mechanisms as described in muscle might also be

operative in islets.

Although we did not observe any effect of silencing of

PDGFRA (platelet-derived growth factor receptor A) on insulin

secretion, there is prior evidence that disruption of PDGFRA

impairs b cell regeneration in streptozotocin-treated mice and

that PDGFR levels decline with age in parallel with a decline

in b cell replication (Chen et al., 2011). This could suggest

that a decrease in expression of PDGFRA influences insulin

secretion only under diabetic conditions.

In contrast to expectations from findings in diabetic islets

showing decreased expression of RASGRP1, silencing of

RASGRP1 resulted in markedly increased insulin secretion in

INS-1 cells. In keeping with the findings in islets, RASGRP1

(RAS guanyl releasing protein 1) showed marked downregu-

lation in b cells from patients with T2D (Marselli et al., 2010).

The encoded protein activates the MAP/ERK pathway and

enhances endocytosis of the sodium-chloride cotransporter
(Ko et al., 2010). Variation in the gene has been associated

with T1D (Qu et al., 2009). These data thereby highlight the

problem of generalizing data from short-term perturbations to

the situation of chronic hyperglycemia characteristic of T2D.

We did not observe any effect of silencing of JAZF1,

RASGRF1, KLHDC5, ELAVL4, PLCB4, and IL1R2 on glucose-

stimulated insulin secretion. It therefore still remains to be shown

whether this reflects a failure of the experimental situation, that

the observed differences in expression of these genes could

be a consequence of chronic hyperglycemia, or that effect on

insulin secretion also requires perturbation of coexpressed

networks. Of these genes, ELAVL4 is particularly interesting,

not only because it is a putative target of miRNA-375, a key

miRNA involved in regulation of b cell mass and function (Poy

et al., 2004), but also since ELAVL4 was shown to reside in

a region of open chromatin as assessed by FAIRE enrichment

(Gaulton et al., 2010) or H3K4me3 peaks (Stitzel et al., 2010) in

human islets.

SFRP4 (secreted frizzled-related protein 4) contains cysteine-

rich domains homologous to the Wnt binding sites of Frizzled

proteins. High expression in islets was associated with

impaired insulin secretion and high HbA1c levels (Figure 4A).

This was further supported by independent results from our

laboratory showing that recombinant SFRP4 inhibited in vitro

insulin secretion by 30% and b cell exocytosis by 50% in

human islets.

GPR120 encodes for a G protein-coupled receptor known to

stimulate secretion of GLP-1. It is stimulated by unsaturated

fatty acids, particularly omega-3 fatty acids (Hirasawa et al.,

2005). Here we noted that its expression in human islets was

positively correlated with insulin secretion and insulin content

(R = 0.25; p = 0.04) and with lower HbA1c (Figure 4B). Second,

activation of GPR120 with EPA prevented lipid-induced

apoptosis and increased cell viability. However, this effect was

reduced by 50% in human islets after disruption of GPR120.

Although we could not observe a significant effect on insulin

secretion during the short incubation period, the data suggest

that GPR120 can protect pancreatic islets from lipotoxicity

(Figures 5C and 5D).

On the other hand, several genes from loci associatedwith T2D

gathered at the bottom of the list, including KCNQ1, CDKAL1,

ADRA2A, CAMK1D, and GIPR, etc. This may suggest that the

effect of these variants on risk of T2D affects a specific splice iso-

form pattern rather than total gene expression. Another explana-

tion could be that expression of most of these genes in islets was

relatively low. This type of reasoning is relevant to TCF7L2, for

which there is accumulating evidence that the risk genotype in

TCF7L2 influences splicing pattern rather than absolute levels

of expression (Le Bacquer et al., 2011; Osmark et al., 2009).

There are some limitations with the study we need to take into

account. One caveat when generalizing from SNPs to genes is

that SNPs usually are associated with a chromosomal locus

rather than a gene. Although we here focused on the nearest

gene to the SNP, we cannot exclude the possibility that some

of the other nearby genes are the true targets of the SNP. We

therefore hoped that the analysis of cis eQTLs would help in

identifying causal genes, but only five cis eQTLs were observed

using these stringent criteria, and these SNPs were from genes/

loci (CAMK1D, HHEX, MADD, KCNQ1, and GCKR) with fairly
Cell Metabolism 16, 122–134, July 3, 2012 ª2012 Elsevier Inc. 131
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well-described functions in metabolism. None of the cis eQTLs

showed differential expression in islets from normoglycemic

and hyperglycemic donors.

Another caveat could be purity of human cadaver islets and

differences in contribution of exocrine and endocrine tissue or

different contribution of a and b cells between normoglycemic

and hyperglycemic donors. Although there was a small decrease

in purity as measured by dithizone staining in islets from T2D

versus nondiabetic islets (10%, p = 0.15), adjusting gene ex-

pression for differences in purity did not significantly change

the results, nor were they influenced by adjustment for DNA

content. Also, the contribution of exocrine and endocrine tissue

did not significantly differ betweendiabetic andnondiabetic islets

(see Experimental Procedures). In analogy with the issue of

whether changes in gene expression are the cause or conse-

quence of increased HbA1c, we cannot from the current cross-

sectional data conclude whether changes in gene expression

are the cause or a consequence of a reduction in b cell mass. A

recent paper on patients undergoing pancreatic surgery showed

that 65% of b cell mass was lost at onset of diabetes, but the

paper did not provide any information on gene expression (Meier

et al., 2012). Notably, we did not attempt to include two groups of

human islets, i.e., islets fromT2Dand nondiabetic donors; rather,

the HbA1c values indicate that the donors represent the whole

spectrum from normal to impaired and diabetic glucose toler-

ance. However, only large enough numbers can outweigh the

problems of heterogeneity and purity.

Taken together, these results combining SNP information

and islet gene expression with relevant in vitro and in vivo mea-

surements in humans present a map of potential genes involved

in T2D pathogenesis. Thereby, systems genetics may help to link

the plethora of T2D-associated SNPs and loci to pathways of

relevance for islet function and pathogenesis of T2D. Functional

studies will be required to pinpoint the mechanisms by which

they impair islet function and increase risk of T2D.

EXPERIMENTAL PROCEDURES

Human Pancreatic Islets

Islets from cadaver donors (54 nondiabetic and 9 diabetic) were provided by

the Nordic Islet Transplantation Programme (http://www.nordicislets.org),

coordinated by Olle Korsgren, Uppsala University. Islets were obtained from

54 nondiabetic donors (25 females, 29 males, age 59 ± 9, BMI 25.9 ± 3.5,

HbA1c 5.5 ± 1.1) and 9 T2D donors (4 females, 5 males, age 57 ± 4, BMI

28.5 ± 4.5, HbA1c 7.2 ± 1.1). Purity of islets was assessed by dithizone staining

and was 57% ± 19% in the T2D and 67% ± 17% in the nondiabetic islets

(p = 0.15). We also measured the DNA content in islets from diabetic and

nondiabetic donors; no difference was observed between the groups

(2.5 ng/islet versus 2.2 ng/islet; p = 0.6). In addition, we also tried to obtain

an estimate of the contribution of exocrine and endocrine tissue by measuring

expression of pancreatic lipase, alpha 2 amylase and chymotrypsin 2 as

markers of exocrine and somatostatin and glucagon as markers of endocrine

tissue (probes for insulin were not on the Affy chip). Using this approach, the

contribution of endocrine tissue did not differ between nondiabetic and T2D

donors (72% versus 68%, p = 0.29). Amodest, insignificant decrease in insulin

content in islets from hyperglycemic versus normoglycemic donors was

observed (8.8 ± 3.2 ng/islet versus 10.6 ± 3.2 ng/islet; p = 0.4). All procedures

were approved by the ethics committees at Uppsala and Lund Universities.

Microarray Gene Expression in Human Pancreatic Islets

The microarrays were performed using GeneChip Human Gene 1.0 ST whole

transcript according to Affymetrix standard protocol. The microarrays were
132 Cell Metabolism 16, 122–134, July 3, 2012 ª2012 Elsevier Inc.
performed using GeneChip Human Gene 1.0 ST whole transcript according

to Affymetrix standard protocol. All data are MIAME compliant, and the raw

data have been deposited in a MIAME database (GEO, accession number:

GSE38642). Microarray procedure is described in detail in Supplemental

Experimental Procedures.

Glucose-Stimulated Insulin Secretion

Insulin secretion analysis is described in detail in the Supplemental Experi-

mental Procedures.

Genotyping

GWAS was performed using Genome-Wide Human SNP array (SNP 6.0), and

the 47 T2D-associated SNPs were genotyped by allelic discrimination with

TaqMan assay on the ABI 7900 platform. More details are given in Supple-

mental Experimental Procedures.

Coexpression Analysis

Genes showing correlation of Spearman rho (rs) > 0.8 or < �0.8 where

considered coexpressed. All coexpression data passed Bonferroni correc-

tion (p = 4.73 3 10�8). For more details see Supplemental Experimental

Procedures.

Molecular Interaction Networks

Genes in the connection groups were analyzed in the STRING (Search Tool for

the Retrieval of Interacting Genes/Proteins) database, version 8, for protein-

protein interactions (Szklarczyk et al., 2011). The EAGLE clustering algorithm

was used for detecting the subnetworks from the protein-protein (PPI)

interaction network. The EAGLE algorithm was used to identify the network

modules with CliqueSize threshold = 3 and OutputThreshold = 2. Cytoscape

software (version 2.6) was used to visualize and analyze molecular and

interaction networks (http://www.code.google.com/p/clusterviz-cytoscape/).

Topological network properties were calculated using Network Analyzer in

Cytoscape. Nodes in the network were classified according to the degree of

connectivity based on the Lu et al. scheme (Lu et al., 2007). Superhubs were

defined as nodes having connectivity greater 100, hubs as nodes with > 20

and < 100, peripheral-A as nodes with connectivity > 2 and < 20, and periph-

eral-B as those with only one interacting partner. Gene ontology (GO) enrich-

ment of the network was carried out using the Cytoscape-BINGO program to

detect significantly overrepresented GO biological processes (Maere et al.,

2005). BINGO applies Benjamini and Hochberg multiple-test corrections at

a significance level of p < 0.05.

cis and trans eQTL Detection

To identify cis and trans eQTLs, we assessed significance of expression

changes in the data set of 20,000 genes by applying a linear model with the

assumption of additive effect (corrected for age and sex). cis eQTLs were

defined as significant associations between the 47 T2D-associated SNPs

and expression of genes within 1Mb distance, whereas transwere considered

associations with expression of any other gene outside this interval. A permu-

tation significance threshold (p < 0.001) for cis eQTLs was defined based on

1,000 permutations of the sample expression vectors. The p value threshold

(p < 0.00019) for the trans eQTLs was defined by looking at the distribution

of best p values from 1,500 random SNP-gene test pairs, then selecting the

top 5% most significant p value (p < 0.00019).

Differences in Expression of Genes between Patients with and

without T2D

Omics Explorer, Version 2.0 Beta (Qlucore AB, Lund, Sweden, http://www.

qlucore.se) was used to identify any gene on the chip showing differential

expression between patients with and without T2D and donors with HbA1c <

6% and > 6%). A nominal p value of < 0.001 was used to identify differentially

expressed genes. The mean centroid represents the normalized gene ex-

pression levels of all genes from all individuals in the analysis to a mean of

0 and a variance of 1 (Mootha et al., 2003).

DIAGRAM Database

DIAGRAM database is described in details in Supplemental Experimental

Procedures.

http://www.nordicislets.org
http://www.code.google.com/p/clusterviz-cytoscape/
http://www.qlucore.se
http://www.qlucore.se
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Statistical Analysis

Differences in expression of 48 putative known T2D genes in diabetic versus

nondiabetic or normoglycemic versus hyperglycemic donorswere tested using

nonparametric Mann-Whitney test (two-tailed). Nonparametric Spearman’s

test was used for testing correlation between gene expression, HbA1c, and/or

insulin secretion. Data are presented as means ± SEM (standard error of the

mean) or ± SD (standard deviation). Expression variation of the top 20 genes

in HbA1c and insulin secretion were analyzed using linear regression test. All

statistical testswereperformedusing statistical package for the social sciences

(SPSS) version 19.0 software (SPSS, Chicago, IL, USA) and R package.

ACCESSION NUMBERS

The raw data have been deposited in a MIAME database under accession

number GSE38642

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, seven tables, and Supple-

mental Experimental Procedures and can be found with this article online at

http://dx.doi.org/10.1016/j.cmet.2012.06.006.
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