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Abstract

A game on a convex geometry is a real-valued function de�ned on the family L of the
closed sets of a closure operator which satis�es the �nite Minkowski–Krein–Milman property.
If L is the boolean algebra 2N then we obtain an n-person cooperative game. Faigle and Kern
investigated games where L is the distributive lattice of the order ideals of the poset of players.
We obtain two classes of axioms that give rise to a unique Shapley value for games on convex
geometries. ? 2000 Elsevier Science B.V. All rights reserved.
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1. Games on convex geometries

The goal of this paper is to develop a theoretical framework in which to analyze
cooperative games in which only certain coalitions are allowed to form. We will axiom-
atize the structure of such allowable coalitions using the theory of convex geometries,
a notion developed to combinatorially abstract geometric convexity. In this sense our
model acts as a bridge between traditional cooperative game theory and spatial games,
in which the (Euclidean) geometry controls the game.
There have been previous models developed to confront the problem of unallowable

coalitions (see, for instance [7,8]). Most closely related to our work is the work of
Faigle and Kern [4] on cooperative games under precedence constraints, that is, games
on distributive lattices. Our model is a generalization of theirs and our analysis follows
the arguments of Faigle and Kern quite closely.
The theory developed in this paper has already been applied in [1,2] to examine

certain voting games. In the former, a new analysis of voting in a one-dimensional
issue space is examined, as well as an alternative to the Attitudinal-dependent index
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of Shapley (see also [10,9]) for spatial games using the generalized Shapley value
de�ned in Section 2. This leads to a reinterpretation of the model of voting on the
Supreme Court discussed by Frank and Shapley [6]. In [2] an empirical approach to
voting on the current Supreme Court is taken using the ideas of convex geometries
and a generalization of the Banzhaf index. We think that these new approaches to old
problems provide ample evidence that the theory developed in this paper is of more
than aesthetic interest.

Example. A motivating example for our interest in convex geometries is the follow-
ing spatial voting model. Let N = {1; 2; : : : ; n} be voters and Ed be an d-dimensional
Euclidean issue space. We will denote by xi the ideal point of the voter i in this space.
Let u: Ed → E be a convex function such that u(x) = u(−x). If y ∈ Ed we will let
ui(y) = u(y − xi) be the utility of the outcome y to voter i. Assume that each voter i
will vote in favor of an outcome y if ui(y)¿�y. Suppose that every voter i ∈ A⊂N
will vote in favor of y and that for some j 6∈ A we have that xj is in the convex hull
of {xi: i ∈ A}. It follows from the convexity of the function u that uj(y)¿�y and
hence j will vote in favor of y as well. Thus coalitions A⊆N that form in this model
have the property that xj in the convex hull of {xi:i ∈ A} implies that j ∈ A. Since,
we do not know very much about the function u or the threshold values �y, it would
be reasonable to assume that all coalitions with this closure property might form. This
collection of subsets is a convex geometry (see [3, Example I]).

Let N be a �nite set of cardinality n and L be a collection of subsets of N with
the properties
• ∅∈L,
• if A; B ∈ L, then A ∩ B ∈ L (intersection-closed),
• if A ∈ L; A 6= N , then there exists an x ∈ N \ A such that A ∪ {x} ∈ L (one-point
extension).

Call L a convex geometry on N . Convex geometries are a combinatorial abstraction
of convex sets. The reader should see [3] for a discussion of their properties and a
myriad of examples. Alternatively, one can think of L as being a closure operator,
i.e., for any subset A⊆N de�ne the closure of A, L(A) to be

L(A) =
⋂

{C∈L: C⊇ A}
C:

It is easy to check that L is a closure operator on N , i.e., L is a function from 2N ,
the set of all subsets of N , to itself satisfying
(C1) A⊆L(A),
(C2) A⊆B implies that L(A)⊆L(B),
(C3) L(L(A)) =L(A),
with the additional condition that L(∅) = ∅. The subsets in L, or equivalently those
subsets of N of the form L(A) for some A⊆N are usually called convex sets.



J.M. Bilbao, P.H. Edelman /Discrete Applied Mathematics 103 (2000) 33–40 35

If A∈L and a ∈ A, then call a an extreme point of A if A \ a ∈ L. The set of
extreme points of A will be denoted ex(A).

Theorem 1. A convex geometry L on a set N has the property that for every A∈L;
A=L(ex(A)).

Proof. See [3, Theorem 2:1].

Example. A graph G=(N; E) is connected if any two vertices can be joined by a path.
A maximal connected subgraph of G is a component of G. A cutvertex is a vertex
whose removal increases the number of components, and a bridge is an edge with
the same property. A graph is 2-connected if it is connected, has at least 3 vertices
and contains no cutvertex. A subgraph B of a graph G is a block of G if either B is
a bridge or else it is a maximal 2-connected subgraph of G. A graph G is a block
graph if every block is a complete subgraph of G. Clearly, if G is a disjoint union
of trees, then G is a block graph. Jamison [3, Theorem 3:7] showed: G = (N; E) is
a connected block graph if and only if the collection of subsets of N which induce
connected subgraphs is a convex geometry.
We can partially order the collection L by containment. The resulting poset is a

meet-distributive lattice and, indeed, all meet-distributive lattices arise from convex
geometries in this way [3, Theorem 4:1]. Given any pair of sets S; T ∈L such that
S ⊆T , we de�ne a maximal chain between S and T to be an ordered collection of
subsets in L

(S =M0⊂M1⊂ · · ·⊂Mk−1⊂Mk = T )

such that there does not exist a set C ∈L such that

Mj$C$Mj+1

for any index 06j6k − 1. Denote by c([S; T ]) the number of maximal chains from
S to T , c(T ):=c([∅; T ]); T 6= ∅; the number of maximal chains from ∅ to T and
c([T; T ]) = 1; ∀T ∈ L. Then c(N ) = c(L) is the total number of maximal chains.
It follows from the axiom of one-point extension that in each maximal chain from

S to T; |Mj|= |S|+ j; for any 06j6k. Thus, each maximal chain from S to T gives
rise to a compatible ordering of the set T \ S={a1; : : : ; ak}, where Mj=S∪{a1; : : : ; aj}
for 16j6k. We will denote the set of compatible orderings of N = N \ ∅ by C(L).
If C ∈ C(L) with C = (a1; : : : ; an), then we will say that i6j in C if i = as; j = at ,
and s6t.
A cooperative game is a function v : 2N → R with v(∅) = 0: The players are the

elements of N and the coalitions are the elements S ⊆N of the boolean algebra 2N :

De�nition 1. A game on a convex geometry L is a function v :L→R such that
v(∅) = 0.
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We shall assume that the coalitions are the convex sets of L, the players are the
elements i ∈ N , and �(L) is the vector space over R of all games on the convex
geometry L⊆ 2N .

Example. If L is a Boolean algebra of rank n then it is isomorphic to 2N ; where
N = {1; 2; : : : ; n} is the set of n atoms of L: Thus, the game on L is an ordinary
cooperative game.

Example. Let (P;6) be a poset. For any N ⊆P;
N 7→ �N :={y ∈ P: y6x for some x ∈ N};

de�nes a closure operator on P. Its closed sets are the order ideals (down sets) of P,
and we denote this lattice J (P). Since, the union and intersection of order ideals is again
an order ideal, it follows that J (P) is a sublattice of 2P . Then J (P) is a distributive
lattice and so, J (P) is a convex geometry closed under set-union and ex(S) is the set
of all maximal points Max(S) of the subposet S ∈ J (P). When P is �nite, there is a
1–1 correspondence between antichains of P and order ideals. Then the games (C; v)
and (A; c), where C is the family of down sets of P [4] and A is the set of antichains
of a rooted tree [5] are games on distributive lattices.
We consider the following {0; 1}-value games on L. For any T ∈ L; the upper

game, denoted �T :L → R is de�ned by �T (S):=1; if T ⊆ S and �T (S):=0; otherwise.

Theorem 2. Let v :L → R be a game on a convex geometry L. Then there exists
an unique set of coe�cients {�v(T ): T ∈ L} such that

v=
∑
T∈L

�v(T )�T :

Moreover;

�v(S) =
∑

T∈[S\ex(S); S]
(−1)|S|−|T |v(T ):

Proof. The family {�T : T ∈ L; T 6= ∅} is a basis of the vector space �(L). We
have for all S ∈ L;

v(S) =
∑
T∈L

�v(T )�T (S) =
∑

{T∈L: T ⊆ S}
�v(T ):

The M�obius inversion formula [12, Chapter 3] for the lattice L implies

�v(S) =
∑

{T∈L: T ⊆ S}
�L(T; S)v(T ) for all S ∈ L;

where �L is the M�obius function of the lattice. L is a convex geometry and its M�obius
function satis�es [1, Theorem 4:3]

�L(T; S) =
{
(−1)|S|−|T | if S \ T ⊆ ex(S);
0 otherwise:
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Since {T ∈ L: T ⊆ S and S \ T ⊆ ex(S)} = [S \ ex(S); S]; we obtain the required
result.

2. Axioms for the Shapley value

The classical characterization of the Shapley value is as the only value that satis-
�es the carrier, symmetry and additivity on the class of all superadditive games [11].
For the class of all games we add the linearity axiom. If (N; v) is a game then the
Shapley value for the player i∈N is

�i(N; v) =
∑

{S∈2N : i∈S}

(s− 1)!(n− s)!
n!

[v(S)− v(S \ i)];

where n= |N | and s= |S|. We will follow the work of Faigle and Kern [4] to obtain
an axiomatization of the Shapley value for games on convex geometries.
Given an element i ∈ N and a compatible ordering C of L, let

C(i):={j ∈ N : j6i in C}:
Let S ∈ L and i ∈ S: Following Faigle and Kern [4], we de�ne the hierarchical
strength hS(i) of i in S to be

hS(i):=
|{C ∈ C(L):C(i) ∩ S = S}|

|C(L)| ;

i.e., hS(i) is the average number of compatible orderings of L in which i is the last
member of S in the ordering. Note that hS(i) 6= 0⇔ i ∈ ex(S):

De�nition 2. A convex set U ∈L is called a carrier for a game v∈�(L) if v(S) =
v(S ∩ U ) for all S ∈L.

Let �:�(L) → Rn : v 7→ (�1(v); : : : ; �n(v)); be a map satisfying the following ax-
ioms:
(A1) (Linearity). For all �; � ∈ R, and v; w ∈ �(L) we have

�(�v+ �w) = ��(v) + ��(w):

(A2) (Carrier). If U ∈ L is a carrier of v ∈ �(L) then∑
i∈U

�i(v) = v(U ):

(A3) (Hierarchical strength). For any S ∈ L and i; j ∈ S;
hS(i)�j(�S) = hS(j)�i(�S):

Proposition 1. There is an unique function � :�(L) → Rn that satis�es axioms
(A1) – (A3). Moreover; for every i ∈ N; the Shapley value is

�i(v) =
∑

{S∈L: i∈ex(S)}
hS(i)�v(S):
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Proof. From axiom (A1) of linearity and Theorem 2 it su�ces to show that � exists
and is unique for the upper games �S ; S ∈ L. We have that S is a carrier for the
game �S hence axiom (A2) implies∑

i∈S
�i(�S) = �S(S) = 1:

Moreover, it follows easily that �j(�S) = 0 if j 6∈ S: If we �x i ∈ S, then by axiom
(A3) we have that

�j(�S) =
hS(j)
hS(i)

�i(�S)

and hence

1 =
∑
i∈S
�i(�S) = �i(�S) +

∑
j∈S\i

hS(j)
hS(i)

�i(�S) =

∑
j∈S hS(j)

hS(i)
�i(�S):

Note that
∑

j∈S hS(j) = 1 since in every compatible ordering C ∈ C(L) there will be
a unique element j ∈ S so that C(j) ∩ S = S. Thus, the Shapley value of the games
�S is given by

�i(�S) =
{
hS(i) if i ∈ ex(S);
0 otherwise:

By linearity (A1) and Theorem 2 the Shapley value exists and is unique for every
game v ∈ �(L).

We can describe the Shapley value as the average of the marginal contributions of
the player i in the set of all compatible orderings of L.

Theorem 3. For any game v ∈ �(L) and any player i ∈ N we have

�i(v) = Ti(v):=
1

c(N )

∑
C∈C(L)

[v(C(i))− v(C(i) \ i)]:

Proof. It is clear that the operator T :�(L)→ Rn satis�es axiom (A1), so if we can
show that T agrees with � on the upper games �S then we will be done. Fix S ∈ L

and i ∈ N . Given an ordering C ∈ C(L), we see that the term �S(C(i))− �S(C(i) \ i)
will contribute the value 1 exactly when S ⊆C(i) and i ∈ S, and 0 otherwise. If i ∈ S
we have that

�S(C(i))− �S(C(i) \ i) = 1⇔C(i) ∩ S = S:
Thus, we obtain

Ti(�S) =
1

c(N )
|{C ∈ C(L): C(i) ∩ S = S}|= hS(i) = �i(�S);

for all i ∈ S. Otherwise, Ti(�S) = �i(�S) = 0.

We de�ne the concept of dummy player [4].
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De�nition 3. The player k ∈N is a dummy in the game v ∈ �(L) if, for every convex
S ∈ L such that k 6∈ S and S ∪ k ∈ L; we have v(S ∪ k)− v(S) = 0:

Proposition 2. Let L be a convex geometry and let S ∈ L be a convex set.
If i 6∈ ex(S) then i is a dummy player in the upper game �S :

Proof. If there exists T ∈L such that T ∪ i ∈ L and �S(T ∪ i) 6= �S(T ) then
T = S \ i ∈ L: Thus we obtain that i ∈ ex(S):

We now show that the Shapley value is the expected marginal contribution of a
player i to the coalitions S ∈ L such that S \ i ∈ L, when the players joining in
a compatible ordering.

Theorem 4. Let E :�(L)→ Rn be the operator de�ned by

Ei(v):=
∑

{S∈L: i∈ex(S)}

c(S \ i)c([S; N ])
c(N )

[v(S)− v(S \ i)]; i ∈ N:

Then the Shapley value satis�es �= E:

Proof. The operator E is linear hence it su�ces to show that � and E coincide on
any upper game �T ; T ∈ L. Fix T ∈ L and i ∈ N: If i 6∈ ex(T ) then Proposition 2
implies that i is a dummy player in the game �T . Then, for every S ∈L such that
i ∈ ex(S) we have �T (S)− �T (S \ i) = 0 and Ei(�T ) = 0: Now suppose that i ∈ ex(T ).
Then T * S \ i hence, �T (S \ i) = 0 and the marginal contributions of i satis�es

�T (S)− �T (S \ i) =
{
1 if S ∈ L and S ⊇T;
0 otherwise:

Therefore, we obtain

Ei(�T ) =
∑

{S∈L: i∈ex(S); S⊇ T}

c(S \ i)c([S; N ])
c(N )

=
1

c(N )

∑
{S∈L: i∈ex(S); S⊇ T}

|{C ∈ C(L) :C(i) = S}|

=
1

c(N )
|{C ∈ C(L): C(i) ∩ T = T}|

= hT (i):

We can now give another axiomatization for the Shapley value of games on convex
geometries. We consider the axioms:
(A1) (Linearity)
(A2a) (E�ciency). If N is the set of all players of v ∈ �(L) then∑

i∈N
�i(v) = v(N ):



40 J.M. Bilbao, P.H. Edelman /Discrete Applied Mathematics 103 (2000) 33–40

(A2b) (Dummy): If the player k ∈ N is a dummy in v ∈ �(L) then �k(v) = 0:
(A3) (Hierarchical strength)
It is easy to prove that these axioms also characterize the Shapley value.
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