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Abstract

A power-sequence terrace forZn is aZn terrace that can be partitioned into segments one of which
containsmerely the zero element ofZn whilst each other segment is either (a) a sequence of successive
powers of an element ofZn, or (b) such a sequence multiplied throughout by a constant. Ifn = pq,
wherepandqare distinct odd primes, theminimumnumber of segments for such a terrace is 3+�(n),
where�(n) is the ratio�(n)/�(n) of the number of units inZn to the maximum order of a unit from
Zn. Forn = pq, general constructions are provided for power-sequenceZn terraces with 3+ �(n)
segments. These constructions are for�(n) = 2, 4 and 6, and they produce terraces throughout the
rangen<200 except forn = 119,161.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let G be a finite group of ordern with identity elemente, let the group operation
be multiplication, leta= (a1, a2, . . . , an) be an arrangement of the elements ofG, and let
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b=(b1, b2, . . . , bn) be the ordered sequencewhereb1=e andbi=a−1
i−1ai for i=2,3, . . . , n.

Bailey [5] defined the arrangementa to be aterracefor G, with b as the corresponding 2-
sequencingorquasi-sequencingforG, if b contains exactly one occurrence of each element
x ∈ G that satisfiesx = x−1, and if, for eachx ∈ G that satisfiesx �= x−1, the sequenceb
contains exactly two occurrences ofx but none ofx−1, or exactly two occurrences ofx−1

but none ofx, or exactly one occurrence of each ofx andx−1.
If G isZn, with addition as the group operation, thenx−1 in the above becomes−x, and

the elements of the 2-sequencing are given byb1 = 0 andbi = ai − ai−1 (i = 2,3, . . . , n).
Anderson and Preece[2] gave some general constructions for terraces forZn wheren is

an odd prime power, sayn=ps with pan odd prime andsa positive integer. The terraces in
[2] arepower-sequence terracesin the sense that the constructions are based on sequences
of powers of elements fromZn. Each such terrace can be partitioned into segments one
of which contains merely the zero element. Each other segment is either (a) a sequence
of successive powers of an element ofZn, or (b) such a sequence multiplied throughout
by a constant. Here the phrase “successive powers” covers index-sequences of the form
i, i + �, i + 2�, . . ., where� may be any suitable positive or negative integer. Anderson
and Preece[3] provided further power-sequence terraces forZn with n = p. The terraces
in [2,3] are based on powers of primitive roots forn, or of the negatives of such primitive
roots, or of elements of order(n − 1)/2, modulon.
Anderson and Preece[4] moved on from prime-power values ofn to construct certain

power-sequence terraces forZn with n = pqt wherep andq are distinct odd primes and
t is a positive integer. This development required a move on from primitive roots ofn to
primitive �-roots ofn, as defined by Carmichael[7–9] and discussed in[6]. An example
from [4] is the following power-sequence terrace forZ15:

34 35 | 21 22 23 24 | 52 | 0 | − 52 | − 24 − 23 − 22 − 21 | − 35 − 34,

i.e.

6 3 | 2 4 8 1 | 10 | 0 | 5 | 14 7 11 13 | 12 9.

This terrace is based on the primitive�-root 2 of 15; successive powers of the primitive
�-root appear in the second segment of the terrace. Here, as elsewhere, we omit brackets
and commas from our notation for a terrace, and we use vertical bars, which we refer to as
fences, to separate segments.
As the elements of the 2-sequencing for the terrace above are such that the set{b2, b3, . . . ,

b(n+1)/2} is identical to{b(n+3)/2, b(n+5)/2, . . . , bn}, the terrace has thehalf-and-half prop-
erty [1, p. 42]. Indeed, as it further hasbi = bn+2−i for all i = 2,3, . . . , (n + 1)/2, it is
narcissistic[2]. However, because of these properties, it hasmore segments than are needed
for a power-sequence terrace forZ15. Two segments are indeed needed for the units ofZ15
(i.e. for the non-zero elements ofZ15 that are co-prime to 15), as the order of a primitive
�-root is themaximum order of a unit. However, wemay hope to be able to put the non-zero
multiples of 3, namely 31, 32, 33 and 34 (i.e. 3, 9, 12 and 6), into a single segment, as also
the non-zero multiples of 5, namely 51 and 52 (i.e. 5 and 10). This hope is realised via
Theorem 2.1. More generally, forn=pq with pandqbeing distinct odd primes, this paper
provides constructions forZn power-sequence terraces in which the number of segments is
the lower bound 3+ �(n), where�(n) is the ratio�(n)/�(n) of the number�(n) of units
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in Zn to the maximum order�(n) of a unit fromZn. The constructions, based on primitive
�-roots ofn, have been developed so as to be fruitful in the rangen<200.
As in [4] (which gives details), a primitive�-root ofn is negatingif it has−1 as a power,

andnon-negatingotherwise. Likewise, a primitive�-rootxof n is inward if x−1 is a unit of
Zn, andoutwardotherwise. A primitive�-root that is non-negating and inward isstrong. In
all our constructions, the primitive�-roots are inward, but they are not necessarily strong.
If the elements immediately before and after theith fence (i = 1,2, . . .) are hi and

h′
i , respectively, we writefi = h′

i − hi for the fence differencefor the ith fence. If we
write the ith non-zerosegment (i = 1,2, . . .) in the form |agjagj+1 . . . agj+l |, we have
agj+l+1 ≡ agj (modn); for convenience in the present paper we writemi = agj+l (g − 1)
and we callmi themissing differencefor that segment. (Whenn = 3p, segments such as
|2p p| and|2p� p�|, as in Theorems 2.1 and 2.3, haveg = 2.)

2. Terraces forZ3p

2.1. Terraces with zero in the third (middle) segment

Theorem 2.1. Let p be anoddprime,p ≡ 2(mod 3),such that2 is a strong primitive�-root
of 3p. Letw be any primitive root of p, and choose� so thatw(w − 1)−1 ≡ ±2� (modp).
Then choose� such that2�+1 ≡ −3w� (modp). Then

2p p | 2 4 . . . 2p−2 1 | 0 |
−2� − 2�−1 . . . − 2�+1 | 3w� 3w�+1 . . . 3w�−1

is a terrace forZ3p, with the units ofZ3p in the second and fourth segments.

Proof. The missing differences arem1 = p, m2 = 1,m3 = 2� andm4 = 3w�−1(w − 1).
We show that the fence differencesfi (i = 1,2,3,4) compensate for these. Clearly,f2 =
−1= −m2 andf3 = −2� = −m3. For f1 = 2− p we havef1 ≡ 0 ≡ m4 (mod 3) and
m4 ≡ ±3w�2−� ≡ ∓2 ≡ ∓f1 (modp), so thatf1 ≡ ±m4 (mod 3p). Finally, f4 ≡
2�+1 ≡ ±1≡ ∓m1 (mod 3), andf4 ≡ 0 ≡ m1 (modp), so thatf4 ≡ ∓m1 (mod 3p). �

Note(a): As ord3p(2) = p − 1, we have ordp(2) = p − 1 or (p − 1)/2. If ordp(2) =
p − 1, i.e. if 2 is a primitive root ofp, then for any�,� chosen as above,� + (p − 1)/2 ,
� + (p − 1)/2 is another choice, the only change to the terrace being that the segments to
the right of 0 are replaced by ones with the same cyclic order but starting half-way along.
If ordp(2) = (p − 1)/2, then replacing� by � + (p − 1)/2 changes the fourth segment as
described above but the final segment is unchanged.
Note(b): If 2 is a primitive root ofpwe can always takew = 2 and� = 1, and choose�

so that 3× 2�−2 ≡ −1(modp); in the fourth segment of the terrace, the second element is
then 1 greater than the first, as it must be whenever� = 1. Also, if 2 is a primitive root of
p we can always takew = 2−1 and� = 0, and choose� so that 2�+1 ≡ −3(modp); the
fourth segment is then the reverse of the negative of the second segment.
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Note(c): If, for givenn, wheren = 3p, the unitsw andw(2w − 1)−1 are both primitive
roots ofp, they provide terraces with the same value of�.
Note(d): In the rangen<200 Theorem 2.1 providesZn terraces forn = 15, 69, 87, 141

and 159 only, as 51 and 123 do not have 2 as a primitive�-root, whereas 33 and 177 have
2 as a negating primitive�-root.

Example 2.1(i). p = 5, n = 15.
Here 2 is a primitive root ofp. The parameter sets yielding solutions are(w, �,�) =

(2,1,1), (2,3,3), (3,0,0), (3,2,2). For the first of these theZ15 terrace is

10 5 | 2 4 8 1 | 0 | 13 14 7 11 | 6 12 9 3.

Example 2.1(ii). p = 23,n = 69.
Here 2 is not a primitive root ofp. In ascending order for�, the parameter sets yielding

solutions are

w 10 11 5 21 17 20 7 19 14 15
� 2 3 4 4 5 6 6 7 9 9
� 15 15 5 19 1 15 19 11 7 19

and a further 10 parameter sets obtained by adding 11 to the�-values in each of the above.
TheZ69 terrace for(w, �,�) = (20,6,15) is

46 23 | 2 4 . . . 1 | 0 | 5 37 . . . 10 | 33 39 . . . 12.

Example 2.1(iii). p = 29,n = 87.
Here 2 is a primitive root ofp. In ascending order for�, the parameter sets yielding

solutions are

w 2 11 26 3 18 8 21 14 27 10 19 15
� 1 2 3 4 4 5 7 9 10 13 12 0
� 11 24 11 14 14 5 1 23 20 1 18 18

and a further 12 parameter sets obtained by adding 14 to the�- and�-values in each of the
above. TheZ87 terrace for(w, �,�) = (2,1,11) is

58 29 | 2 4 . . . 1 | 0 | 85 86 43 . . . 83 | 54 21 . . . 27.

Theorem 2.2. Let p be anoddprime,p ≡ 1(mod 3),such that2 is a strong primitive�-root
of 3p. Letw be any primitive root of p, and choose� so thatw(w − 1)−1 ≡ ±2� (modp).
Then choose� such that2�+1 ≡ −3w� (modp). Then

p 2p | 2 4 . . . 2p−2 1 | 0 |
−2� − 2�−1 . . . − 2�+1 | 3w� 3w�+1 . . . 3w�−1

is a terrace forZ3p, with the units ofZ3p in the second and fourth segments.

Proof. Exactly as for Theorem 2.1.�
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Note(a): For eachw there are two solutions, exactly as for Theorem 2.1. If 2 is a primitive
root ofpwe can again takew = 2 and� = 1, or takew = 2−1 and� = 0.
Note (b): In the rangen<200, wheren = 3p, Theorem 2.2 providesZn terraces for

n = 21, 39, 111 and 183 only, as 57 has 2 as a negating primitive�-root, whereas 93 and
129 do not have 2 as a primitive�-root.

Example 2.2(i). p = 7, n = 21.
Here 2 is not a primitive root ofp. The parameter sets providing solutions are(w, �,�)=

(3,1,0), (3,4,0), (5,2,4) and(5,5,4). For the first of these theZ21 terrace is

7 14 | 2 4 . . . 1 | 0 | 19 20 10 . . . 17 | 3 9 . . . 15.

Example 2.2(ii). p = 13,n = 39.
Here 2 is a primitive root ofp. The parameter sets providing solutions are(w, �,�)=

(2,1,4), (6,2,1), (7,0,3) and(11,3,6), and the further 4 solutions obtained by adding 6
to the�- and�-values in each of the above. TheZ39 terrace for(w, �,�) = (2,1,4) is

13 26 | 2 4 . . . 1 | 0 | 37 38 19 . . . 35 | 9 18 . . . 24.

Theorem 2.3. Let p be a prime, p ≡ 3(mod 4), p>3, for which2 is a primitive root, so
that2 is a negating primitive�-root of3p. Letw be any primitive root of p. Choose� = 1
or 2 so thatp� ≡ 2(mod 3). Take a to be a non-multiple of3 satisfyinga ≡ w(w −
1)−1 (modp) anda /∈ S2 whereS2 = {1,2, . . . ,2p−2}. Take b to be whichever of2a + p

and2a + 2p is a multiple of3.Then

2p� p� | 2 4 . . . 1 | 0 | a 2p−2a 2p−3a . . . 2a | b bw . . . bwp−2

is aZ3p terrace with the units ofZ3p in the second and fourth segments.

Proof. Very similar to the proof of Theorem 2.1.�

Note(a): Forn<200, wheren = 3p, Theorem 2.3 yieldsZn terraces for onlyn = 33,
57 and 177, but these values ofn are not covered by either Theorem 2.1 or Theorem 2.2.
Note(b): A special case of Theorem 2.3 is obtained by takingw = 2, a = �p + 2 and

b = �p + 4.

Example 2.3. p = 19,n = 57.
We can use(w, a, b, �) = (2,40,42,2) to obtain theZ57 terrace

19 38 | 2 4 . . . 1 | 0 | 40 20 . . . 23 | 42 27 . . . 21.

Other than 2, there are five primitive roots ofp, namely 3, 10, 13, 14 and 15. Using
(w, a, b, �) = (3,11,3,2) we obtain theZ57 terrace

19 38 | 2 4 . . . 1 | 0 | 11 34 . . . 22 | 3 9 . . . 39.

Theorem 2.4. Let p be an odd prime such that2 is a primitive root of p and a primi-
tive �-root of 3p. Choose� = 1 or 2 so that�p ≡ 2(mod 3).Write a ≡ 2�p + 1 and



34 I. Anderson, D.A. Preece / Discrete Mathematics 293 (2005) 29–59

b ≡ 4�p + 1(mod 3p). Then the sequences

a 2p−2a 2p−3a . . . 21a | b 21b 22b . . . 2p−2b |

0 | 2�p �p | 1 2p−2 2p−3 . . . 21

and

21a 22a . . . 2p−2a a | 21b 22b . . . 2p−2b b |

0 | 2�p �p | 1 2p−2 2p−3 . . . 21

are terraces forZ3p, each having the units ofZ3p in the first and last segments. Ifp ≡
3(mod 4), then 2 is a negating primitive�-root of 3p, and each sequence remains a
terrace if its first two segments are multiplied throughout by−1.

Proof. Almost immediate. The unita, as defined, cannot be inS2 as 1∈ S2 and all entries
in S2 are incongruent modulop. �

Note: In the rangen<200, wheren = 3p, Theorem 2.4 providesZn terraces forn =
15, 39, 87, 111, 159, 183 (all withp ≡ 1, mod 4) and forn=33, 57, 177 (all withp ≡ 3,
mod4).

Example 2.4. p = 11,n = 33.
Use(a, b, �) = (23,12,1) in the first sequence in Theorem 2.4 to give theZ33 terrace

23 28 . . . 13 | 12 24 . . . 6 | 0 | 22 11 | 1 17 . . . 2.

2.2. Terraces with zero in the first segment

Theorem 2.5. Let p be any prime, p�5. Suppose that x, given by2x ≡ 3(modp), is a
primitive root of p withx ≡ 2(mod 3). Define a by9a ≡ 4(modp) anda ≡ 2(mod 3).
Thena /∈ Sx whereSx is the subsetSx ={1, x, x2, . . . , xp−2} of elements ofZ3p.Take�=1
or 2 so that�p ≡ 2(mod 3). Then

0 | 2�p �p | a axp−2 axp−3 . . . ax |

3xp−4 3xp−5 . . . 3x−2 | x0 x1 . . . xp−2

is aZ3p terrace with the units ofZ3p in the third and fifth segments.

Proof. We first show thata /∈ Sx . Suppose thata = xi . Then 2i ≡ 2(mod 3) so thati is
odd. Butax2 ≡ 1(modp), so xi+2 ≡ 1(modp), which requiresi to be even, giving
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us a contradiction. Asa is clearly a unit, the set of units ofZ3p can thus be written as
Sx ∪ aSx .
Trivially, m1 = ±p = −f1.
Next,m2= a(1− x) andf3=3xp−4− ax. Thusm2=−f3 as, modulo 3, we havem2 ≡

−a ≡ 2a ≡ −f3 and, modulop, we have−m2 ≡ x−2(x − 1) ≡ x−2(2x − 1) − x−1 ≡
3xp−4 − ax ≡ f3.
Next,m3 = 3xp−4(1 − x) andf2 = a − �p. Thusm3 = −f2 as, modulo 3, we have

m3 ≡ 0 ≡ f2 and, modulop, we havem3 ≡ x−2(2x − 1)(x − 1) ≡ 4
9 × 2× 1

2 ≡ 4
9 ≡

x−2 ≡ a ≡ f2.
Then,m4 = xp−2(x − 1) andf4 = 1− 3xp−3. Thusm4 = −f4 as, modulo 3, we have

m4 ≡ 2p−2 ≡ −1≡ −f4 and, modulop, we havem4 ≡ x−1(x −1) ≡ x−1(3xp−2−x) ≡
3xp−3 − 1≡ −f4.
The differences arising from the proposed terrace are therefore±p, ±2p, a(x − 1)xi ,

(x−1)xi , 3(x−1)xi for 0� i�p−2.As gcd(x−1,3p)=1, these differences are precisely
the elements ofSx ∪ aSx ∪ (3Zp\{0}), i.e. ofZ3p\{0}. �

Note(a): Asx ≡ 2(mod 3), we have ord3p(x)= lcm(p−1,2)=p−1, sox is an inward
primitive �-root of 3p. If p ≡ 3(mod 4) thenx is a negating primitive�-root, but it is a
strong primitive�-root if p ≡ 1(mod 4).
Note (b): In the rangen<200, wheren = 3p, Theorem 2.5 providesZn terraces for

n= 21, 33, 51, 93, 111, 123 and 177. The values of the parameters for these terraces are as
in the Note following Theorem 2.6.

Example 2.5. p = 11,n = 33.
Use(x, a, �) = (29,20,1) to obtain theZ33 terrace

0 | 22 11 | 20 28 . . . 19 | 18 12 . . . 27 | 1 29 . . . 8.

Theorem 2.6. Let p be any prime, p�5. Suppose that x, given by2x ≡ 3(modp), is a
primitive root of p withx ≡ 2(mod 3). Define a bya ≡ 1(mod 3) and6a ≡ 1(modp).
Thena /∈ Sx whereSx is as in Theorem2.5.Take� = 1 or 2 so that�p ≡ 1(mod 3), and
define b byb ≡ (2− x)x−1 (mod 3p), so thatb ≡ 3−1 (modp) and3|b. Then

0 | 2�p �p | a axp−2 axp−3 . . . ax |

b bxp−2 bxp−3 . . . bx | x0 xp−2 xp−3 . . . x

is aZ3p terrace with the units ofZ3p in the third and fifth segments.

Proof. Similar to that of Theorem 2.5.�

Note: Theorems 2.5 and 2.6 provideZn terraces for the same values ofn, wheren= 3p.
For each suchn, the two theorems have the same inward primitive�-root x of n but a
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different value of�. The values taken by the parameters for the terraces from Theorems 2.5
and 2.6 are as follows, where negating primitive�-roots are markedneg:

n p x Theorem 2.5 Theorem 2.6

a � a b �

21 7 5neg 2 2 13 12 1
33 11 29neg 20 1 13 15 2
51 17 44 8 1 37 6 2
93 31 17neg 59 2 88 21 1
111 37 20 95 2 31 99 1
123 41 104 5 1 7 96 2
177 59 149neg 125 1 10 138 2

Example 2.6. p = 11,n = 33.
Use(x, a, b, �) = (29,13,15,2) to obtain theZ33 terrace

0 | 11 22 | 13 5 . . . 14 | 15 21 . . . 6 | 1 8 . . . 29.

Theorem 2.7. Let p be a prime, p�7,and let�=1or 2according asp ≡ 2or 1 (mod 3).
Let x be a primitive�-root of 3p such thatx ≡ 2(mod 3) and1−x is not a squaremodulo p.
Leta= (�p−1)x(x−1)−1.Thena ≡ 2(mod 3) anda /∈ Sx whereSx is as in Theorem2.5.
Suppose that y,given byy ≡ 1±(x2+x−1)(x2−3x+1)−1 (modp), is a primitive root of
p. Then, for a value b chosen to be amultiple of3 that satisfiesb ≡ (x+a−1)x−1 (mod 3p),
the sequence

0 | 2�p �p | 1 x . . . xp−2 | a ax . . . axp−2 | b by−1 . . . by−(p−2)

is aZ3p terrace with the units ofZ3p in the third and fourth segments.

Proof. We have�p − 1 ≡ 1(mod 3), soa ≡ 2(mod 3); alsoa ≡ −x(x − 1)−1 (modp).
Supposea ∈ Sx , say a ≡ xi (mod 3p). Then 2 ≡ 2i (mod 3) so that i is odd. Also,
xi ≡ −x(x − 1)−1 (modp), so 1− x ≡ x1−i (modp). But 1− x is not a square, soi must
be even, giving a contradiction. Soa /∈ Sx .
We havem1 = ±p,m2 = 1− x−1,m3 = a(1− x−1) andm4 = b(1− y). Alsof1 = ±p,

f2 = 1− �p, f3 = a − x−1 andf4 = b − ax−1. Clearly,m1 = ±f1, and the choice ofa
gives usm3 = −f2. Form2 = f4 we need(x − 1)x−1 = b − ax−1, i.e.

b ≡ (x + a − 1)x−1 (mod 3p), (1)

and form4 = ±f3 we need

b(y − 1) ≡ ±(a − x−1) (mod 3p). (2)
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The congruencea ≡ 2(mod 3) implies that (1) and (2) are automatically satisfied (mod3).
Now (1) and (2) are equivalent to (1) and the congruence(x + a − 1)x−1(y − 1) ≡
±(ax − 1)x−1 (modp), i.e.

y ≡ 1± (ax − 1)(x + a − 1)−1 (modp). (3)

So if y, given by (3), is a primitive root ofp, we can use (1) to determineb. �

Note (a): We can always find a primitive rootx of p for which 1− x is, modulop,
a non-square[10, p. 146]. So an appropriate primitive�-root x always exists, and the
success of the construction depends only ony being a primitive root. In the rangen<200,
Theorem 2.7 producesZn terraces withn = 3p for all primep satisfyingp�7 except for
p = 13.We have, however, no proof that 13 is the onlyp-value for which the theorem fails.
For some values ofp, both of the values ofy satisfying (3) for a particularx are primitive
roots; either can then be used to provide a terrace.
Note(b): If n= 3p wherep is a prime satisfyingp ≡ 11 (mod12) and 2 is a primitive�-

root ofn, then Theorem 2.7 producesZn terraces with(n, x, a, y, b) = (3p, 2, 2(p − 1),
p − 4, (5p − 1)/2). This is because, for the values ofp under consideration,p − 4 is
always a primitive root ofp, and thea-value 2(p − 1) is not a power of 2. Withx = 2 and
a = 2(p − 1), the alternativey-value obtainable from (3) is 6; whether this is a primitive
root ofp is a question having no easy general answer.
Note(c): If n = 3p wherep is a prime satisfyingp ≡ 7 (mod12) and 2 is a primitive

�-root ofn, then Theorem 2.7 producesZn terraces with(n, x, a, y, b) = (3p, 2, p − 2,
p−4, (p−1)/2).Again, for the values ofpunder consideration,p−4 is always a primitive
root ofp, but 6 may or may not be a primitive root ofp.
Note (d): We clearly cannot ever havea = −1 in Theorem 2.7. However, a special

case of this theorem sometimes produces terraces witha = 2. If a = 2, the relationship
−x(x − 1)−1 ≡ a (modp) yields 3x ≡ 2 (modp). But then the value 1− x = 3−1 must not
be a square (modp), whence 3 must not be a square (modp). Thusp ≡ 5 or 7 (mod12). So
p ≡ 5 or 7 or 17 or 19 (mod24). We now rule outp ≡ 5 (mod24).
Let p ≡ 5 (mod24) and suppose that−2 ∈ Sx . Then−2 ≡ xi (mod3p) for somei.

Thus 2i ≡ 1 (mod3), whencei is even. So−2 is a square, modulop, which gives us a
contradiction ifp ≡ 5 (mod8). Thus−2 /∈ Sx . Asx is non-negating, we have 2∈ Sx , so we
cannot takea = 2.
Accordingly, the valuea=2 can arise only ifp ≡ 17 (mod24) orp ≡ 7 (mod12). In the

first casexmust beaprimitive root ofpanda strongprimitive�-root ofn; in the second casex
canbe strong (strg) or negating (neg). In the rangen<200, theZn terraceswithn=3p anda=
2 that are obtainable from the theoremare given by(n, p, x, a, y, b)=(21,7,17neg,2,5,6),
(51,17,29,2,11,45), (123,41,110,2,34,105) and (129,43,101strg,2,18,24). The
absence of such a terrace forn = 93 is entirely due to the lack of a suitable primitive
rooty.
Forn=129, the valuex =101 (witha =2) is the only strong primitive�-root that yields

a terrace obtainable from Theorem 2.7.
Note(e): Forn<200, sets of parameter values forZn terraces obtainable from Theorem

2.7 are as in the following table, where† indicates ap-value satisfyingp ≡ 3 (mod4), so
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thatxmay be a strong (strg) or negating (neg) primitive �-root. In each line of the table, the
parameter set listed is not in general the only one available.

n p x a y b Note

21 7† 2strg 5 3 3 (c)
5neg 11 3 3

33 11† 26strg 17 7 or 6 27
2neg 20 7 or 6 27 (b)

39 13 — — — — (a)
51 17 23 26 6 42
57 19† 17strg 50 13 24

2neg 17 15 9 (c)
69 23† 2strg 44 19 57 (b)

17neg 32 17 15
87 29 11 83 8 48
93 31† 41strg 23 13 90

65neg 14 12 or 21 57 (d)
111 37 20 71 18 60
123 41 29 59 15 or 28 3
129 43† 101strg 2 18 24 (d)

26neg 11 34 51
141 47† 2strg 92 43 117 (b)

23neg 125 10 or 39 129
159 53 20 38 45 138
177 59† 5strg 161 52 33

2neg 116 55 or 6 147 (b)
183 61 44 77 17 36

Example 2.7(i). p = 7, n = 21.
Use(x, a, y, b) = (5,11,3,3) to obtain theZ21 terrace

0 | 7 14 | 1 5 4 20 16 17 | 11 13 2 10 8 19 | 3 15 12 18 6 9.

Example 2.7(ii). p = 11,n = 33.
Use(x, a, y, b) = (2,20,7,27) to obtain theZ33 terrace

0 | 22 11 | 1 2 4 . . . 17 | 20 7 14 . . . 10 | 27 18 12 . . . 24.

2.3. Terraces with zero in the second segment

Theorem 2.8. Let p be an odd prime having2 as a primitive root. Let x be a primitive
�-root of 3p such thatx ≡ 2 (mod3).Write a = (1− x)−1 and b = (1− x)−1 − x−1.
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Thena ≡ 2 (mod3)and3|b. If a /∈ Sx , the sequence

p 2p | 0 | 1 x x2 . . . xp−2 |
a axp−2 axp−3 . . . ax | b 2p−2b 2p−3b . . . 2b

is aZ3p terrace with the units ofZ3p in the third and fourth segments.

Proof. Straightforward. �

Note(a): In any terrace obtainable from this or the next theorem, the elements in the first
segment can of course be interchanged.
Note(b): If, in addition to the conditions of Theorem 2.8, we havep ≡ 1 (mod4), then 2

is a strong primitive�-root of 3p, so we can takex =2. Thena =−1 andb=−3×2p−2=
3(p − 1)/2.
Note(c): In the rangen<200, wheren = 3p, Theorem 2.8 producesZn terraces for the

values ofn in the following table, which gives specimen parameter sets:

n p (x, a, b)

x = 2, strong x strong,�= 2 x negating,�= 2

15 5 (2,14,6) — —
33 11 — (5,8,21) (8,14,18)
39 13 (2,38,18) (11,35,3) —
57 19 — (5,14,48) (14,35,39)
87 29 (2,86,42) (8,62,51) —
111 37 (2,110,54) (5,83,105) —
159 53 (2,158,78) (8,68,48) —
177 59 — (5,44,150) (11,53,69)
183 61 (2,182,90) (35,113,45) —

Example 2.8. p = 5, n = 15. We have theZ15 terrace

5 10 | 0 | 1 2 4 8 | 14 7 11 13 | 6 3 9 12.

Theorem 2.9. Let p be an odd prime such that2 is a primitive�-root of3p. Letw be any
primitive root of p. Suppose that there is a unit a satisfyinga ≡ 2 (mod3),a /∈ S2 whereS2
is as in Theorem2.4,and either

a ≡ 2w(4w − 3)−1 (modp) (4)

or

a ≡ −2w(2w − 3)−1 (modp). (5)
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Then

p 2p | 0 | 1 2p−2 2p−3 . . . 21 | a 2p−2a 2p−3a . . . 2a |

3a 3wa . . . 3wp−2a

is aZ3p terrace with the units ofZ3p in the third and fourth segments.

Proof. Straightforward. �

Note(a): If we takew=2 inTheorem2.9, then (4) and (5), respectively, yielda ≡ 4×5−1

(modp) anda ≡ −4 (modp). The latter, in conjunction with the congruencea ≡ 2 (mod3),
yieldsa ≡ −4 (mod3p), which is always admissible ifp ≡ 1 (mod4), as we then have
−4 /∈ S2, but is inadmissible ifp ≡ 3 (mod4), as 2 is then a negating primitive�-root of
3p. If we takew = 2−1 in Theorem 2.9, (4) and (5), respectively, yielda ≡ −1 (modp)
anda ≡ 2−1 (modp). The former yields terraces witha ≡ −1 (mod3p) if p ≡ 1 (mod4),
but the latter is inadmissible as, modulo 3p, we have 2−1 ∈ S2.
Note(b): If p ≡ 1 (mod4), then we can takew ≡ −2 orw = −2−1 in Theorem 2.9.

The latter, in conjunction with (5), yieldsa ≡ −2p−3, which produces further terraces of a
particularly simple form.
Note(c): The other simple special case arises when we can takew=3. Then (5) becomes

a ≡ −2 (modp). This yields, for example, aZ21 terrace witha = 5.
Note(d): In the rangen<200, wheren = 3p, Theorem 2.9 covers then-values listed

in the following table, which provides specimen parameter sets forZn terraces obtainable
from the theorem:

n 15 21 33 39 57 69 87 111 141 159 177 183
p 5 7 11 13 19 23 29 37 47 53 59 61
w 2 3 2 2 2 5 2 2 5 2 2 2
a (from (4)) — 17 14 — 35 29 53 — 125 — 107 74
a (from (5)) 11 5 — 35 — 38 83 107 — 155 — 179

Note(e): Theorem 2.9 can be generalised by replacing every 2 in the fourth segment of
the terrace byx, and every 3 in the fifth segment by 2x − 1, wherex is a primitive�-root of
3p with x ∈ S2 andx ≡ 2 (mod3). However, even the generalisation is a special case (in
different notation) of Theorem 3.7 below, so we omit details here.

Example 2.9. p = 7, n = 21.
Use(w, a) = (3,17) to obtain theZ21 terrace

7 14 | 0 | 1 11 16 8 4 2 | 17 19 20 10 5 13| 9 6 18 12 15 3,

or use(w, a) = (3,5) to obtain

7 14 | 0 | 1 11 16 8 4 2 | 5 13 17 19 20 10| 15 3 9 6 18 12.
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3. Terraces forZpq with �(pq) = 2

3.1. Terraces with zero in the third segment

We now introduce Theorem 3.1 as a generalisation of Theorems 2.1 and 2.2 to the
case in whichn = pq where p and q are distinct odd primes satisfying gcd(p − 1,
q − 1) = 2, so that�(n) = 2.

Theorem 3.1. Let n = pq where p and q are distinct odd primes satisfyinggcd(p − 1,
q −1)=2.Suppose that2 is a primitive root of q and a strong primitive�-root of n, so that
ordn(2)= (p − 1)(q − 1)/2 and thus so thatordp(2) is (p − 1) or (p − 1)/2.Choose� so
that�p ≡ 2 (modq) and letw be any primitive root of p. Choose� so thatw(w − 1)−1 ≡
±2� (modp) and� ≡ (q − 3)/2 (mod(q − 1)/2). Choose b to satisfyq|b and2�+1 ≡
−b (modp). Then

2q−2�p 2q−3�p . . . 20�p | 2 4 . . . 1 | 0 |
−2� − 2�−1 . . . − 2�+1 | b bw . . . bwp−2

is aZn terrace with the units ofZn in the second and fourth segments of the terrace.

Proof. Trivially, m2 = 1= −f2 andm3 = 2� = −f3.
Next, m1 = −2q−2�p and f4 = b + 2�+1. Thusm1 = ±f4 as, modulop, we have

m1 ≡ 0 ≡ f4 and, moduloq, we have, for some integer�, f4 ≡ 2�+1 ≡ 2�(q−1)/2 ≡ ±1≡
±2q−1 ≡ ±2q−2�p ≡ ∓m1.
Finally,m4=bw−1(w−1) andf1=2−�p. Thusm4=±f1 as, modulop, we havem4 ≡

b(w − 1)w−1 ≡ ±2�+1 × 2−� ≡ ±2 ≡ ±f1 and, moduloq, we havem4 ≡ 0 ≡ f1. �

Note(a): If q = 5, and 2 is a primitive root ofpas well as ofq, we can always takew = 2
and� = 1, and chooseb to be the multiple ofq that satisfiesb ≡ −4 (modp).
Note(b): As for Theorems 2.1 and 2.2, ifw andw(2w − 1)−1 are both primitive roots of

p, then they provide terraces with the same value of�.
Note(c): Forn<200 withp, q >3, sets of parameter values for terraces obtainable from

Theorem 3.1 are as follows:

n p q w � � b Note

35 7 5 3 1 1 10
55 5 11 2 7 9 11

11 5 2 2 1 40 (a)
77 7 11 3 5 4 66
95 5 19 2 8 17 76

19 5 2 3 1 15 (a)
115 23 5 7 4 1 65
143 11 13 2 12 11 117

13 11 2 1 19 121
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Example 3.1. (n, p, q) = (55,5,11).
Use(w, �, �, b) = (2,7,9,11) to give theZ55 terrace

45 50 . . . 35 | 2 4 . . . 1 | 0 | 38 19 . . . 21 | 11 22 44 33.

Theorem 3.2. Let n = pq where p and q are distinct odd primes satisfyinggcd(p − 1,
q − 1) = 2 andq ≡ 3 (mod4).Suppose that2 is a strong primitive�-root of n and that
ordq(2) = (q − 1)/2.Choose� so that�p ≡ 2 (modq) and letw be any primitive root of
p. Choose� so thatw(w − 1)−1 ≡ ±2� (modp) and so that2�+1 ≡ ±3 (modq). Choose
b to satisfyq|b and2�+1 ≡ −b (modp). Then

(−2)q−2�p (−2)q−3�p . . . (−2)0�p | 2 4 . . . 1 | 0 |

−2� − 2�−1 . . . − 2�+1 | b bw . . . bwp−2

is aZn terrace with the units ofZn in the second and fourth segments of the terrace.

Proof. Similar to that for Theorem 3.1.As ordq(2)= (q −1)/2, the value−2 is a primitive
root ofq, so that(−2)�+1 ≡ 3 (modq) for some�. Thus we can always find a suitable value
of � for the terrace. �

Note: In the rangen<200 withp, q >3, Theorem 3.2 provides solutions for(n, p, q)=
(35,5,7) and(77,11,7) only. For(n, p, q, �) = (35,5,7,6) we have the parameter sets
(w, �, b) = (2,1,21) and(3,10,7) and two further possibilities obtained from these by
adding 6 to� and negatingb. For(n, p, q, �)= (77,11,7,4) we have(w, �, b)= (2,1,7),
(6,10,42), (7,13,28) and(8,1,7) and four further possibilities obtained from these by
adding 15 to� and negatingb.

Example 3.2. (n, p, q) = (35,5,7).
Use(w, �, �, b) = (2,6,1,21) to give theZ35 terrace

20 25 . . . 30 | 2 4 . . . 1 | 0 | 33 34 17 . . . 31 | 21 7 14 28.

Theorem 3.3. Letn=pq where p and q are odd primes,p ≡ 5 (mod8)andq ≡ 3 (mod8),
such thatgcd(p − 1, q − 1) = 2,with 2 a common primitive root of p and q, so that2 is a
strong primitive�-root of n. Writea ≡ −2�(n)/2, b ≡ 2−1(a + 1) andc ≡ −2−1(a − 1)
(modn), whenceq|b andp|c. Then the sequence

21a 22a . . . 2�(n)−1a a | 21b 22b . . . 2p−2b b |

0 | c 2q−2c 2q−3c . . . 21c | 1 2�(n)−1 2�(n)−2 . . . 2

is aZn terrace with the units ofZn in the first and last segments.
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Proof. Checking thata ≡ 1 (modp) anda ≡ −1 (modq) is routine. The rest of the proof
is standard. �

Note: In the rangen<200 withq >3, Theorem 3.3 providesZn terraces forn = 55, 95
and 143.

Example 3.3. (n, p, q) = (55,5,11).
We have theZ55 terrace

42 29 . . . 21 | 22 44 33 11 | 0 | 45 50 . . . 35 | 1 28 . . . 2.

3.2. Terraces with zero in the first segment

We now useIn,q to denote the member ofZn that is a multiple ofq and is one greater
than a multiple ofp. The importance of this element in the construction of terraces for
Zn was demonstrated in[4]. The notation reflects the fact that this member ofZn is
the identity element of the group of multiples ofq under multiplication modulon. Also,
given a primitive �-root x of n, we define the setSx more generally than in
Section 2 to beSx = {1, x, . . . , x�(n)−1}; it contains �(n) = (p − 1)(q − 1)/2
numbers.

Theorem 3.4. Let n = pq where p and q are distinct odd primes satisfyinggcd(p − 1,
q − 1) = 2 and where2 is a primitive root of p. Suppose that there exists a primitive
�-root x of n satisfying2x ≡ 1 (modp), 2x /≡ 1 (modq) and 2 − x is a unit not
in Sx . Take a ≡ (2 − x)x−1 (modn), and takeb = a(2x − 1), so thatp|b. Define
y by y ≡ 1 ± ((In,q − 1)/p)(b/p)−1 (modq). Then if y is a primitive root of q, the
sequence

0 | 2p−2In,q 2p−3In,q . . . In,q | 1 x . . . x�(n)−1 |

a ax�(n)−1 ax�(n)−2 . . . ax | b byq−2 byq−3 . . . by

is aZn terrace with the units ofZn in the third and fourth segments.

Proof. Both of the relationshipsf1=−m1=−2−1In,q andf2=±m4 are immediate.Also
f3= a − x−1= (2− x − 1)x−1= (1− x)x−1= −m2 andf4= b− ax = a(x − 1)= −m3.

�

Note(a): If x = 3 (a strong primitive�-root ofn) anda = −3−1, thenb = 3−1 − 2. The
fourth segment of the terrace is then the negative of the reverse of the third.
Note (b): Parameter sets forZn terraces available from Theorem 3.4 are as follows,

wherenegagain indicates a negating primitive�-root, the other primitive�-roots in the table
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all being strong:

n p q In,q x a y b Note

35 5 7 21 3 23 3 10 (a)
55 5 11 11 3 18 6 or 7 35 (a)

11 5 45 — — — —
77 11 7 56 61neg 47 3 66
95 5 19 76 3 63 13 30 (a)

19 5 20 — — — —
115 5 23 46 3 38 5 or 20 75 (a)
143 11 13 78 — — — —

13 11 66 85 68 8 52
155 5 31 31 43 118 12 or 21 110
187 11 17 34 6 124 5 or 14 55

Example 3.4. (n, p, q) = (35,5,7).
Use(x, a, y, b) = (3,23,3,10) to give theZ35 terrace

0 | 28 14 7 21 | 1 3 . . . 12 | 23 31 . . . 34 | 10 15 . . . 30.

Theorem 3.5. Let n = pq where p and q are distinct odd primes such thatgcd(p − 1,
q − 1) = 2 and such that2 is a primitive root of p. Let x be a primitive�-root of n,
with x ≡ 2 (modp), x /≡ 2 (modn). Defineb = (2 − x)x−1, so thatp|b. Define y by
y ≡ 1±x(2−x)−1 (modq).Then if y is a primitive root of q, there exists a unit a such that

0 | 2p−2In,q 2p−3In,q . . . In,q | 1 x . . . x�(n)−1 |

b byq−2 byq−3 . . . by | a ax�(n)−1 ax�(n)−2 . . . ax

is aZn terrace with the units ofZn in the third and fifth segments.

Proof. Define� ≡ yx−1 (modq). Then, for all�, the valuesa� = � + �q are solutions of
the congruenceby ≡ a�(2− x) (modn). Precisely, one of these valuesa�, 0���p − 1,
will be a multiple ofp, sop − 1 of the values will be units.
If x is a primitive root ofq, then, moduloq, the setSx contains a complete set of residues

exactly(p−1)/2 times. So, in particular,Sx contains(p−1)/2 numbers that are congruent
to�, moduloq, i.e.Sx contains exactly(p−1)/2 of the numbers��. Thus there are(p−1)/2
units�� that are not inSx . Take any one of these asa.
If ordq(x) = (q − 1)/2, then, moduloq, the setSx contains(q − 1)/2 members of a

complete set of residues, eachp − 1 times. So either none or all of the valuesau will be
in Sx . But in factnoneof the valuesau is in Sx . For if au ∈ Sx thenyx−1 ≡ xi (modq)
for somei, so thaty is a power ofx (modq). But x is not a primitive root ofq, and hencey
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cannot be a primitive root ofq, which gives us a contradiction. So, as none of the values
au is in Sx , we can takea to be any one of them except for the one that is a multiple
of p.
For aZn terrace, we needIn,q − 1= ±b(y − 1), by = a(2− x) andb = (2− x)x−1.

The first of these requiresb(y − 1) ≡ ±1 (modq), i.e. y − 1 ≡ ±x(2− x)−1 (modq),
i.e.y ≡ 1± x(2− x)−1 (modq). The second requiresy ≡ ax (modq). �

Note(a): Terraces of the form given in Theorem 3.5 are obtainable from the following
parameter sets, in each of which the primitive�-rootx is a common primitive root ofp and
q; again the only negating primitive�-root in the table is forn = 77:

n p q In,q x a y b

35 5 7 21 12 8x6i , 0� i�1 5 5
55 5 11 11 52 42x10i , 0� i�1 6 35

11 5 45 13 6x4i , 0� i� 4 3 33
77 11 7 56 24neg 18x6i , 0� i�4 5 44
95 5 19 76 72 68x18i , 0� i�1 13 65

19 5 20 78 21x4i , 0� i�8 3 38
115 5 23 46 107 13x22i , 0� i�1 11 85
143 11 13 78 24 29x12i , 0� i�4 7 11

13 11 66 28 5x10i , 0� i�5 8 91
155 5 31 31 42 72x30i , 0� i�1 17 95
187 11 17 34 24 32x16i , 0� i�4 3 77

Note(b): Terraces of the formgiven inTheorem3.5 are obtainable also from the following
parameter sets, where the primitive�-root x of n is a primitive root ofp but ordq(x) =
(q − 1)/2; now the primitive�-root used forn = 77 is strong:

n p q In,q x a y b

77 11 7 56 46 6x3i , 0� i�9 3 66
95 5 19 76 42 11x9i , 0� i�3 3 85
115 5 23 46 52 33x11i , 0� i�3 14 30
143 13 11 66 119 8x5i , 0� i�11 6 130
155 5 31 31 7 3x15i , 0� i�3 21 110

Example 3.5. (n, p, q) = (35,5,7).
The congruencesx ≡ 2 (mod5) andx ≡ 3 or 5 (mod7) yield the two possibilities

x = 12 and 17. The former allows us to use(x, a, y, b) = (12,8,5,5) to obtain theZ35
terrace

0 | 28 14 7 21 | 1 12 . . . 3 | 5 15 . . . 25 | 8 24 . . . 26.
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3.3. Terraces with zero in the second segment

Theorem 3.6(Generalisation of Theorem 2.8). Letn=pq where p and q are odd primes,
q >3, such thatgcd(p − 1, q − 1)= 2 and where2 is a common primitive root of p and q.
Let x be a primitive�-root of n that satisfies2x ≡ 1 (modp). Then1− x is a unit ofZn.
Writea = (1− x)−1 andb = (1− x)−1 − x−1. Thena ≡ 2 (modp) andp|b. If a /∈ Sx , the
sequence

20q 21q . . . 2p−2q | 0 | 1 x x2 . . . x�(n)−1 |
a ax�(n)−1 ax�(n)−2 . . . ax | b 2q−2b 2q−3b . . . 2b

is aZn terrace with the units ofZn in the third and fourth segments.

Proof. Straightforward. �

Note(a): In any terrace obtainable from this or the next theorem, the first segment may
of course be multiplied throughout by any power of 2.
Note(b): A special case of Theorem 3.6 hasx = x2 − 1= x−1 + 1 anda = ax�(n)−2 −

1= ax + 1= −x, whenceb = 1− 2x wherex is non-negating. Forn = 55 and 95 (see
table below), primitive�-rootsx satisfying these relationships occur in pairsx1 andx2 with
x1x2 ≡ −1 (modn) andx1 ≡ x2 (mod5); the final segment of theZn terrace usingp = 5
and primitive�-rootx1 is the negative of the final segment of the correspondingZn terrace
usingx2, asx1 + x2 ≡ 1 (modn).
Note(c): In the rangen<200, Theorem 3.6 withp, q >3 covers the valuesn = 55, 95

and 143, with parameter sets as follows:

n p q (x, a, b)

x2 = x + 1 x2 �= x + 1

55 5 11 (8,47,40), (48,7,15) (18,42,45), (38,52,10)
11 5 — (17,24,11)

95 5 19 (43,52,10), (53,42,85) (3,47,15), (13,87,65), (33,92,20),
(63,72,75), (93,32,80)

19 5 — (67,59,76)
143 11 13 — (28,90,44), (50,35,55)

13 11 — (7,119,78), (59,106,26),
(85,80,117), (137,41,65)

Example 3.6. (n, p, q) = (55,5,11).
Use(x, a, b) = (18,42,45) to give theZ55 terrace

11 22 44 33 | 0 | 1 18 . . . 52 | 42 39 . . . 41 | 45 50 . . . 35.
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Theorem 3.7. Let n = pq where p and q are distinct odd primes such thatgcd(p − 1,
q − 1)= 2,and where2 is both a primitive root of p and a primitive�-root of n. Then there
exist�(q − 1) − 1 primitive�-roots x of n satisfyingx ∈ S2, 2x ≡ 1 (modp) and2x /≡ 1
(modq). For such an x, choose a unit a, not in S2, that satisfiesa ≡ 2 (modp), and take
b = a(2x − 1), so thatp|b.Define y byy ≡ 1± ((a − 2)/p)(b/p)−1 (modq). Then, if y is
a primitive root of q, the sequence

20q 21q . . . 2p−2q | 0 | 1 2�(n)−1 2�(n)−2 . . . 2 |

a ax�(n)−1 ax�(n)−2 . . . ax | b byq−2 byq−3 . . . by

is aZn terrace with the units ofZn in the third and fourth segments.

Proof. Modulop, the setS2 consists of exactly(q −1)/2 copies of the set{1,2, . . . ,2p−2}
of units ofZp. So those valuesx fromS2 that satisfy 2x ≡ 1 (modp) are precisely the values
x =2k(p−1)−1, 1�k�(q −1)/2. Further, such a valuex is a primitive�-root ofnprecisely
when we have gcd(k(p − 1)− 1, �(n))= 1, i.e. gcd(k(p − 1)− 1, (p − 1)(q − 1)/2)= 1.
First suppose thatq ≡ 3 (mod4). Then this condition becomes

gcd(k(p − 1) − 1, (q − 1)/2) = 1. (6)

Now the numbersk(p−1)−1 are all incongruentmodulo(q−1)/2; so exactly�((q−1)/2)
of the values ofk satisfy (6). One of these values is(q −1)/2, which gives 2x ≡ 1 (modq);
so there remain�((q − 1)/2) − 1 = �(q − 1) − 1 possible choices ofk and hence there
are�(q − 1) − 1 primitive�-rootsxwith the required properties.
The other possibility isq ≡ 5 (mod8). Then (6) must be replaced by

gcd(k(p − 1) − 1, (q − 1)/4) = 1. (7)

Now the numbersk(p − 1) − 1, 1�k�(q − 1)/4, are all incongruent modulo(q − 1)/4,
as are those given by(q − 1)/4<k�(q − 1)/2. So there are 2�((q − 1)/4) values ofk
satisfying (7). As before, this leads to 2�((q − 1)/4)− 1= �(q − 1)− 1 primitive�-roots
xwith the required properties.
Clearly,m1 = −f1,m2 = −f2,m3 = −f4 andm4 = ±f3. �

Note(a): The setS2 contains(q − 1)/2 numbers that are congruent to 2 modulop. Thus,
for givenx, there are(q − 1)/2 members ofZn that are congruent to 2 (modp) and not in
S2. As precisely one of these is divisible byq, there are((q − 1)/2) − 1 possible choices
of a.
Note(b): If 2 is a primitive root ofq, a special case of Theorem 3.7 is obtained by taking

y = 2. Thenb = a − 2 and soa = (1− x)−1; we thus obtain aZn terrace provided that
(1− x)−1 /∈ S2.



48 I. Anderson, D.A. Preece / Discrete Mathematics 293 (2005) 29–59

Note (c): As 2 is not a primitive�-root of 155 or 187, Theorem 3.7, unlike the two
preceding theorems, does not covern = 155 or 187.
Note (d): Parameter sets forZn terraces obtainable from Theorem 3.7 are as follows,

where all the primitive�-rootsx are strong; each line of the table gives the solution for
y = 2, if there is one, and a specimen solution fory �= 2:

n p q �(q − 1) In,q x (a, y, b)

y = 2 y �= 2

35 5 7 2 21 23 — (17,5,30)
55 5 11 4 11 8 (47,2,45) (42,7,25)

13 — (47,6,20)
18 (42,2,40) (12,6,35)

11 5 2 45 17 (24,2,22) (46,3,33)
77 11 7 2 56 72 — (68,5,22)
95 5 19 6 76 3 (47,2,45) (87,15,55)

13 (87,2,85) (47,13,35)
33 (92,2,90) (7,15,75)
53 (42,2,40) (87,13,15)
78 — (7,13,40)

19 5 2 20 67 (59,2,57) (21,3,38)
115 5 23 10 46 3 — (7,14,35)

8 — (22,15,100)
13 — (17,17,80)
18 — (17,19,20)
48 — (107,14,45)
73 — (7,7,95)
78 — (7,17,50)
98 — (17,19,95)
108 — (17,20,90)

143 11 13 4 78 6 — (79,7,11)
28 (90,2,88) (35,7,66)
50 (35,2,33) (68,7,11)

13 11 4 66 7 (119,2,117) (67,6,13)
46 — (67,8,91)
85 (80,2,78) (93,8,130)

Example 3.7. (n, p, q) = (35,5,7).
Use(x, a, y, b) = (23,12,5,15) to give theZ35 terrace

7 14 28 21 | 0 | 1 18 . . . 2 | 12 34 . . . 31 | 15 10 . . . 5.
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4. Terraces forZpq with �(pq) = 4

4.1. Terraces with zero in the fourth (middle) segment

Now, and in Sections 4.2 and 4.3, we use the followingResult, which is a slight rewording
of Theorems 8.5 and 8.6 of[6].
Cameron/Preece Result: Let n = pq wherep andq are distinct primes with gcd(p − 1,

q − 1) = 4, whence�(n) = (p − 1)(q − 1)/4. Letp andq also satisfy either

(a) p ≡ q ≡ 5 (mod8) and 2 is a common primitive root ofp andq, or
(b) p ≡ 1 (mod16),q ≡ 5 (mod8), ordq(2) = q − 1 and ordp(2) = (p − 1)/2.

Then there exists a strong primitive�-rootx of n such that(x − 1)2 ≡ −1 (modn), and
the set of units ofZn can be written asSx ∪ −Sx ∪ aSx ∪ −aSx wherea = 1− x and
Sx ={1, x, x2, . . . , x�(n)−1}. Further, ifq =5, there exist two such values ofx, respectively,
with x ≡ 3 andx ≡ 4 (mod5).

Theorem 4.1. Letn= pq where p and q are distinct primes, both congruent to5 (mod8),
satisfying the conditions of theCameron/PreeceResult.With x and a as in theResult, choose
� and� so that2�p ≡ −ax (modq) and2�q ≡ ax (modp). Then

2�+1p 2�+2p . . . 2�−1p 2�p | − ax − ax2 . . . − ax�(n)−1 − a |

−x�(n)−1 − x�(n)−2 . . . − x − 1 | 0 | 1 x . . . x�(n)−2 x�(n)−1 |

a ax�(n)−1 . . . ax2 ax | 2�q 2�−1q . . . 2�+2q 2�+1q

is aZn terrace where the units ofZn are in the second, third, fifth and sixth segments.

Proof. Wehavem1=2�p, m2=m5=a(1−x),m3=m4=x�(n)−1(x−1) andm6=−2�q.
Alsof1=−2�p−ax, f2=f5=a−x�(n)−1, f3=f4=1 andf6=2�q−ax. Thusm2=−f3
andm5=f4; alsof5=f2=a−x�(n)−1=a−x−1=(ax−1)x−1=(1−x)x−1=−m3=−m4.
Modulo p we havem1 ≡ 0 ≡ f6, and moduloq we havem1 ≡ 2�p ≡ −ax ≡ f6; so
m1 ≡ f6 (modn). Similarly,m6 ≡ f1 (modn). �

Note(a): The symmetry of the construction embodied in Theorem 4.1 is such that, once
a solution has been found, an alternative can be obtained by merely interchangingp andq,
replacing� by the original� + (q − 1)/2 (modq − 1), and replacing the original� by the
original� + (p − 1)/2 (modp − 1).
Note(b): In the rangen<200 Theorem 4.1 coversn=65, 145 and 185. For each of these

values ofn there are, as the Cameron/Preece Result indicates, two primitive�-rootsx1 and
x2, satisfyingx1 ≡ 3 (mod5) andx2 ≡ 4 (mod5), each of which meets the conditions
imposed on the primitive�-rootx. These primitive�-roots further satisfyx1+x2 ≡ x1x2 ≡
2 (modn) and thereforex21 ≡ −x22 (modn), Sets of parameter values for theZn terraces
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obtainable are as follows:

n x a (p, q, �,�)

65 48 18 (13,5,1,8) or (5,13,2,3)
19 47 (13,5,2,11) or (5,13,5,4)

145 13 133 (29,5,2,17) or (5,29,3,0)
134 12 (29,5,3,24) or (5,29,10,1)

185 118 68 (37,5,3,18) or (5,37,0,1)
69 117 (37,5,0,9) or (5,37,27,2)

Example 4.1. (n, p, q) = (65,5,13).
Use(x, a, �,�) = (48,18,2,3) to obtain theZ65 terrace

40 15 . . . 20 | 46 63 . . . 47 | 23 56 . . . 64 | 0 |
1 48 . . . 42 | 18 41 . . . 19 | 39 52 26 13.

Theorem 4.2. Let n = 5p where p is a prime, p ≡ 1 (mod4),p>5, having2× 3−1 as
a primitive root. Choose x from the units ofZn so thatx ≡ 2× 3−1 (modp) andx ≡ 4
(mod5).Then x is a strong primitive�-root of n. Choose�,� and� so thatx� ≡ ±x(x−1)−1

(modp), x� ≡ −3× 5−1x� (modp) and3�−1p ≡ 1 (mod5).Then

5x�−1 5x�−2 . . . 5x� | − 2x�−1 − 2x�−2 . . . − 2x� |
−x�−1 − x�−2 . . . − x� | 0 | x0 x1 . . . x�(n)−1 |
2x0 2x1 . . . 2x�(n)−1 | 3�p 3�+1p . . . 3�−1p

is aZn terrace where the units ofZn are in the second, third, fifth and sixth segments.

Proof. As ordn(x)= lcm(2, p − 1) = p − 1, the unitx is a primitive�-root ofn. It is non-
negating as, ifxi ≡ −1 (modn), thenxi ≡ 4 (mod5), so thati is odd, andxi ≡ −1 (modp),
so thati is even. It is inward asx − 1 /≡ 0 (mod5) andx − 1 /≡ 0 (modp). Further, neither
2 nor−2 is a power ofx; for if xj ≡ ±2 (modn) then 4j ≡ ±2 (mod5), an impossibility.
Asx ≡ 2×3−1 (modn), the relationshipsm2=−f3,m3=−f2,m4=−f5 andm5=−f4

are easily checked.
We now show thatm1 = ±f6 andm6 = ±f1. Modulo 5 we havem1 = 5x�−1(x − 1)

andf6 = 3�p − 3, whencef6 = 3(3�−1p − 1) ≡ 0 ≡ ±m1, whereas modulopwe have
m1 ≡ (x − 1)x−1 × 3x� ≡ ±3≡ ±f6.
Finally, we show thatm6 = ±f1, wherem6 = 2p × 3�−1 andf1 = −2x�−1 − 5x�. So

modulo 5 we havef1 ≡ −2x�−1 ≡ −2× 4�−1 ≡ ±2 ≡ ±m6, whereas modulopwe have
f1 ≡ −2x�−1 + 3x� ≡ (3x − 2)x�−1 ≡ 0 ≡ ±m6. �

Note: For each value ofn, Theorem 4.2 yields twoZn terraces, given by values of� that
differ by (p − 1)/2. Changing from one value to the other causes the first segment to be
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replaced by its negative, but the second and third segments change to a greater extent, with�
also changing by(p−1)/2. For the rangen<200, sets of parameter values for the terraces
obtained are as follows:

n p x � � �

85 17 29 2 2 14
10 2 6

185 37 124 20 2 5
2 2 23

Example 4.2. (n, p) = (85,17).
The parameters(x, �,�, �) = (29,2,2,14) give theZ85 terrace

60 90 . . . 40 | 57 43 . . . 38 | 71 64 . . . 19 | 0 |

1 29 . . . 44 | 2 58 . . . 3 | 68 34 17 51.

4.2. Terraces with zero in the first segment

With n = 5p, we now useIn,p to denote the member ofZn that is a multiple ofp and is
one greater than a multiple of 5.

Theorem 4.3. Let n = 5p where p is a prime, p>5, satisfying the conditions of the
Cameron/Preece Result withq = 5. Taking x and a as in the Result, with x ≡ 4 (mod5),
definec = 3− 2x, so that5|c.Define y byc(y − 1) ≡ ±(In,p − 1). Then, if y is a primitive
root of p, the arrangement

0 | 23In,p 22In,p 21In,p 20In,p |

x0 xp−2 xp−3 . . . x | − ax0 − axp−2 − axp−3 . . . − ax |

−x0 − xp−2 − xp−3 . . . − x | ax0 axp−2 axp−3 . . . ax |

c cyp−2 cyp−3 . . . cy

is aZn terrace with the units ofZn in the third to sixth segments inclusive.

Proof. The following relationships are easily checked:m1 = −f1, m2 = f6, m3 = −f3,
m4 = f4,m5 = −f5 andm6 = ±f2. �

Note: In the rangen<200, Theorem 4.3 yieldsZn terraces forn = 65, 85
and 145. (It fails forn = 185 as no primitive rooty is available.) Parameter sets are
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as follows:

n p In,p x a c y

65 13 26 19 47 30 11
85 17 51 14 72 60 3
145 29 116 134 12 25 8

Example 4.3. (n, p) = (65,13).
With (In,p, x, a, c, y) = (26,19,47,30,11), Theorem 4.3 produces theZ65 terrace

0 | 13 39 52 26 | 1 24 . . . 19 | 18 42 . . . 17 |
64 41 . . . 46 | 47 23 . . . 48 | 30 50 . . . 5.

4.3. Terraces with zero in the second segment

Theorem 4.4. Let n = 5p where p is a prime, p>5, satisfying the conditions of the
Cameron/Preece Result withq = 5. Taking x and a as in the Result, with x ≡ 3 (mod5),
choose b from−Sx such thatb ≡ 4 (mod5),and definec = ab(2x − 1)= b(3− x), so that
5|c.Definew byc(w−1)=±(b− ax).Then, if w is a primitive root of p, the arrangement

20p 21p 22p 23p | 0 |
x0 x1 . . . xp−2 | a axp−2 axp−3 . . . ax |

bx0 bx1 . . . bxp−2 | ab abxp−2 abxp−3 . . . abx |
c cwp−2 cwp−3 . . . cw

is aZn terrace with the units ofZn in the third to sixth segments inclusive.

Proof. We havem1 = −f1,m2 = −f3,m3 = −f2,m4 = −f5,m5 = −f6 andm6 = ±f4.
�

Note(a): In any terrace obtained from this theorem, the first segment may of course be
multiplied throughout by any power of 2.
Note(b): If b = −1 is a valid choice, thenc = x − 3 andw = 2. So no solution with

b=−1 exists ifp ≡ 1 (mod16) as 2 is then a square. Forp ≡ 5 (mod8) however, a solution
always exists withb = −1 andw = 2.
Note(c): In −Sx there are(p − 1)/4 units congruent to 4 (mod5), namely−x0, −x4,

−x8, . . . ,−xp−5. Whether any particular such value can be chosen forb depends entirely
on whether the corresponding valuew is a primitive root ofp. As stated in Note (b) above,
there is always at least one solution ifp ≡ 5 (mod8).
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Note (d): Parameter sets forZn terraces obtainable from Theorem 4.4 include the
following:

n p x a b c w

65 13 48 18 64= − x0 45 2
4= − x4 15 2
49= − x8 5 7

85 17 48 38 4= − x4 75 6
69= − x8 40 6
64= − x12 10 12

73 13 69= − x8 15 3
64= − x12 25 3

145 29 13 133 144= − x0 10 2
4= − x4 105 26

129= − x8 15 8
34= − x16 95 3
9= − x20 35 14

109= − x24 70 11
185 37 118 68 184= − x0 115 2

64= − x12 40 24
99= − x20 85 5
159= − x24 30 35
139= − x32 110 5

Example 4.4. (n, p) = (85,17).
Use(x, a, b, c, w) = (73,13,69,15,3) to give theZ85 terrace

17 34 68 51 | 0 | 1 73 . . . 7 | 13 6 . . . 14 |
69 22 . . . 58 | 47 74 . . . 31 | 15 5 . . . 45.

Theorem 4.5. Let n = 5p where p is a prime satisfyingp ≡ 5 (mod8)and having2 as
a primitive root. Let x be a primitive�-root of n withx ≡ 4 (mod5).Suppose that the
element a, defined bya ≡ 2x−1 − 1 (modn), is a unit satisfyinga /∈ Sx , and that b, defined
by b = a(2x − 1), is a unit satisfyingb /∈ Sx ∪ aSx .Write c ≡ 1− ab(1− x) (modn),
so that5|c. Then

20p 21p 22p 23p | 0 | 2p−2c 2p−3c . . . 20c |
x0 x1 . . . xp−2 | a axp−2 axp−3 . . . ax |

bx0 bx1 . . . bxp−2 | ab abxp−2 abxp−3 . . . abx

is aZn terrace with the units ofZn in the fourth to seventh segments inclusive.
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Proof. Straightforward. �

Note: Solutions arise in pairs, the primitive�-root in one solution being the inverse of
that in another solution having the same value ofb. In the rangen<200, solutions are as
follows:

n p x a b c

65 13 19 47 49 50
24 37 49 35

145 29 69 102 54 10
124 137 54 65

185 37 24 107 34 55
54 47 34 150
109 72 84 50
129 32 84 150

Example 4.5. (n, p) = (65,13).
The parameters(x, a, b, c) = (19,47,49,50) give theZ65 terrace

13 26 52 39 | 0 | 25 45 . . . 50 | 1 19 . . . 24 |

47 23 . . . 48 | 49 21 . . . 6 | 28 22 . . . 12.

5. The “powers of 2 and 3” construction

5.1. Terraces with zero surrounded by units

In previous sections we have constructedZn terraces forn-values with�(n) = 2 or 4. In
the rangen<200 there are also twon-values, namely 91 and 133, with�(n)=6 andn=pq

wherep andq are distinct odd primes. For each of these twon-values, power-sequence
terraces with the minimum number of segments, namely 9, are easily written down via an
approach which, in the rangen<200, can also be used for then-values 65 and 185 (with
�(n) = 4, and thus with 7 segments per terrace) and, in a degenerate form, forn = 35, 55
and 77 (with�(n) = 2 and thus 5 segments per terrace). ThisPowers of2 and3 approach
(P2&3) can be used whenever the units ofZn can all be written in the form

2j × 3k, j = 0,1, . . . , �(n) − 1, k = 0,1, . . . , �(n) − 1.

Thus 2 must be a primitive�-root of n, and 3 must be a unit of order at least�(n) such
that none of the values 3k (k = 0,1, . . . , �(n) − 1) is a power of 2. In the rangen<200,
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these conditions are met as follows:

n �(n) �(n) Primitive�-root 2 Is 3 a primitive�-root? 3�(n)

35 12 2 strong yes 2−2

55 20 2 strong yes 26

65 12 4 negating yes 24

77 30 2 strong yes 216

91 12 6 strong no 1
133 18 6 strong yes 26

185 36 4 negating yes 2−4

Outside the rangen<200, the conditions can of course be met when�(n) is much larger;
for example, ifn = 19× 37= 703 then�(n) = 18, the primitive�-root 2 is strong, and
3�(n) = 1.
The core idea of the P2&3 approach is incorporated in Theorems 5.1 and 5.3 of[2], and in

the final terrace of Section 7 from[2]. We now employ this idea in a different context, with
new ramifications and new notation.We do this by first considering the following sequence
S0,n of segments for ann-value satisfying the conditions set out in the previous paragraph:

0 | 1 2�(n)−1 2�(n)−2 . . . 21 |
22 × 3−1 23 × 3−1 . . . 2�(n)−1 × 3−1 3−1 2× 3−1 |

22 × 3−2 23 × 3−2 . . . 2�(n)−1 × 3−2 3−2 2× 3−2 | . . . |
22 × 31−�(n) 23 × 31−�(n) . . . 2�(n)−1 × 31−�(n) 31−�(n) 2× 31−�(n)

Here, each successive element in thefirst non-zero segment is obtained from the previous
element bydividing by 2, but ineach othernon-zero segment each successive element is
obtained bymultiplyingby 2. The important property of this sequence of segments is that
fi = −mi for i = 1,2, . . . , �(n).
At this stage, a desire for simple notation suggests multiplyingS0,n throughout by 2−2.

However, for specific exampleswhere algebraic notation is not needed, there is convenience
in having the first non-zero segment starting with 1 and ending with 2. Then, despite the
different ordering in the first non-zero segment, the final elements of the non-zero segments
are easily remembered and generated as 2, 2× 3−1, 2× 3−2, . . . .
InS0,n there are�(n) segmentsafter the zero segment, and nonebefore. A more general

sequence, still withfi = ±mi for all i, hasl segments (0� l��(n)) after the zero, and
�(n) − l before. The rules of construction are now these:

(a) thefinalelements in thesuccessivesegmentsafterthezeroare2, 2×3−1, . . . , 2×3−(l−1),
and theinitial elements in the segmentsbeforethe zero are, movingleftwardsfrom the
zero, 2× 3−l , 2× 3−(l+1), . . . ,2× 3−(�(n)−1);

(b) the elements in any one segment are as inS0,n;



56 I. Anderson, D.A. Preece / Discrete Mathematics 293 (2005) 29–59

(c) the ordering of elements in the segments after the zero is as inS0,n whereas that in
the segments before the zero is the reverse, that is to say, each successive element
in the segmentimmediatelybefore the zero is obtained from the previous element by
multiplyingby 2, but ineach othersegment before the zero each successive element is
obtained bydividingby 2.

We use the notationS(n, l) for the sequence of segments constructed in this way. Sup-
pose, for example, that we takel = 2 for n = 65; we have

(2× 30, 2× 3−1, 2× 3−2, 2× 3−3) = (2, 44, 58, 41),

so the sequenceS(65,2) is

41 53 . . . 17 | 58 51 . . . 29 | 0 | 1 33 . . . 2 | 23 46 . . . 44.

One further generalisation is needed to enable us to construct a rich collection of terraces:
we multiply all segments to the left of the zero by 2�, where� is any value satisfying
0��< �(n). This multiplication causes eachfi and eachmi to be multiplied by 2�, so
the relationship between the valuesfi andmi is unchanged. We writeS(n, l, �) for the
sequence after the multiplication has been done, soS(n, l,0) = S(n, l).
We now considerZn terraces of the form

czp−2 czp−3 . . . c | S(n, l, �) | b by . . . byq−2,

whereb andc are multiples ofp andq, respectively, wherey andz are primitive roots of
q andp, respectively, and where 0< l < �(n). Values forb, y, c andzmust be found by
methodology now familiar from earlier in the paper. Examples of theZn terraces obtainable
have parameter sets as follows:

n p<q p>q

p q l � b y c z p q l � b y c z

35 5 7 1 0 30 5 14 2 7 5 1 0 7 2 10 3
55 5 11 1 0 35 7 44 2 11 5 1 1 22 3 5 7
65 5 13 1 0 15 7 26 2 13 5 1 0 52 2 15 7

2 0 5 6 26 3 2 2 39 3 60 7
3 1 45 11 52 3 3 0 13 2 15 6

77 7 11 1 0 35 7 66 3 11 7 1 1 44 3 49 7
91 7 13 1 0 28 6 13 5 13 7 1 2 65 5 63 7

2 1 70 11 26 5 2 0 52 5 84 6
3 4 84 6 26 3 3 1 78 5 77 2
4 0 28 6 13 5 4 2 26 5 63 7
5 1 70 11 26 5 5 0 39 5 84 6
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n p<q p>q

p q l � b y c z p q l � b y c z

133 7 19 1 0 21 14 76 5 19 7 1 2 114 5 112 10
2 3 7 15 76 3 2 0 38 5 28 14
3 1 91 14 19 3 3 2 57 3 112 13
4 0 119 13 76 5 4 0 19 3 28 2
5 0 84 15 76 3 5 3 95 5 91 13

185 5 37 1 3 150 5 148 3 37 5 1 2 37 2 125 24
2 0 50 15 111 3 2 1 74 2 155 17
3 0 140 20 111 2 3 0 148 2 170 18

A further related construction is available when half of the units ofZn can all be written
in the form

2j × 3k, j = 0,1, . . . , �(n) − 1, k = 0,1, . . . , (�(n)/2) − 1

but none of the remaining units can be written as a product of powers of 2 and 3. TheZn

terraces are now of the form

czp−2 czp−3 . . . c | Tn,a | b by . . . byq−2,

whereTn,a is a sequence of�(n) + 1 segments constructed as follows, with zero in the
middle segment:

(a) the successive segmentsafter the zero have 2, 2× 3−1, . . . ,21−�(n)/2 as theirfinal
elements;

(b) the elements in the segments after the zero, and their ordering, are as inS(n, l);
(c) the part ofTn,a beforethe zero is obtained by reversing the partafter the zero and

multiplying throughout by a unita that is not already present. For�(n) = 2 this
construction produces terraces that are the reverses of terraces obtainable from The-
orem 3.1. In the rangen<200 with �(n)>2 the construction producesZn terraces
for n = 145 only, for which�(n) = 4; an example with(n, p, q) = (145,5,29) has
(a, b, y, c, z) = (7,20,11,58,2), and an example with(n, p, q) = (145,29,5) has
(a, b, y, c, z)= (7,29,2,140,19). Outside the rangen<200 the power of the method
of construction is easily appreciatedbyapplying it ton=481, forwhich�(n)=12, so that
the terraces obtained have 15 segments each; an example with(n, p, q)= (481,13,37)
has(a, b, y, c, z)=(14,208,17,370,7), and an example with(n, p, q)=(481,37,13)
has(a, b, y, c, z) = (7,370,2,13,24).

5.2. Terraces with zero in the first segment

For values ofnsatisfying the conditions given at the start of the previous subsection, write
Sn for the sequence of segments obtainable fromS0,n by removing the initial segment
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containing zero. We now considerZn terraces of the form

0 | 2p−2In,q 2p−3In,q . . . In,q | Sn | b byq−2 byq−3 . . . by,

wherep|b, with yand 2 being primitive roots ofpandq respectively. Themissing difference
for the first segment ofSn is −1, and the only way of compensating for this is for the
difference across the terrace’s final fence to be±1. Forn<200, with 2 a primitive root
of p, this can be accomplished only for(n, p, q)= (35,5,7), (55,5,11), (65,5,13) and
(185,5,37). However, tryingn = 185 fails as no value ofy is available withb(1− y) ≡
±(1− In,q), i.e. with 95(1− y) ≡ ±75 (mod185). Thus we are left with theZn terraces
given by(n, p, q, b, y)= (35,5,7,25,3), (55,5,11,20,6 or 7) and(65,5,13,40,2). The
Z35 andZ55 terraces here are of the same form as those obtainable from Theorem 3.4,
but the pattern of relationships between the quantitiesmi andfi is different from that of
Theorem 3.4.

5.3. Terraces with all units together at one end

For values ofn satisfying the conditions given at the start of this Section and with 2 a
primitive root of bothp andq, we finally considerZn terraces of the form

Sn | b 2b 4b . . . 2q−2b | 0 | q 2p−2q 2p−3q . . . 2q,

wherep|b again. In the rangen<200 these terraces exist only withp = 5, and have the
parameter sets given by(n, p, q, b) = (55,5,11,20), (65,5,13,40) and(185,5,37,95).

6. Listing of theorems and constructions

For valuesn that are products of two distinct odd primes and that satisfyn<200,Table 1
lists our theorems and constructions forZn terraces with 3+ �(n) segments. The two gaps

Table 1
Theorems and constructions that provideZn terraces,n<200

n Theorem or section n Theorem or section

15 2.1, 2.4, 2.8, 2.9 111 2.2, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9
21 2.2, 2.5, 2.6, 2.7, 2.9 115 3.1, 3.4, 3.7
33 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 119 —
35 3.1, 3.2, 3.4, 3.5, 3.7,�5 123 2.5, 2.6, 2.7
39 2.2, 2.4, 2.8, 2.9 129 2.7
51 2.5, 2.6, 2.7 133 �5
55 3.1, 3.3, 3.4, 3.5, 3.6, 3.7,�5 141 2.1, 2.7, 2.9
57 2.3, 2.4, 2.7, 2.8, 2.9 143 3.1, 3.3, 3.4, 3.5, 3.6, 3.7
65 4.1, 4.3, 4.4, 4.5,�5 145 4.1, 4.3, 4.4, 4.5,�5
69 2.1, 2.7, 2.9 155 3.4, 3.5
77 3.1, 3.2, 3.4, 3.5, 3.7,�5 159 2.1, 2.4, 2.7, 2.8, 2.9
85 4.2, 4.3, 4.4 161 —
87 2.1, 2.4, 2.7, 2.8, 2.9 177 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9
91 �5 183 2.2, 2.4, 2.7, 2.8, 2.9
93 2.5, 2.6, 2.7 185 4.1, 4.2, 4.4, 4.5,�5
95 3.1, 3.3, 3.4, 3.5, 3.6, 3.7 187 3.4, 3.5
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in the table are forn = 119 andn = 161, each having�(n) = 2; we have failed to find any
terrace with the required properties for either of these values or indeed for any other product
of two primes neither of which has 2 as a primitive root.
The concept of a terrace for a groupwas introduced[5] in the context of the constructionof

quasi-complete Latin squares.We have no reason to believe that, when the group in question
isZn, power-sequence terraces have any special merit for constructing other combinatorial
structures. However, this paper confirms that power-sequence methodology can provide a
host of simple and elegant terraces forZn.
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