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Abstract

We consider the question for which square integrable analytic functions f and g on the unit ball the
densely defined products Tf Tḡ are bounded on the weighted Bergman spaces. We prove results analogous
to those we obtained in the setting of the unit disk and the polydisk.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout let n be a fixed integer n � 2. Denote the unit ball in C
n by Bn, and let ν be

Lebesgue volume measure on Bn, normalized so that ν(Bn) = 1.
For w ∈ Bn, let ϕw be the automorphism of Bn such that ϕw(0) = w and ϕ−1

w = ϕw . The
mappings ϕw are described in [4, Section 2.2].

For −1 < α < ∞, we denote by να the measure on Bn defined by dνα(z) = (1 −|z|2)α dν(z).
The weighted Bergman space A2

α(Bn) is the space of analytic functions h on Bn which are
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square-integrable with respect to measure να on Bn. The reproducing kernel in A2
α(Bn) is given

by

K(α)
w (z) = 1

(1 − 〈z,w〉)n+α+1
,

for z,w ∈ Bn. If 〈·,·〉α denotes the inner product in L2(Bn, dνα), then 〈h,K
(α)
w 〉α = h(w), for

every h ∈ A2
α(Bn) and w ∈ Bn. In this paper we use ‖ · ‖α to denote the norm in L2(Bn, dνα).

The orthogonal projection Pα of L2(Bn, dνα) onto A2
α(Bn) is given by

(Pαg)(w) = 〈
g,K(α)

w

〉
α

=
∫
Bn

g(z)
1

(1 − 〈w,z〉)n+α+1
dνα(z),

for g ∈ L2(Bn, dνα) and w ∈ Bn. Given f ∈ L∞(Bn), the Toeplitz operator Tf is defined on
A2

α(Bn) by Tf h = Pα(f h). We have

(Tf h)(w) =
∫
Bn

f (z)h(z)

(1 − 〈w,z〉)n+α+1
dνα(z),

for h ∈ A2
α(Bn) and w ∈ Bn. Note that the above formula makes sense, and defines a function

analytic on Bn, also if f ∈ L2(Bn, dνα). So, if g ∈ A2
α(Bn) we define Tḡ by the formula

(Tḡh)(w) =
∫
Bn

g(z)h(z)

(1 − 〈w,z〉)n+α+1
dνα(z),

for h ∈ A2
α(Bn) and w ∈ Bn. If also f ∈ A2

α(Bn), then Tf Tḡh is the analytic function f Tḡh for
h ∈ H∞(Bn).

We will give a necessary condition for boundedness of the Toeplitz product Tf Tḡ in Section 3,
and then show that this condition is very close to being sufficient in Section 4. Our conditions
are formulated in terms of the (weighted) Berezin transform: for a function u ∈ L1(Bn, dνα), the
Berezin transform Bα[u] is the function on Bn defined by

Bα[u](w) =
∫
Bn

u(z)
(1 − |w|2)n+α+1

|1 − 〈z,w〉|2n+2+2α
dνα(z), w ∈ Bn.

We prove that a necessary condition for boundedness of the Toeplitz product Tf Tḡ on A2
α(Bn) is

that

sup
w∈Bn

Bα

[|f |2](w)Bα

[|g|2](w) < ∞. (1.1)

We also prove that a slightly stronger condition is sufficient: if for every ε > 0

sup
w∈Bn

Bα

[|f |2+ε
]
(w)Bα

[|g|2+ε
]
(w) < ∞, (1.2)

then the operator Tf Tḡ is bounded on A2
α(Bn). The study of this problem was initiated by Sara-

son [7] in the context of the Hardy space H 2 of the unit circle, after he had obtained examples
of functions f and g in H 2 such that the product Tf Tḡ is bounded on H 2, while neither Tf nor
Tg is bounded [5,6]. In the context of the Hardy space, the Poisson kernel plays the role of the
Berezin transform. Treil showed that a condition analogous to (1.1) is necessary [7], while the
second author proved that a condition analogous to (1.2) is sufficient [12].
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The above results are analogous to [10], and generalize the results we obtained in [9,11].
However, the proofs require new tools to establish the necessary condition, as well as consider-
ation of higher derivatives, and an inner product formula involving higher derivatives. Recently
Park [3] has proved a necessary and close-to-sufficient condition for Toeplitz products on the
Bergman space of the ball. In addition to consideration of higher-order derivatives, this required
him to find a new way to rewrite the inner product formula. Park’s method to obtain an inner
product suitable to prove sufficiency does not work for weighted Bergman spaces on the ball. In
this paper we will use a novel approach to obtain a suitable inner product formula. In extending
the necessity result to the weighted setting on the ball, we make use of an identity that played
a key role in the argument for weighted Bergman spaces on the disk [11] as well as an estimate
inspired by recent results of Arazy and Engliš [1,2].

2. Preliminaries

In this section we give more preliminaries than already discussed above needed in the sequel.
Using the reproducing property of K

(α)
w , we have∥∥K(α)

w

∥∥2
α

= 〈
K(α)

w ,K(α)
w

〉
α

= K(α)
w (w) = 1

(1 − |w|2)n+α+1
,

thus the normalized reproducing kernel is given by

k(α)
w (z) = (1 − |w|2)(n+α+1)/2

(1 − 〈z,w〉)n+α+1
, (2.1)

for z,w ∈ Bn. For w ∈ Bn the function ϕw has real Jacobian equal to

∣∣ϕ′
w(z)

∣∣2 = (1 − |w|2)n+1

|1 − 〈z,w〉|2n+2
.

Thus we have the change-of-variable formula∫
Bn

h
(
ϕw(z)

)∣∣k(α)
w (z)

∣∣2 dνα(z) =
∫
Bn

h(u)dνα(u), (2.2)

for every h ∈ L1(Bn, dνα). It follows from (2.2) that the mapping U
(α)
w h = (h ◦ ϕw)k

(α)
w is an

isometry on A2
α(Bn):∥∥U(α)

w h
∥∥2

α
=
∫
Bn

∣∣h(ϕw(z)
)∣∣2∣∣k(α)

w (z)
∣∣2 dνα(z) =

∫
Bn

∣∣h(u)
∣∣2 dνα(u) = ‖h‖2

α,

for all h ∈ A2
α(Bn). Using the identity

1 − 〈
ϕw(z),w

〉= 1 − |w|2
1 − 〈z,w〉 ,

we have

k(α)
w

(
ϕw(z)

)= (1 − |w|2)(n+α+1)/2

(1 − 〈ϕw(z),w〉)n+α+1
= (1 − 〈z,w〉)n+α+1

(1 − |w|2)(n+α+1)/2
= 1

k
(α)
w (z)

.

Since ϕw ◦ ϕw = id, we see that(
U(α)

w

(
U(α)

w h
))

(z) = (
U(α)

w h
)(

ϕw(z)
)
k(α)
w (z) = h(z)k(α)

w

(
ϕw(z)

)
k(α)
w (z) = h(z),
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for all z ∈ Bn and h ∈ A2
α(Bn). Thus (U

(α)
w )−1 = U

(α)
w , and hence U

(α)
w is unitary. Furthermore,

Tf ◦ϕwU(α)
w = U(α)

w Tf (2.3)

holds for f ∈ L∞(Bn).

Proof. For h ∈ H∞(Bn) and g ∈ A2
α(Bn) we have〈

U(α)
w Tf h,U(α)

w g
〉
α

= 〈Tf h,g〉α = 〈f h,g〉α
=
∫
Bn

f (u)h(u)g(u) dνα(z)

=
∫
Bn

f
(
ϕw(z)

)
h
(
ϕw(z)

)
g
(
ϕw(z)

)∣∣k(α)
w (z)

∣∣2 dνα(z)

=
∫
Bn

f
(
ϕw(z)

)
h
(
ϕw(z)

)
k(α)
w (z)g

(
ϕw(z)

)
k
(α)
w (z) dνα(z)

= 〈
f U(α)

w h,U(α)
w g

〉
α

= 〈
Tf ◦ϕwU(α)

w h,U(α)
w g

〉
α
,

establishing (2.3). �
3. Necessary condition for boundedness

In this section we prove the following necessary condition for boundedness of the Toeplitz
product Tf Tḡ with f and g in A2

α(Bn).

Theorem 3.1. Let −1 < α < ∞, and let f and g be in A2
α(Bn). If Tf Tḡ is bounded on A2

α(Bn),
then

sup
w∈Bn

Bα

[|f |2](w)Bα

[|g|2](w) < ∞.

Suppose f and g are in A2
α(Bn). Consider the operator f ⊗ g on A2

α(Bn) defined by

(f ⊗ g)h = 〈h,g〉αf,

for h ∈ A2
α(Bn). It is easily proved that f ⊗ g is bounded on A2

α(Bn) with norm equal to
‖f ⊗ g‖ = ‖f ‖α‖g‖α .

We will obtain an expression for the operator f ⊗ g, where f,g ∈ A2
α(Bn), in terms of the

Toeplitz product Tf Tḡ , which we will be able to use to bound the norm of f ⊗ g by a constant
multiple of the norm of Tf Tḡ . To obtain a suitable operator identity, we will use the Berezin

transform: writing k
(α)
w for the normalized reproducing kernels, we define the Berezin transform

of a bounded linear operator S on A2
α(Bn) to be the function Bα[S] defined on Bn by

Bα[S](w) = 〈
Sk(α)

w , k(α)
w

〉
α
,

for w ∈ Bn. The boundedness of S implies that the function Bα[S] is bounded on Bn. The Berezin
transform is injective, for Bα[S](w) = 0, for all w ∈ Bn, implies that S = 0, the zero operator on
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A2
α(Bn) (see [8] for a proof). We will also make use of the following continuity condition of the

Berezin transform: if SN → S in operator norm, then

Bα[S](w) = lim
N→∞Bα[SN ](w), (3.2)

for each w ∈ Bn. The above statement is an immediate consequence of the following inequality:∣∣Bα[S](w) − Bα[SN ](w)
∣∣� ‖S − SN‖.

To prove a suitable operator identity, we need the following lemma, which is inspired by [1,2].

Lemma 3.3. Let −1 < α < ∞. If S is a bounded linear operator on A2
α(Bn), then∥∥∥∥ ∑

|γ |=m

m!
γ ! Tzγ STz̄γ

∥∥∥∥� ‖S‖,

for every positive integer m.

Proof. Given a positive integer m, let dm denote the number of elements of the set {γ : |γ | = m}.
Then {γ : |γ | = m} = {γ1, γ2, . . . , γdm}. Observe that each γk is a multi-index, that is, γk =
(γk,1, γk,2, . . . , γk,n) ∈ N

n with |γk| = γk,1 + γk,2 + · · · + γk,n = m. For each k in {1,2, . . . , dm}
consider the monomials

ψk(z) =
√

m!
γk! zγk =

√
m!
γk! z

γk,1
1 z

γk,2
2 · · · zγk,n

n .

Define the row block operator

Mm = [Tψ1 , Tψ2, . . . , Tψdm
] :A2

α(Bn) × A2
α(Bn) × · · · × A2

α(Bn) → A2
α(Bn)

by

Mm

⎛
⎜⎜⎝

f1
f2
...

fdm

⎞
⎟⎟⎠=

dm∑
k=1

Tψk
fk = P

(
dm∑
k=1

ψkfk

)
.

Then ∥∥∥∥∥∥∥∥
Mm

⎛
⎜⎜⎝

f1
f2
...

fdm

⎞
⎟⎟⎠
∥∥∥∥∥∥∥∥

2

�
∥∥∥∥∥

dm∑
k=1

ψkfk

∥∥∥∥∥
2

=
∫
Bn

∣∣∣∣∣
dm∑
k=1

ψk(z)fk(z)

∣∣∣∣∣
2

dνα(z)

�
∫
Bn

(
dm∑
k=1

∣∣ψk(z)
∣∣2)( dm∑

k=1

∣∣fk(z)
∣∣2)dνα(z).

Using the multinomial formula,

dm∑∣∣ψk(z)
∣∣2 =

dm∑ m!
γk!

∣∣zγk
∣∣2 = (|z1|2 + |z2|2 + · · · + |zn|2

)m = |z|2m � 1.
k=1 k=1
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Thus ∥∥∥∥∥∥∥∥
Mm

⎛
⎜⎜⎝

f1
f2
...

fdm

⎞
⎟⎟⎠
∥∥∥∥∥∥∥∥

�
(

dm∑
k=1

∫
Bn

∣∣fk(z)
∣∣2 dνα(z)

)1/2

= ∥∥(f1, f2, . . . , fdm)
∥∥.

If S is a bounded linear operator on A2
α(Bn), the operator

Sm :A2
α(Bn) × A2

α(Bn) × · · · × A2
α(Bn) → A2

α(Bn) × A2
α(Bn) × · · · × A2

α(Bn)

defined by

Sm

⎛
⎜⎜⎝

f1
f2
...

fdm

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

Sf1
Sf2
...

Sfdm

⎞
⎟⎟⎠

is bounded, in fact,

‖Sm‖ � ‖S‖.
It is easily seen that the adjoint of Mm is the column block operator

M∗
mg =

⎡
⎢⎣

Tψ̄1
g

...

Tψ̄dm
g

⎤
⎥⎦ .

For g ∈ A2
α(Bn) we have

MmSmM∗
mg = MmSm

⎡
⎢⎣

Tψ̄1
g

...

Tψ̄dm
g

⎤
⎥⎦= Mm

⎡
⎢⎢⎢⎣

STψ̄1
g

STψ̄2
g

...

STψ̄dm
g

⎤
⎥⎥⎥⎦=

dm∑
k=1

Tψk
(STψ̄k

g)

=
(

dm∑
k=1

Tψk
STψ̄k

)
g,

so

MmSmM∗
m =

dm∑
k=1

Tψk
STψ̄k

,

that is ∑
|γ |=m

m!
γ ! Tzγ STz̄γ = MmSmM∗

m.

It follows that∥∥∥∥ ∑
|γ |=m

m!
γ ! Tzγ STz̄γ

∥∥∥∥= ∥∥MmSmM∗
m

∥∥� ‖Sm‖ � ‖S‖,

as was to be shown. �
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We will use the Berezin transform to derive an operator identity suitable for our purposes. It
follows from (2.1) that

Bα[S](w) = (
1 − |w|2)n+α+1〈

SK(α)
w ,K(α)

w

〉
α
,

for w ∈ Bn. It is easily seen that TḡK
(α)
w = g(w)K

(α)
w . Thus〈

Tf TḡK
(α)
w ,K(α)

w

〉
α

= 〈
TḡK

(α)
w ,Tf̄ K(α)

w

〉
α

= 〈
g(w)K(α)

w , f (w)K(α)
w

〉
α

= f (w)g(w)/
(
1 − |w|2)n+α+1

,

and we see that

Bα[Tf Tḡ](w) = f (w)g(w).

We also have

Bα[f ⊗ g](w) = (
1 − |w|2)n+α+1〈

(f ⊗ g)K(α)
w ,K(α)

w

〉
α

= (
1 − |w|2)n+α+1〈〈

K(α)
w , g

〉
f,K(α)

w

〉
α

= (
1 − |w|2)n+α+1〈

K(α)
w , g

〉〈
f,K(α)

w

〉
α

= (
1 − |w|2)n+α+1

f (w)g(w).

We need the following lemma, which was proved in [11].

Lemma 3.4. If 0 < β < 1 and k is a positive integer, then

(1 − t)k−β =
k−1∑
j=0

(−1)j
	(k + 1 − β)

	(k + 1 − β − j)

tj

j ! + (−1)k
	(k + 1 − β)

	(β)	(1 − β)

∞∑
n=0

	(n + β)

(n + k)! tn+k,

for all −1 < t < 1.

Assuming α to be a non-integer, we apply the above lemma with k = [α] + n + 2 and β =
1 − {α}, where {α} = α − [α]. Using that 	({α})	(1 − {α}) = π/ sin(π{α}), we get

(1 − t)n+1+α =
n+1+[α]∑

j=0

(−1)j
	(n + 2 + α)

j !	(n + 2 + α − j)
tj

+ (−1)n+[α] 	(n + 2 + α) sin(π{α})
π

∞∑
j=0

	(j + 1 − {α})
(n + 2 + [α] + j)! tn+2+[α]+j .

Note that the above formula is also valid in case α is an integer. Applying the above identity to
t = |w|2 = w1w̄1 + · · · + wnw̄n, making use of the multinomial formula (see, for example, [13,
Section 1.1]), we have

tn+2+[α]+j =
∑

|γ |=n+2+[α]+j

(n + 2 + [α] + j)!
γ ! wγ w̄γ ,

and we obtain
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(
1 − |w|2)n+1+α =

n+1+[α]∑
j=0

(−1)j
∑

|γ |=j

	(n + 2 + α)

γ !	(n + 2 + α − j)
wγ w̄γ

+ (−1)n+[α] 	(n + 2 + α) sin(π{α})
π

×
∞∑

j=0

∑
|γ |=n+2+[α]+j

	(j + 1 − {α})
γ ! wγ w̄γ .

Combining the above formula with Bα[f ⊗ g](w) = (1 − |w|2)n+1+αf (w)g(w), we get

Bα[f ⊗ g](w) =
n+1+[α]∑

j=0

(−1)j
∑

|γ |=j

	(n + 2 + α)

γ !	(n + 2 + α − j)
wγ f (w)g(w)w̄γ

+ (−1)n+[α] 	(n + 2 + α) sin(π{α})
π

×
∞∑

j=0

∑
|γ |=n+2+[α]+j

	(j + 1 − {α})
γ ! wγ f (w)g(w)wγ . (3.5)

Thus the above identity and uniqueness of the Berezin transform imply the following operator
identity:

f ⊗ g =
n+1+[α]∑

j=0

(−1)j
∑

|γ |=j

	(n + 2 + α)

γ !	(n + 2 + α − j)
Tzγ Tf TḡTz̄γ

+ (−1)n+[α] 	(n + 2 + α) sin(π{α})
π

×
∞∑

j=0

∑
|γ |=n+2+[α]+j

	(j + 1 − {α})
γ ! Tzγ Tf TḡTz̄γ . (3.6)

Remark. That the operator on the right-hand side of (3.6) defines a bounded operator follows
from Lemma 3.3, which implies

∞∑
j=0

∥∥∥∥∥
∑

|γ |=n+2+[α]+j

	(j + 1 − {α})
γ ! Tzγ Tf TḡTz̄γ

∥∥∥∥∥�
∞∑

j=0

	(j + 1 − {α})
(n + 2 + [α] + j)! ‖Tf Tḡ‖.

Stirling’s formula shows that the series
∞∑

j=0

	(j + 1 − {α})
(n + 2 + [α] + j)!

converges. Thus
∞∑

j=0

∑
|γ |=n+2+[α]+j

	(j + 1 − {α})
γ ! Tzγ Tf TḡTz̄γ

is a bounded operator, which by (3.2) has Berezin transform equal to
∞∑ ∑ 	(j + 1 − {α})

γ ! Bα[Tzγ Tf TḡTz̄γ ].

j=0 |γ |=n+2+[α]+j
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Thus the operator on the right-hand side of (3.6) has Berezin transform equal to the right-hand
side of (3.5). By uniqueness of the Berezin transform the two operators must be equal, establish-
ing operator identity (3.6).

We are now ready to prove the necessary condition of Theorem 3.1.

Proof Theorem 3.1. Suppose f and g are analytic on A2
α(Bn) such that the densely defined

Toeplitz product Tf Tḡ is bounded on A2
α(Bn). Using identity (3.6) and the estimate in the above

remark, we see that there exists a finite constant Cα such that

‖f ⊗ g‖ � Cα‖Tf Tḡ‖,
thus

‖f ‖2‖g‖2 � Cα‖Tf Tḡ‖. (3.7)

It follows from (2.3), applied to f and ḡ, that

Tf ◦ϕwTḡ◦ϕw = (
Tf ◦ϕwU(α)

w

)
U(α)

w

(
Tḡ◦ϕwU(α)

w

)
U(α)

w

= (
U(α)

w Tf

)
U(α)

w

(
U(α)

w Tḡ

)
U(α)

w = U(α)
w (Tf Tḡ)U

(α)
w ,

for all w ∈ Bn. Inequality (3.7) applied to f ◦ ϕw and g ◦ ϕw gives

‖f ◦ ϕw‖2 ‖g ◦ ϕw‖2 � Cα‖Tf ◦ϕwTḡ◦ϕw‖ = Cα‖Tf Tḡ‖,
hence

Bα

[|f |2](w)Bα

[|g|2](w) � C2
α‖Tf Tḡ‖2,

for all w ∈ Bn. So, for f,g ∈ A2
α(Bn), a necessary condition for the Toeplitz product Tf Tḡ to be

bounded on A2
α(Bn) is

sup
w∈Bn

Bα

[|f |2](w)Bα

[|g|2](w) < ∞. (3.8)

This completes the proof of Theorem 3.1. �
4. Sufficient condition

In this section we will prove a condition slightly stronger than (3.8) in the following theorem.

Theorem 4.1. Let −1 < α < ∞, and let f and g be in A2
α(Bn). If for ε > 0,

sup
w∈Bn

Bα

[|f |2+ε
]
(w)Bα

[|g|2+ε
]
(w) < ∞, (4.2)

then the operator Tf Tḡ is bounded on A2
α(Bn).

By Hölder’s inequality,( ∫
|f |2 dνα

)1/2

�
( ∫

|f |2+ε dνα

)1/(2+ε)

.

Bn Bn
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Applying this to the function f ◦ ϕw , making use of (2.2), it follows that

Bα

[|f |2](w)1/2 � Bα

[|f |2+ε
]
(w)1/(2+ε),

and thus(
Bα

[|f |2](w)Bα

[|g|2](w)
)1/2 �

(
Bα

[|f |2+ε
]
(w)Bα

[|g|2+ε
]
(w)

)1/(2+ε)
, (4.3)

for all w ∈ Bn, so condition (4.2) implies necessary condition (3.8).
In the proof that Tf Tḡ is bounded on A2

α(Bn) if condition (4.2) holds, we will need estimates
on Tf̄ h and its derivatives, as well as an alternative way to write the inner product formula in

A2
α(Bn).

4.1. Two estimates

We will need the two estimates contained in the following lemmas.

Lemma 4.4. Let −1 < α < ∞. For f ∈ L2(Bn, να) and h ∈ H∞(Bn) we have

∣∣(Tf̄ h)(w)
∣∣� Bα[|f |2](w)1/2

(1 − |w|2)(n+α+1)/2
‖h‖α,

for all w ∈ Bn.

Proof. By Cauchy–Schwarz’s inequality,

∣∣(Tf̄ h)(w)
∣∣2 �

( ∫
Bn

|f (z)||h(z)|
|1 − 〈z,w〉|n+α+1

dνα(z)

)2

�
∫
Bn

|f (z)|2
|1 − 〈z,w〉|2n+2α+2

dνα(z)

∫
Bn

∣∣h(z)
∣∣2 dνα(z)

= Bα[|f |2](w)

(1 − |w|2)n+α+1
‖h‖2

α,

and the stated inequality follows. �
Lemma 4.5. Let −1 < α < ∞ and ε > 0. For f ∈ L2(Bn, να), h ∈ H∞(Bn), and multi-index γ

with |γ | = m � (n + α + 1)/2 we have

∣∣(Dγ Tf̄ h
)
(w)

∣∣� C
Bα[|f |2+ε](w)1/(2+ε)

(1 − |w|2)m
( ∫

Bn

|h(z)|δ
|1 − 〈w,z〉|n+α+1

dνα(z)

)1/δ

,

for all w ∈ Bn, where δ = (2 + ε)/(1 + ε).

Proof. Let ε > 0. For f ∈ A2
α(Bn) and h ∈ H∞(Bn) we have

(Tf̄ h)(w) = 〈
Tf̄ h,K(α)

w

〉
α

=
∫

f (z)h(z)

(1 − 〈w,z〉)n+α+1
dνα(z), w ∈ Bn,
Bn
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thus (
Dγ Tf̄ h

)
(w) = 	(n + α + m + 1)

	(n + α + 1)

∫
Bn

zγ f (z)h(z)

(1 − 〈w,z〉)n+α+m+1
dνα(z),

for every multi-index γ with |γ | = m. Applying Hölder’s inequality, we get∣∣(Dγ Tf̄ h
)
(w)

∣∣
� C

( ∫
Bn

|f (z)|2+ε

|1 − 〈w,z〉|2n+2α+2
dνα(z)

)1/(2+ε)

×
( ∫

Bn

|h(z)|δ
|1 − 〈w,z〉|(2m+(n+α+m+1)ε)/(1+ε)

dνα(z)

)1/δ

= C
Bα[|f |2+ε](w)1/(2+ε)

(1 − |w|2)(n+α+1)/(2+ε)

( ∫
Bn

|h(z)|δ
|1 − 〈w,z〉|(2m+(n+α+m+1)ε)/(1+ε)

dνα(z)

)1/δ

.

Since 2m � n + α + 1, we have∣∣1 − 〈w,z〉∣∣(2m+(n+α+m+1)ε)/(1+ε) �
(
1 − |w|)(2m−n−α−1+mε)/(1+ε)∣∣1 − 〈w,z〉∣∣n+α+1

� 2−β/(1+ε)
(
1 − |w|2)β/(1+ε)∣∣1 − 〈w,z〉∣∣n+α+1

,

where β = 2m − n − α − 1 + mε, and thus( ∫
Bn

|h(z)|δ
|1 − 〈w,z〉|(2m+(n+α+m+1)ε)/(1+ε)

dνα(z)

)1/δ

� 2β/(2+ε)

(1 − |w|2)β/(2+ε)

( ∫
Bn

|h(z)|δ
|1 − 〈w,z〉|n+α+1

dνα(z)

)1/δ

.

Hence∣∣(Dγ Tf̄ h
)
(w)

∣∣
� C

Bα[|f |2+ε](w)1/(2+ε)

(1 − |w|2)(n+α+1)/(2+ε)

2β/(2+ε)

(1 − |w|2)β/(2+ε)

( ∫
Bn

|h(z)|δ
|1 − 〈w,z〉|n+α+1

dνα(z)

)1/δ

= C′ Bα[|f |2+ε](w)1/(2+ε)

(1 − |w|2)m
( ∫

Bn

|h(z)|δ
|1 − 〈w,z〉|n+α+1

dνα(z)

)1/δ

.

This proves the stated inequality. �
4.2. Inner product formula in A2

α(Bn)

In this subsection we will establish a formula for the inner product in A2
α(Bn) needed to prove

our sufficiency condition for boundedness of Toeplitz products. Let F and G be in A2
α(Bn). Then

�
[
F(z)G(z)

]= 4
n∑

DjF(z)DjG(z),
j=1
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and, by induction,

�m
[
F(z)G(z)

]= 4m
∑

|γ |=m

Dγ F(z)Dγ G(z), (4.6)

where the sum is over all multi-indices γ with |γ | = m. We have

�
[(

1 − |z|2)β]= 4β(β − 1)
(
1 − |z|2)β−2 − 4β(β + n − 1)

(
1 − |z|2)β−1

, (4.7)

for all β � 2. To obtain an inner product formula suitable for the estimates we have established
in the previous section, we will need the following lemma:

Lemma 4.8. Let −1 < α < ∞ and let m be a positive integer. There exist constants
a1, a2, . . . , a2m−1 and b1, b2, . . . , bm (depending on m, n and α) such that

�m

[(
1 − |z|2)α+2m −

2m−1∑
j=1

aj

(
1 − |z|2)α+2m+j

]

= 4m 	(α + 2m + 1)

	(α + 1)

(
1 − |z|2)α −

m∑
k=1

bk

(
1 − |z|2)α+2m+k−1

. (4.9)

Proof. Using (4.7) and induction it is easy to show that for every −1 < α < ∞ and positive
integer m, there exist scalars λα,0, . . . , λα,m (depending also on m and n) such that

�m
[(

1 − |z|2)α+2m]=
m∑

k=0

λα,k

(
1 − |z|2)α+k

, (4.10)

where λα,0 = 4m	(α +2m+1)/	(α +1). Fix a positive integer m. For convenience of notation,
define λα,j = 0 if j > m and α is arbitrary.

From (4.10) we subtract
∑2m−1

j=1 �m[aj (1 − |z|2)α+2m+j ] for scalars a1, . . . , a2m−1 that will

be chosen such that all terms involving powers (1 − |z|2)α+k , with 1 � k � 2m − 1, drop out. To
show that this can be done, we use (4.10) to note that

2m−1∑
j=1

�m
[
aj

(
1 − |z|2)α+2m+j ]=

2m−1∑
j=1

m∑
k=0

ajλα+j,k

(
1 − |z|2)α+k+j

=
2m−1∑
j=1

j+m∑
�=j

ajλα+j,�−j

(
1 − |z|2)α+�

=
2m−1∑
j=1

3m−1∑
�=j

ajλα+j,�−j

(
1 − |z|2)α+�

,

using that λα+j,�−j = 0 if � > j + m. Interchanging the order of summation, we have

2m−1∑
j=1

�m
[
aj

(
1 − |z|2)α+2m+j ]

=
2m−1∑ 3m−1∑

ajλα+j,k−j

(
1 − |z|2)α+k
j=1 k=j
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=
2m−1∑
k=1

k∑
j=1

ajλα+j,k−j

(
1 − |z|2)α+k +

3m−1∑
k=2m

2m−1∑
j=1

ajλα+j,k−j

(
1 − |z|2)α+k

.

Hence

�m

[(
1 − |z|2)α+2m −

2m−1∑
j=1

aj

(
1 − |z|2)α+2m+j

]

= λα,0
(
1 − |z|2)α +

2m−1∑
k=1

(
λα,k −

k∑
j=1

ajλα+j,k−j

)(
1 − |z|2)α+k

+
3m−1∑
k=2m

2m−1∑
j=1

ajλα+j,k−j

(
1 − |z|2)α+k

.

Choose a1, . . . , a2m−1 such that

λα,k =
k∑

j=1

ajλα+j,k−j ,

for k = 1, . . . ,2m − 1. This can be done since (λα+j,i−1)
2m−1
i,j=1 is a lower diagonal matrix with

non-zero entries on its diagonal. Putting

bk = −
2m−1∑
j=1

ajλα+j,2m+k−1−j ,

for k = 1, . . . ,m, Eq. (4.9) follows. �
Let −1 < α < ∞ and assume that F,G ∈ A2

α(Bn) are analytic on an open neighborhood of
the closed unit ball B̄n. Now, it is easily seen that

�k
[(

1 − |z|2)2β]= �k

[
∂

∂n

(
1 − |z|2)2β

]
= 0

on S, for k < β , where ∂
∂n

denotes the normal derivative.
Repeatedly applying Green’s formula and using Lemma 4.8, we get

∫
Bn

�m[FḠ](z)
[(

1 − |z|2)2m −
2m−1∑
j=1

aj

(
1 − |z|2)2m+j

]
dνα(z)

=
∫
Bn

�m[FḠ](z)
[(

1 − |z|2)α+2m −
2m−1∑
j=1

aj

(
1 − |z|2)α+2m+j

]
dν(z)

=
∫
Bn

F (z)G(z)�m

[(
1 − |z|2)α+2m −

2m−1∑
j=1

aj

(
1 − |z|2)α+2m+j

]
dν(z)

=
∫

F(z)G(z)

{
4m 	(α + 2m + 1)

	(α + 1)

(
1 − |z|2)α −

m∑
j=1

bj

(
1 − |z|2)α+2m+j−1

}
dν(z)
Bn
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= 4m 	(α + 2m + 1)

	(α + 1)
〈F,G〉α −

m∑
j=1

bj

∫
Bn

F (z)G(z)
(
1 − |z|2)2m+j−1

dνα(z).

It follows that

〈F,G〉α

= 	(α + 1)

4m	(α + 2m + 1)

∫
Bn

�m[FḠ](z)
[(

1 − |z|2)2m −
2m−1∑
j=1

aj

(
1 − |z|2)2m+j

]
dνα(z)

+
m∑

j=1

b′
j

∫
Bn

F (z)G(z)
(
1 − |z|2)2m+j−1

dνα(z).

Combining the above formula with (4.6), we obtain the following formula for the inner product
in A2

α(Bn):

〈F,G〉α = 	(α + 1)

	(α + 2m + 1)

∑
|γ |=m

∫
Bn

Dγ F (z)Dγ G(z)
(
1 − |z|2)2m

dνα(z)

+
2m−1∑
j=1

a′
j

∑
|γ |=m

∫
Bn

Dγ F (z)Dγ G(z)
(
1 − |z|2)2m+j

dνα(z)

+
m∑

j=1

b′
j

∫
Bn

F (z)G(z)
(
1 − |z|2)2m+j−1

dνα(z), (4.11)

for any m ∈ N. Given F,G ∈ A2
α(Bn), apply the above argument to the dilates Fr and Gr de-

fined by Fr(z) = F(rz) and Gr(z) = G(rz), for |z| < 1/r . Using that Fr → F in A2
α(Bn) and

Dγ Fr → Dγ F in A2
α+m(Bn), for every multi-index γ with |γ | = m, Eq. (4.11) for general

F,G ∈ A2
α(Bn) is the limit of (4.11) for the dilates Fr and Gr as r → 1− (by Theorems 2.16 and

2.17 in [13] the terms occurring in the inner product formula are all in L2(Bn, dμα)).

4.3. Sufficient condition for boundedness

We are now in a position to prove our sufficiency condition for boundedness of Toeplitz prod-
ucts.

Proof of Theorem 4.1. Assume that for ε > 0, M is a positive constant such that

Bα

[|f |2+ε
]
(w)Bα

[|g|2+ε
]
(w) � M2+ε,

for all w ∈ Bn. By (4.3) we also have

Bα

[|f |2](w)Bα

[|g|2](w) � M2,

for all w ∈ Bn. Let h and k be bounded analytic functions on Bn. It follows from Lemma 4.4 that

∣∣(Tf̄ h)(w)(Tḡk)(w)
∣∣� M

2 n+α+1
‖h‖α‖k‖α,
(1 − |w| )
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thus ∫
Bn

∣∣(Tf̄ h)(z)(Tḡk)(z)
∣∣(1 − |z|2)q dνα(z) � M‖h‖α‖k‖α,

for all q � n + α + 1. So if we choose a large m, such that 2m � n + α + 1, then each of the
terms ∫

Bn

∣∣(Tf̄ h)(z)(Tḡk)(z)
∣∣(1 − |z|2)2m+j−1

dνα(z)

is bounded by M‖h‖α‖k‖α , for j = 1, . . . ,m.
Let Qα be the integral operator on L2(Bn, να) defined by

Qαu(w) =
∫
Bn

u(z)

|1 − 〈z,w〉|n+α+1
dνα(z), w ∈ Bn.

Using Lemma 4.5 for a multi-index γ with |γ | = m � (n + α + 1)/2, we have

∣∣(Dγ Tḡk
)
(w)(Dγ Tf̄ h)(w)

∣∣� C2 M

(1 − |w|2)2m

(
Qα|h|δ(w)

)1/δ(
Qα|k|δ(w)

)1/δ
,

for all w ∈ Bn, where δ = (2 + ε)/(1 + ε). Since p = 2/δ > 1 and Qα is Lp-bounded [13,
Theorem 2.10] there exists a constant N > 0 such that∫

Bn

(
Qα|h|δ(w)

)2/δ
dνα(w) � N

∫
Bn

(|h|δ(w)
)2/δ

dνα(w) = N‖h‖2
α,

and, likewise,∫
Bn

(
Qα|k|δ(w)

)2/δ
dνα(w) � N‖k‖2

α.

By the Cauchy–Schwarz inequality,∫ (
Qα|h|δ(w)

)1/δ(
Qα|k|δ(w)

)1/δ
dνα(w) � N‖h‖α‖k‖α.

We conclude that∣∣∣∣
∫
Bn

Dγ Tḡk(z)Dγ Tf̄ h(z)
(
1 − |z|2)2m+j

dνα(z)

∣∣∣∣� MNC2‖h‖α‖k‖α,

for j = 0,1, . . . ,2m − 1. Using inner product formula (4.11) with F = Tḡk and G = Tf̄ h we
conclude that there is a finite constant L such that∣∣〈Tf Tḡk,h〉α

∣∣� L‖h‖α‖k‖α,

for all bounded analytic functions h and k on Bn. Hence the operator Tf Tḡ is bounded on
A2

α(Bn). This completes the proof of Theorem 4.1. �
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4.4. Compact Toeplitz products

The following theorem states that the Toeplitz product Tf Tḡ is only compact in the trivial case
that it is the zero operator.

Theorem 4.12. Let −1 < α < ∞, and f and g be in A2
α(Bn). Then Tf Tḡ is compact if and only

if f ≡ 0 or g ≡ 0.

Proof. If Tf Tḡ is compact on A2
α(Bn), then its Berezin transform vanishes near the unit sphere

Bα[Tf Tḡ](w) → 0

as |w| → 1−. We have seen that Bα[Tf Tḡ](w) = f (w)g(w), so∣∣f (w)g(w)
∣∣= ∣∣Bα[Tf Tḡ](w)

∣∣→ 0

as |w| → 1−, and it follows from the Maximum Modulus Principle that fg ≡ 0.
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