
Journal of Computational and Applied Mathematics 229 (2009) 294–301

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Computing the minimum distance between two Bézier curves
Xiao-Diao Chen a,c,d,∗, Linqiang Chen a, Yigang Wang a, Gang Xu a, Jun-Hai Yong b,
Jean-Claude Paul b,c
a Hangzhou Dianzi University, Hangzhou 310018, PR China
b School of Software, Tsinghua University, Beijing 100084, PR China
c INRIA, France
d State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310027, PR China

a r t i c l e i n f o

Article history:
Received 2 July 2008
Received in revised form 19 October 2008

Keywords:
Minimum distance
Bézier curve
Sweeping sphere clipping method

a b s t r a c t

A sweeping sphere clipping method is presented for computing the minimum distance
between two Bézier curves. The sweeping sphere is constructed by rolling a sphere with
its center point along a curve. The initial radius of the sweeping sphere can be set as the
minimum distance between an end point and the other curve. The nearest point on a curve
must be contained in the sweeping sphere along the other curve, and all of the parts outside
the sweeping sphere can be eliminated. A simple sufficient condition when the nearest
point is one of the two end points of a curve is provided, which turns the curve/curve case
into a point/curve case and leads to higher efficiency. Examples are shown to illustrate
efficiency and robustness of the new method.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Theminimumdistance computation problem between two objectO1 andO2 can be described as to find the nearest point
pair (p, q) such that p ∈ O1, q ∈ O2, and the distance between p and q is minimum. It is an important problem in many
fields such as geometric modeling [4,8], computer graphics [5,11], and computer vision [4,8,11,13]. In geometric modeling,
the distance information between a point and a curve or surface is essential for interactively selecting curves and surfaces.
Distance information is needed for collision detection in CAD/CAM, computer graphics and computer vision. Moreover, the
minimum distance information and the location where the minimum distance occurs are very useful in the location design
of a bridge or undersea tunnel. The shorter the length of a bridge, the lower the cost and the less the corrasion of waves.
The minimum distance computation problem between curves and surfaces may be divided into five cases, i.e., point-

curve, point–surface, curve–curve, curve–surface, surface–surface. All of these five cases can be turned into a root-finding
problem of a non-linear equation system [5,9,10,15]. For example, for the curve/curve case, suppose that given two curves
C1(u) and C2(v), when the nearest points are both inner points of the two curves, then we have the corresponding equation
system{

Su(u, v) = 0,
Sv(u, v) = 0,

(1)

where S(u, v) is equal to (C1(u)− C2(v))2, which is the squared distance between C1(u) and C2(v). Zhou et al. utilize both
the projected-polyhedron and linear programming methods to solve the equation system. The methods on how to solve a

∗ Corresponding author at: Hangzhou Dianzi University, Hangzhou 310018, PR China.
E-mail address: xiaodiao@hdu.edu.cn (X.-D. Chen).

0377-0427/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2008.10.050

http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:xiaodiao@hdu.edu.cn
http://dx.doi.org/10.1016/j.cam.2008.10.050

X.-D. Chen et al. / Journal of Computational and Applied Mathematics 229 (2009) 294–301 295

Fig. 1. Illustration of the sweeping sphere clipping method.

non-linear equation system can also be found in [3,10]. However, most of the roots are not mapping to the nearest points
and are unnecessary to be solved, and the root-finding method itself may be sensitive to the input data. As Johnson points
out in [5], the root-finding method has low robustness and low efficiency. In the worst case, all of the roots are unnecessary
to compute (also see Fig. 3(a) in Section 3).
Limaiem has presented methods for the minimum distance computation problem between convex curves and surfaces,

which converges to a local minimum distance by repeatedly finding the closest point on alternating curves or surfaces [6].
Lin utilizes bounding polyhedron to get the initial values for numerical methods to compute the minimum distance for the
cases between concave surfaces [7]. Both approaches use the Newton–Raphson method to find the roots for some distance
equations and need a good initial value for achieving the convergence result. However, this initial value is hard to obtain due
to the complexity of the NURBS curve or surface’s shape [8,11]. And even worse, the Newton–Raphson method may give a
wrong answer [8].
The subdivision algorithms of NURBS curves and surfaces [12] are very robust. If one can find exclusion criteria whether

a curve or surface can be pruned, the geometric pruning methods repeatedly testing the exclusion criteria and subdividing
the curves or surfaces are able to meet with arbitrary tolerance and seem more geometric intuitive, reasonable and robust.
Many geometric pruning methods cover the point-curve case and the point-surface case [1,2,8,11,14]. Piegl proposes to
decompose the NURBS surface into quadrilaterals, and project the test point onto the nearest quadrilateral to get the initial
value [11]. Ma provides the control-polygon-based method [8]. Selimovic improves these algorithms for the point-surface
case by the tangent conemethod [14]. However, these methods haven’t covered the curve–curve case. The curve/curve case
is important for the minimum distance computation problem between two surfaces. In fact, when the nearest points are on
the boundary curves of the surfaces, it is indispensable to solve the minimum distance computation problem between two
boundary curves.
This paper presents a sweeping sphere clippingmethod for computing theminimumdistance computation between two

Bézier curves. We first construct the sweeping sphere of a curve by rolling a sphere with its center point along the curve. If
(p, q) is the nearest point pair, then all of the points on a curve except the nearest point p are outside the sweeping sphere
of the other curve with its radius ‖pq‖; if all of the points on a curve except the nearest point p are outside the sweeping
sphere of the other curve with its radius ‖pq‖, then (p, q) is the nearest point pair (see Fig. 1). Thus, the minimum distance
computation between two Bézier curves is essentially equivalent to the intersection testing problem between a sweeping
sphere and a curve. The initial radius of the sweeping sphere can be simply set as the distance between the end points of
the two curves. From our experience, the efficiency of the new method may be improved by setting the initial radius of the
sweeping sphere as the distance between an end-point on a curve and another curve. The nearest point on a curve must be
contained in the sweeping sphere along the other curve, and all of the parts outside the sweeping sphere can be eliminated.
A simple sufficient condition when the nearest point is one of the two end points of a curve is provided, which turns the
curve/curve case into a point/curve case and leads to higher efficiency. Since a B-spline curve can be turned into several
Bézier curves, the new method and its corresponding parallel algorithm also work with the B-spline curves.
The remaining paper is organized as follows. Section 2 explains the algorithm of the sweeping sphere clipping method.

Section 3 shows several examples. Some conclusions are drawn at the end of the paper.

2. Algorithm of the sweeping sphere clipping method

Suppose that Bin(u) and B
j
m(v) are nth-degree andmth-degree Bézier basis functions, and that two Bézier curves are

C1(u) =
n∑
i=0

PiBin(u), u ∈ [0, 1]

and

C2(v) =
m∑
j=0

QjB
j
m(v), v ∈ [0, 1],

296 X.-D. Chen et al. / Journal of Computational and Applied Mathematics 229 (2009) 294–301

where {Pi} and {Qj} are control points of the two curves in Rp space, p ∈ Z+. The key technique of the sweeping sphere
clipping method is to judge whether a curve is outside of a sweeping sphere. It seems difficult to solve it directly by the
information of the control points. We overcome this problem by analyzing the objective squared distance function

S(u, v) =

(
n∑
i=0

PiBin(u)−
m∑
j=0

QjB
j
m(v)

)2
.

2.1. Computing S(u, v) in Bézier form

Let C ji denotes the binomial coefficient
(
j
i

)
, θ = max{0, r − n}, υ = min{r, n}, σ = max{0, k−m}, ς = min{k,m}, and

Ar =
υ∑
i=θ

(Pi · Pr−i)C inC
r−i
n /C r2n,

Bk =
ς∑
j=σ

(Qj · Qk−j)C
j
mC
k−j
m /Ck2m,

(2)

where r = 0, 1, . . . , 2n, k = 0, 1, . . . , 2m, and ‘‘·’’ denotes the inner product between two vectors in Rp space. We obtain(
n∑
i=0

PiBin(u)

)2
=

2n∑
r=0

ArBr2n(u) =
2n∑
r=0

ArBr2n(u)
2m∑
k=0

Bk2m(v),(
m∑
j=0

QjB
j
m(v)

)2
=

2m∑
k=0

BkBk2m(v) =
2m∑
k=0

BkBk2m(v)
2n∑
r=0

Br2n(u).

It can be verified that
n∑
i=0

PiBin(u) =
2n∑
r=0

(
υ∑
i=θ

PiC inC
r−i
n /C r2n

)
Br2n(u)

and
m∑
j=0

QjB
j
m(v) =

2m∑
k=0

(
ς∑
j=σ

QjC
j
mC
k−j
m /Ck2m

)
Bk2m(v).

We have
n∑
i=0

PiBin(u) ·
m∑
j=0

QjB
j
m(v) =

2n∑
r=0

2m∑
k=0

Cr,kBr2n(u)B
k
2m(v),

where

Cr,k =

(
υ∑
i=θ

PiC inC
r−i
n /C r2n

)
·

(
ς∑
j=σ

QjC
j
mC
k−j
m /Ck2m

)
. (3)

Thus, we can turn S(u, v) into a Bézier form and obtain

S(u, v) =
2n∑
r=0

2m∑
k=0

Dr,kBr2n(u)B
k
2m(v), (4)

where Dr,k = Ar + Bk − 2Cr,k.

2.2. Algorithm with new exclusion criteria

From the convex hull property, we obtain

Property 1. If Dr,k ≥ α for all 0 ≤ r ≤ 2n and 0 ≤ k ≤ 2m, then S(u, v) ≥ α, where α ∈ R+. This means that curve C1(u) is
outside of the sweeping sphere of curve C2(v) with its radius

√
α.

To detect whether one of the point in the nearest point pair is an end-point of a curve, we have

Property 2. If there exists an integer k = 0 or k = 2n, such that for all i ∈ {0, 1, . . . , 2n} and j ∈ {0, 1, . . . , 2m}, Di,j ≥ Dk,j,
then S(u, v)must reach the minimum value at the boundary u = 0 or u = 1, which means the end-point P0 or Pn is the nearest
point on C1(u). Similarly, if there exists an integer k = 0 or k = 2m, such that for all i ∈ {0, 1, . . . , 2n} and j ∈ {0, 1, . . . , 2m},
Di,j ≥ Di,k, then S(u, v) must reach the minimum value at the boundary v = 0 or v = 1, which means the end-point Q0 or Qm
is the nearest point on C2(v).

X.-D. Chen et al. / Journal of Computational and Applied Mathematics 229 (2009) 294–301 297

Fig. 2. Illustration of the heuristic method (a) the two adjacent corners of S(u, v) with the smallest value are solid points in red and green, respectively;
(b) S(u, v) is subdivided at the solid line u = i/(2n) in parametric domain. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Proof. Without loss of generality, suppose that Di,j ≥ D0,j, for all i ∈ {0, 1, . . . , 2n} and j ∈ {0, 1, . . . , 2m}. From the convex
hull property, we obtain

S(u, v) =
2n∑
r=0

2m∑
k=0

Dr,kBr2n(u)B
k
2m(v)

≥

2n∑
r=0

2m∑
k=0

D0,kBr2n(u)B
k
2m(v)

=

2n∑
r=0

2m∑
k=0

D0,kBk2m(v)B
r
2n(u)

=

2n∑
r=0

(
2m∑
k=0

D0,kBk2m(v)

)
Br2n(u)

=

(
2m∑
k=0

D0,kBk2m(v)

)
2n∑
r=0

Br2n(u)

=

2m∑
k=0

D0,kBk2m(v).

So S(u, v)must reach the minimum value at the boundary u = 0. �

From our experience, when the parametric domain is small (in our practical use within 10−3), the new method may
eliminate at least one of the two sub-surfaces after each subdivision. Usually it needs to solve one of the roots of the equation
system (1) or none after the subdivision process. So about ten subdivision steps in U-direction may turns the U-direction
interval of size δ1 into a new interval of size δ1/1000. On the other hand, each iterative step with an initial value (u0, v0)
in the Newton method needs to calculate the values of Su(u0, v0), Sv(u0, v0), Suu(u0, v0), Svv(u0, v0), Suv(u0, v0), whose
computation cost is about five times of that computation time of each subdivision of S(u, v). In a word, the computation
cost of four Newton iterative steps in the new method may turn the parameter domain of size δ1 × δ2 into a new one of
smaller size (δ1/1000) × (δ2/1000). In this paper, we don’t use the Newton method, and just use the sweeping sphere
clipping method combining with subdivision technique to solve the nearest points on the two curves, which leads to better
robustness.
The algorithm of the sweeping sphere clipping method is as follows. It contains two mainly steps. The first step is to

compute the Bézier form of S(u, v) in Eq. (4). The second step is to compute the minimum value d of S(u, v) as well as its
parameter pair (u, v). Let S1(u, v) be the surface S(u, v) or its surface patch. In the second step, we directly compute or omit
the computation of the minimum value of S1(u, v) in the following three cases: (1) the parameter domain of the surface
patch mapping to that of S(u, v) is small enough in U or V -direction according to the tolerance ε, which means surface
S1(u, v) is degenerated into a curve, then we compute the minimum value at the curve, which is also taken as the minimum
value of S1(u, v); (2) Property 1 with the current minimum value α is satisfied for S1(u, v), which means that the minimum
value of S1(u, v) is larger than α and is unnecessary to compute; (3) Property 2 is satisfied, whichmeans theminimum value
occurs at a boundary curve, then we compute the minimum value at the boundary curve, which is also the minimum value
of S1(u, v).
In other cases, the minimum value of S1(u, v)may occurs at its inner point. Then we subdivide S1(u, v) into two surface

patches S2(u, v) and S3(u, v). The following heuristic method for the subdivision process may lead to a better performance
(see Fig. 2). Let {D1r,k} be the control net of S1(u, v). Suppose D

1
i,j is the minimum value of all {D

1
r,k}. Then S1(u, v) may be

subdivided at u = i/(2n) or v = j/(2m). The direction is chosen such that the two adjacent corners of S(u, v) with the

298 X.-D. Chen et al. / Journal of Computational and Applied Mathematics 229 (2009) 294–301

smallest value remain in the same part (also see [14]). It is obvious that

min{S1(u, v)} = min{min{S2(u, v)},min{S3(u, v)}}.

So we compute the minimum values of S2(u, v) and S3(u, v), and pick the smaller value between the two minimum values
as the minimum value of S1(u, v). After some finite subdivision steps, at least one of the three above cases may be satisfied,
then the minimum values of the surface patches can be directly computed. Thus, we finally obtain the minimum value of
S(u, v). The algorithms are as follows.

Algorithm 1. Algorithm for computing the minimum value of a surface patch S1(u, v).

Input: S1(u, v), the current minimum value α, the corresponding parameter domainHmapping to that of S(u, v) and the
tolerance ε.

Output: The minimum value d (only valid for the case d < α) and its corresponding parameter pair (u, v)where d occurs
as well;

(1) If H is small enough in U or V -direction according to the tolerance ε, goto Step 2;
Otherwise, goto Step 4;

(2) S1(u, v)may be taken as a curve S1(um, v) or S1(u, vm), where um and vm are themid value of U and V -direction interval,
respectively;
Compute the minimum value d of S1(um, v) or S1(u, vm), record the parameter pair (u, v); goto Step 3;

(3) If d is smaller than α, then update α = d and its parameter pair as well;
Goto Step 9;

(4) Update α = min{α, S1(0, 0), S1(1, 0), S1(0, 1), S1(1, 1)};
goto Step 5;

(5) If Property 1 is satisfied, the minimum value of S1(u, v) is larger than α; Let d = α, and goto Step 9;
Otherwise, goto Step 6;

(6) If Property 2 is satisfied, the minimum value of S1(u, v) occurs at a boundary curve;
Compute the minimum value d of S1(u, v) at the boundary curve, goto Step 7;
Otherwise, goto Step 8;

(7) If d is smaller than α, then update α = d and its parameter pair as well;
Goto Step 9;

(8) Subdivide S1(u, v) into two surface patches by using the heuristic method to obtain S2(u, v) and S3(u, v);
Record the corresponding parameter domains of S2(u, v) and S3(u, v);
Use the Algorithm 1 to compute the minimum value d2 of S2(u, v) and its parameter pair as well;
Use the Algorithm 1 to compute the minimum value d3 of S3(u, v) and its parameter pair as well;
Pick the smaller value d between d2 and d3 and the corresponding parameter pair as well;
Goto Step 9;

(9) End of Algorithm 1: Return the minimum value d and its parameter pair as well.

Algorithm 2. Algorithm for computing the minimum distance between two Bézier curves.

Input: Two Bézier curves.
Output: The nearest point pair as well as the minimum distance d.

1. Compute S(u, v) in a Bézier form;
2. Set α as min{S(0, 0), S(1, 0), S(0, 1), S(1, 1)};
3. End of Algorithm 2: Use Algorithm 1 to compute the minimum value d of S(u, v) and the parameter pair (u, v) where
the minimum value occurs;
Compute the nearest point pair mapping to the parameter pair (u, v), and return the nearest points and its minimum

distance d as well (see Fig. 5).

3. Analyses and examples

This section compares the new method with the method in [10]. Firstly, it needs to transform both Su(u, v) and Sv(u, v)
in the equation system (1) in [10] into the Bézier formwhile it only needs to transform S(u, v) of Eq. (4) into the Bézier form
in the new method, and the corresponding transformation time in [10] is nearly twice as that time in the new method.
Secondly, in each subdivision process, the method in [10] needs to subdivide both Su(u, v) and Sv(u, v) while the new

method only needs to subdivide S(u, v). Suppose that n is equal to m, then the corresponding computation time on each
subdivision process in the method in [10] is about two times of that time of the new method.
Finally, the new method can eliminate most of the roots of the equation system (1) in [10] by using Properties 1 and 2

during the subdivision process, and then the number of the remaining patches in the new method is much less than the
total number of the solutions of the equation system in [10]. Thus, the subdivision time in the new method is much less

X.-D. Chen et al. / Journal of Computational and Applied Mathematics 229 (2009) 294–301 299

Fig. 3. Examples. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Comparisons withMz and the new methodMn .

Case Tol (δ) Mz Mn
Ts Tc (ms) Ts Tc (ms)

10−5 165 3.420 63 0.781
Fig. 3(b) 10−6 192 3.864 68 0.828

10−8 199 3.912 75 0.906

10−5 338 15.043 31 1.250
Fig. 3(c) 10−6 405 17.670 39 1.485

10−8 468 20.964 47 1.656

10−5 292 3.291 62 0.421
Fig. 3(d) 10−6 337 4.002 68 0.438

10−8 355 4.187 75 0.484

than subdivision time of the method in [10], and usually the total computation time of the new method is much less than
that of the method in [10].
Fig. 3 shows four examples. The curves in red and in black are the two given curves, and the line segment in blue connects

the two points in the nearest point pair. In Fig. 3(a), the nearest points on the two curves are end-points of the two curves and
Property 1 is satisfied. In this case, there is no subdivision step in the new method and all the roots of the equation system
(1) are unnecessary to solve. In Fig. 3(b–d), the nearest points are inner points of the two curves. The corresponding results
are shown in Table 1. Ts and Tc denote the average subdivision time and the average computation time, Mz and Mn denote
the method in [10] and the new method, respectively. The tolerance δ is the given resulting tolerance in the parameter
domain, any two parameter may be considered the same as long as the absolute value of their difference is within δ. When
the parameter interval size is within 10−4, then the subdivision process is terminated in the method in [10]. As shown in
Table 1, both the average subdivision time and the average computation time are less in the new method than that in the
previous method in [10].
Fig. 4 shows such an example that the Newtonmethod in the method in [10] may give a wrong answer. The Bézier curve

in red has a cusp. The nearest points are framed by the rectangle in blue, which is amplified in Fig. 4(b). The new method
leads to the line segment in black connecting the two nearest points. When the subdivision tolerance in the method in [10]
is set as 10−3 or 10−4, the Newtonmethod leads to the line segment in red, which is wrong. When the subdivision tolerance

300 X.-D. Chen et al. / Journal of Computational and Applied Mathematics 229 (2009) 294–301

Fig. 4. An example which the Newton method may give a wrong answer. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 5. The flow figure of Algorithm 1.

in the method in [10] is set as 10−5, 10−6 or 10−7, the Newton method could leads to the line in black, which is the same as
that of the new method. All the examples are implemented in C++ with Windows PC, 1.7G CPU and 768Mmemory.

4. Conclusions

This paper presents a sweeping sphere clipping method for the minimum distance computation problem between two
Bézier curves. A simple condition whether the nearest point is an end-point of a curve is provided. A heuristic method for
the subdivision process is utilized to improve the efficiency of the new method. Compared with the root-finding method
in [10], the new method can reduce most of the computation of the unnecessary solutions and need less computation time

X.-D. Chen et al. / Journal of Computational and Applied Mathematics 229 (2009) 294–301 301

on both Bézier form transformation and subdivision process. Examples are shown to illustrate the efficiency and robustness
of the new method, which seems to be prior to the previous method in [10]. The future work will be to extend the new
method to the curve–surface case and the surface–surface case.

Acknowledgements

The researchwas partially supported by Chinese 973 Program (2004CB719400), theNational Science Foundation of China
(60803076,60625202,60473130), INRIA, Chinese 863 Program (2007AA040401) and the Open Project Program of the State
Key Lab of CAD&CG (A0804), Zhejiang University. The fifth authorwas supported by the Fok Ying Tung Education Foundation
(111070). The authors would like to thank the referees for their helpful comments.

References

[1] X.D. Chen, H. Su, J.H. Yong, J.C. Paul, J.G. Sun, A counterexample on point inversion and projection for NURBS curve, Computer Aided Geometric Design
24 (2007) 302.

[2] X.D. Chen, Y. Zhou, Z. Shu, H. Su, J.C. Paul, Improved algebraic algorithm on point projection for Bézier curves, International Multi-Symposiums on
Computer and Computational Sciences 17 (2007) 158–163.

[3] G. Elber, M. Kim, Geometric constraint solver using multivariate rational spline functions, in: Proceedings of the Sixth ACM Symposium on Solid
Modeling and Applications, 2001 pp. 1–10.

[4] S. Hu, J. Wallner, A second order algorithm for orthogonal projection onto curves and surfaces, Computer Aided Geometric Design 22 (2005) 251–260.
[5] D. Johnson, E. Cohen, A framework for efficient minimum distance computations, in: Proceedings of IEEE International Conference on Robotics &
Automation, 1998, pp. 3678–3684.

[6] A. Limaiem, F. Trochu, Geometric algorithms for the intersection of curves and surfaces, Computer & Graphics 19 (1995) 391–403.
[7] M. Lin, D. Manocha, Fast interference detection between geometric models, The Visual Computer 11 (1995) 542–561.
[8] Y.Ma,W. Hewitt, Point inversion and projection for NURBS curve and surface: Control polygon approach, Computer AidedGeometric Design 20 (2003)
79–99.

[9] M. Mortenson, Geometric Modeling, Wiley, New York, 1985.
[10] N. Patrikalakis, T. Maekawa, Shape Interrogation for Computer Aided Design and Manufacturing, Springer-Verlag, New York, 2001.
[11] L. Piegl, W. Tiller, Parametrization for surface fitting in reverse engineering, Computer-Aided Design 33 (2001) 593–603.
[12] L. Piegl, W. Tiller, The NURBS Book, 2nd ed., Springer-Verlag, New York, 1997.
[13] J. Pegna, F. Wolter, Surface curve design by orthogonal projection of space curves onto free-form surfaces, Journal of Mechanical Design 118 (1996)

42–52.
[14] I. Selimovic, Improved algorithms for the projection of points on NURBS curves and surfaces, Computer Aided Geometric Design 23 (2006) 439–445.
[15] J.M. Zhou, E.C. Sherbrooke, N. Patrikalakis, Computation of stationary points of distance functions, Engineering with Computers 9 (1993) 231–246.

	Computing the minimum distance between two Bézier curves
	Introduction
	Algorithm of the sweeping sphere clipping method
	Computing S (u, v) in Bézier form
	Algorithm with new exclusion criteria

	Analyses and examples
	Conclusions
	Acknowledgements
	References

