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Abstract

We show that the isoperimetric function of a �nitely generated nilpotent group of class c is
bounded above by a polynomial of degree 2c. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Isoperimetric functions

The isoperimetric function of a �nitely presented group G limits the number of
de�ning relators needed to show that a word represents the identity in G. Hence the
isoperimetric function is a measure for the complexity of the word problem. Suppose
G=F=R where F is a free group freely generated by the �nite set F, and R is the
normal closure of a �nite set of relators R⊂F . Thus P= 〈F |R〉 is a �nite presentation
of G. For short we identify words w∈F with their residue classes wR∈G. A word w
is equal to 1 in G if and only if w is freely equal to a word of the form

m∏
i=1

u−1i r
�i
i ui with ui ∈F; ri ∈R and �i=±1:

Let �P :R→N be the so-called area function de�ned by

�P(w)=min

{
m∈N |w=

m∏
i=1

u−1i r
�i
i ui for ui ∈F; ri ∈R; �i=±1

}
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for w∈R. We denote by |w| the length of the word w. Associated with �P is the
isoperimetric function �P of the �nite presentation P de�ned by

�P(n)=max{�P(w) |w∈R and |w| ≤ n}:

A partial ordering � on functions on the natural numbers is used to compare isoperi-
metric functions. For f; g :N→N let f� g if and only if there exists a constant K
such that f(n)≤Kg(Kn) +Kn for all n∈N. Hence, we get an equivalence relation ∼=
where f∼= g if and only if f� g and g�f.
If P and Q are di�erent �nite presentations of the same group then �P ∼=�Q, cf.

[2]. Any N→N function equivalent to �P is called an isoperimetric function of G,
denoted by �G.
For any natural number k there exists a �nitely presented group whose isoperimetric

function is equivalent to nk [3, 5]. There also exist �nitely presented groups whose
isoperimetric function is equivalent to nr , where r is a fraction [4]. In fact, such groups
exist for all rationals r≥ 3 [6]. A �nitely presented group G is said to satisfy a linear,
quadratic or exponential isoperimetric inequality if �G � n, n2 or 2n, respectively. Au-
tomatic groups satisfy a quadratic and asynchronously automatic an exponential isoperi-
metric inequality [7]. Polycyclic groups satisfy an exponential isoperimetric inequality
[12].
An isoperimetric function �G is called superadditive if there exists a function f :N→

N such that f∼=�G and f(n)+f(m)≤f(n+m). Non-trivial free products of �nitely
presented groups have a superadditive isoperimetric function [16]. Sapir conjectures
that all �nitely presented groups have a superadditive isoperimetric function.

1.2. Nilpotent groups

Let G be a �nitely presented nilpotent group. In [12] it is proved that �G is bounded
above by a polynomial of degree 2h, where h is the Hirsch number. In [8, 9] the bound
on the degree was improved to 2 · 3c, where c is the nilpotency class of G. Our main
objective is to improve the bound on the degree to 2c. It is not known if �G is
always equivalent to a polynomial. Likewise it is not known if �G is superadditive in
general. However, Gersten conjectures that �G � nc+1 for �nitely generated nilpotent
groups and Gromov asserts in [15, 5:A′5], without proof, that Gersten’s conjecture
holds.
Let G be a �nitely generated free nilpotent group. If G is of class 2 and rank 2,

i.e. the three-dimensional Heisenberg group, then �G ∼= n3 [13, 7]. In [3, 14] it is
shown that nc+1��G, where c is the nilpotency class of G. Pittet shows in [17],
based on [15, 5:A′2], that �G � nc+1. Hence we have �G ∼= nc+1 for �nitely generated
free nilpotent groups. Heisenberg groups of dimension �ve or higher satisfy a quadratic
isoperimetric inequality [1]. This is in contrast to the cubic isoperimetric function in
the three-dimensional case mentioned above.
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1.3. Rewriting process

Let G be a �nitely presented group, H a �nitely presented subgroup of G and w
a word of length n equal to 1 in G. Suppose that we already know �H or an upper
bound thereof. To compute an upper bound for �G we use the following approach. We
rewrite w to a word �(w) in the generators of H . We then compute an upper bound
��(n) for the number of relators needed to rewrite w to �(w) and an upper bound
��(n) for the length of �(w). Since �(w)=G w the word �(w) is equal to 1 in H as
well. Thus the area of �(w) is bounded above by �H (��(n)). Therefore, the area of
w is bounded above by �H (��(n)) plus the number of relators needed to rewrite w to
�(w). Hence �H (��(n))+��(n) is an upper bound for the isoperimetric function of G.
More precisely, let P= 〈F |R〉 be a �nite presentation of the group G, F the free

group freely generated by F and H a �nitely generated subgroup of G. We may
assume, without loss of generality, that H is generated by a subset E⊆F. Let E be
the subgroup of F generated by E. A rewriting process � from G to H relative to
P; E is a partial map F

�→E de�ned on all words w∈H such that �(w)=G w and
�(1)= 1. In general, � is not a homomorphism. De�ne ��(n) by the maximal length of
�(w) for all w∈H with |w| ≤ n. We call �� the distortion of the rewriting process �.
In analogy to �P let ��(n)= max{�P(w−1�(w)) |w∈H and |w| ≤ n}. We call �� the
isoperimetric function of the rewriting process �.
If a rewriting process � minimises the word length, i.e. |�(w)|=min{|v| for v∈E

and v=G w} for all w∈H , then �� is called the distortion of H in G. Analogously,
if � minimises the area, i.e. �P(w−1�(w))=min{�P(w−1v) for v∈E and v=G w}
for all w∈H , then �� is called the generalised isoperimetric function of H in G,
cf. [10].

1.4. Main result

Let G be a �nitely presented nilpotent group and H a subgroup of G. The ith term
of the lower central series of a group G is denoted by iG. In Sections 2 and 3
we construct a rewriting process � from G to Hi+1G relative to a particular �nite
presentation of G and establish upper bounds on �� and ��. In Section 4 we prove
our main result.

Theorem 2. Let G be a �nitely presented nilpotent group of class c and H a sub-
group of G. There exists a rewriting process � from G to H; relative to some �nite
presentation of G and some �nite set of generators of H; such that

��(n)� nc and ��(n)� n2c:

By Theorem 2 the distortion and the generalised isoperimetric function of a subgroup
of a �nitely generated nilpotent group of class c is bounded above by a polynomial of
degree c and 2c, respectively. Hence we have:
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Theorem 3. Let G be a �nitely presented nilpotent group of class c. Then

�G(n)� n2c:

In a subsequent paper the author will use rewriting processes to compute isoperi-
metric functions for amalgamated products of nilpotent groups.

2. Collection to the left

For convenience we introduce the following convention: For a �nite presentation
P= 〈F |R〉 we denote by F the free group freely generated by F and by R the
normal closure of R in F . Analogously, if E is a subset of F we denote by E the
subgroup of F generated by E. If U is a set of words we denote by U±1 the set
{u; u−1 | u∈U}. For a word w∈F we denote the number of letters in E by |w|E and
call it the relative length of w with respect to E. For words v; w∈F we denote by
[v; w] the commutator v−1w−1vw. Let P= 〈F |R〉 be a �nite presentation for a group
G and w; v words in the generators F. By w= v we denote equality in the word-monoid
generated by F, by w=F v equality in the free group F and by w=G v equality in G.
Let E= {e1; : : : ; ek} be a subset of F and order the generators in E by their sub-

scripts, i.e. ei≤ ej if and only if i≤ j. A word w∈F is collected to the left with
respect to E if and only if w= eq11 e

q2
2 · · · eqkk v where v is a word in the generators F\E

and qi ∈Z for 1≤ i≤ k.
Let G be a �nitely presented nilpotent group and let

G=N1⊇N2⊇ · · · ⊇Nd⊇Nd+1 = {1}
be a central series of G such that [Ni; Nj]⊆Ni+j for all i and j, e.g. the lower central
series of G. We may assume, without loss of generality, that G has a �nite presentation
P= 〈F |R〉 of the following form (see the �gure below): Let F be the disjoint union
of Ni for i=1; : : : ; d such that Ni generates Ni and let Fi=

⋃d
j=iNj.

Given a word w∈Fi we construct in Lemma 1 a word �(w)∈Fi such that �(w)=G w
and �(w) is collected to the left with respect to Ni. To construct �(w) we repeatedly
move the smallest, leftmost generator e∈Ni in w to the left by inserting commutators
of the form [f; e] with f∈Nj for some j. Thus [f; e]∈Ni+j. Since Ni+j is generated
by Ni+j we write [f; e] as a word in the generators Ni+j. Hence |�(w)|Ni ≤ |w|Ni . For
|�(w)|Nj with j¿i and �P(w

−1�(w)) we establish upper bounds in terms of |w|Nk for
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k = i; : : : ; d. It will be crucial for the following Section 3 to express these upper bounds
in terms of |w|Nk and not in terms of the full word length |w|.

Lemma 1. There exists a map � :Fi→Fi; w 7→ �(w) such that �(w)=G w and �(w)
is collected to the left with respect to Ni. There exist positive integers A and D such
that for j= i; : : : ; d

|�(w)|Nj ≤
b( j−1)=ic∑
k=0

Dk nki nj−ik ; (1)

�P(w−1�(w))≤A
d∑
j=i

b( j−1)=ic∑
k=0

Dk nk+1i nj−ik ; (2)

where nk = |w|Nk for k =1; : : : ; d and nk =0 otherwise.

Proof. Let w∈Fi and nj = |w|Nj . We de�ne �(w) by induction on ni.
For ni=0 the word w contains no letter in Ni. Thus, w is already collected to the

left with respect to Ni. We de�ne �(w) by w.
Suppose ni¿0 and we have de�ned � for all words with less than ni letters in

Ni. Let Ni= {e1; e2; : : :}. We may assume, without loss of generality, that w=f1 · · ·
fre1fr+1 · · ·fs with fl ∈F±1

i for l=1; : : : ; s such that e1 is the leftmost generator in
N±1
i . For f∈N±1

j , e∈N±1
i there exists a word uf; e ∈Ni+j such that uf; e=G [f; e].

With

w̃=f1uf1 ; e1 · · ·frufr; e1fr+1fr+2 · · ·fs (3)

we get w=G e1w̃. By |w̃|Ni = ni − 1 and the induction hypothesis e1�(w̃) is collected
to the left with respect to Ni. We de�ne �(w) by e1�(w̃).
Let D= max{|uf; e| for f∈F±1

i and e∈N±1
i }. We prove inequality (1) by induc-

tion on ni.
For ni=0 we have �(w)=w. Hence inequality (1) holds.
Suppose ni¿0 and (1) holds for all words in Fi with less than ni letters in Ni.

Suppose |w|Ni = ni. Since uf; e1 ∈Nj for f∈Nj−i we have |w̃|Nj ≤ nj + Dnj−i by (3).
By |w̃|Ni = ni − 1 and the induction hypothesis we get for j¿i

|�(w̃)|Nj ≤
b( j−1)=ic∑
k=0

Dk (ni − 1)k (nj−ik + Dnj−ik−i)

= nj +
b( j−1)=ic∑
k=1

Dk (ni − 1)k nj−ik +
b( j−1)=ic∑
k=0

Dk+1 (ni − 1)k nj−i(k+1):

Since nj−i(k+1) = 0 for k = b(j − 1)=ic we have

|�(w̃)|Nj ≤ nj +
b( j−1)=ic∑
k=1

Dk (ni − 1)k−1 ni nj−ik ≤
b( j−1)=ic∑
k=0

Dknki nj−ik :

By |�(w)|Ni ≤ ni and |�(w)|Nj = |�(w̃)|Nj for j¿i inequality (1) follows.
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Let A= max{�P([f; e]−1uf; e) for f∈F±1
i and e∈N±1

i }. We prove inequality (2)
by induction on ni.
For ni=0 we have �(w)=w. Hence inequality (2) holds.
Suppose ni¿0 and (2) holds for all words in Fi with less than ni letters in Ni.

Suppose |w|Ni = ni. By (3) we have �(w)= e1�(w̃) and |w̃|Nj ≤ nj + Dnj−i. Therefore,
we get by the induction hypothesis

�P(w−1�(w))≤�P(w−1e1w̃) + �P(w̃−1�(w̃))

≤
r∑
l=1

�P([fl; e1]−1ufl;e1 )

+A
d∑
j=i

b( j−1)=ic∑
k=0

Dk (ni − 1)k+1 (nj−ik + Dnj−ik−i):

Since
∑r

l=1 �P([fl; e1]
−1ufl;e1 )≤A · r≤A

∑d
j=i nj we get

�P(w−1�(w))≤ A
d∑
j=i


nj + (ni − 1)nj + b( j−1)=ic∑

k=1

Dk (ni − 1)k+1 nj−ik+

b( j−1)=ic∑
k=0

Dk+1 (ni − 1)k+1 nj−i(k+1)

 :

By nj−i(k+1) = 0 for k = b(j − 1)=ic we have

�P(w−1�(w))≤ A
d∑
j=i


ni nj + b( j−1)=ic∑

k=1

Dk (ni − 1)kni nj−ik



≤ A
d∑
j=i

b( j−1)=ic∑
k=0

Dk nk+1i nj−ik :

Thus inequality (2) holds.

3. Rewriting along the lower central series

Let G be a �nitely presented nilpotent group, H a subgroup of G and let

G=N1⊇N2⊇ · · · ⊇Nd⊇Nd+1 = {1}
be a central series of G such that [Ni; Nj]⊆Ni+j for all i and j, e.g. the lower central
series. Using a particular �nite presentation of G, we construct in Lemma 2 for each
i=1; : : : ; d a rewriting process �i from Ni to (H ∩Ni)Ni+1. Using �i we then construct
in Proposition 1 for each i a rewriting process �i from G to HNi+1. By setting i=d
we get in the following section our main result, i.e. a rewriting process from G to H .
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Recall that any �nitely generated abelian group A can be represented as a direct
product A1× · · ·×Ak of cyclic groups Ai. The set {a1; : : : ; ak} of generators ai of Ai is
called a basis of A. We note that given a basis {a1; : : : ; ak} of A then aj11 · · · ajkk =A 1
implies aj11 =A · · · =A ajkk =A 1, i.e. if ai is of in�nite order then ji=0 and if ai is of
�nite order then the order of ai is a divisor of ji, cf. [11].
We may assume, without loss of generality, that G has a �nite presentation P=

〈F |R〉 of the following form (see the �gure below): F is the disjoint union of Ni

for 1≤ i≤d such that for each i

1. Ni generates Ni,
2. Pi= 〈Fi |Ri〉 with Fi=

⋃d
j=iNj and Ri⊆R is a �nite presentation of Ni,

3. Bi⊆Ni such that Bi is a basis of the abelian factor group Ni=Ni+1 with respect
to its presentation 〈Fi |Ri ∪Fi+1〉,
4. Ei⊆Ni such that Ei generates (H ∩Ni)Ni+1=Ni+1 with respect to the presentation

〈Fi |Ri ∪Fi+1〉 for Ni=Ni+1,
5. Ni\(Bi ∪Ei) generates Ni+1.
We illustrate the construction of the rewriting process �i from Ni to (H ∩Ni)Ni+1

for the case i=1: Let w∈F represent an element in HN2. Since N1\(B1 ∪E1) gene-
rates N2 we substitute the letters of w in N1\(B1 ∪E1) by suitable words in N2.
Thus we may assume, without loss of generality, that w is a word in the genera-
tors B1 ∪E1 ∪F2. Using Lemma 1 we collect w to the left with respect to B1 ∪E1.
Thereby we get a word of the form uv with uv= Gw, u a word in the generators
B1 ∪E1 and v a word in F2. Since w∈HN2 and v∈N2 we have u∈HN2. Because E1
generates HN2=N2 there exists a word h∈E1 such that h is equal to u in HN2=N2. By
h−1u∈N2 we then construct a word ṽ∈F2 such that ṽ= N2h

−1u. Thus, we get

w= Guv= Ghh−1uv= Ghṽv

and de�ne �1(w) by hṽv.

Lemma 2. There exists for each i=1; : : : ; d a rewriting process �i from Ni to
(H ∩Ni)Ni+1 relative to Pi; (Ei ∪Fi+1) and positive integers Li such that for j= i; : : : ; d

|�i(w)|Nj ≤Li
b( j−1)=ic∑
k=0

mki mj−ik ;

�P(w−1�i(w))≤Li
d∑
j=i

b( j−1)=ic∑
k=0

mk+1i mj−ik
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where w∈Fi represents an element in (H ∩Ni)Ni+1; mj =
∑j

k=i |w|Nk for j= i; : : : ; d
and mj =0 otherwise. Moreover; �i(w) is of the form hv with h∈Ei and v∈Fi+1.

Proof. Let w∈Fi represent an element in (H ∩Ni)Ni+1 and mj =
∑j

k=i |w|Nk . We sub-
stitute in w each generator in Ni\(Bi ∪Ei) by a suitable word in Ni+1. Thus, we get
a word w̃ in the generators Bi ∪Ei ∪Fi+1 with w̃= Gw. Since mi+1 = |w|Ni + |w|Ni+1

there exists a positive integer K1 such that

|w̃|Nj ≤K1mj and �P(w−1w̃)≤K1mi: (4)

We note that K1 as well as the constants K2; : : : ; K6, which we introduce below, depend
on i but not on w. By Lemma 1 and (4) there exists a word u1 in the generators Bi ∪Ei,
a word v1 ∈Fi+1 and a positive integer K2 such that u1v1 = Gw̃= Gw and

|u1v1|Nj ≤K2
b( j−1)=ic∑
k=0

mki mj−ik ; (5)

�P(w̃
−1u1v1)≤K2

d∑
j=i

b( j−1)=ic∑
k=0

mk+1i mj−ik : (6)

Because Ni=Ni+1 is a �nitely generated abelian group, its subgroup (H ∩Ni)Ni+1=Ni+1
is linearly distorted. Hence there exists a word h∈Ei and a positive integer K3 such
that

h=Ni=Ni+1 u1 and |h| ≤K3mi (7)

by u1v1 ∈H ∩Ni; v1 ∈Ni+1 and |u1| ≤K2mi. In h−1u1 we substitute each generator in
Ei by a corresponding word in the generators Bi ∪Ni+1. By (5)–(7) we get therefore
a word u2 in the generators Bi ∪Ni+1 such that

u2 =G h−1u1 ∈Ni+1; |u2| ≤K4mi and �P(u−11 hu2)≤K4mi (8)

for a suitable positive integer K4. By Lemma 1 there exist words u3 ∈Bi; v3 ∈Fi+1
such that u3v3 =G u2; u3 is collected to the left with respect to Bi and

|u3v3|Nj ≤K5
b( j−1)=ic∑
k=0

mki mj−ik ; (9)

�P(u−12 u3v3)≤K5
d∑
j=i

b( j−1)=ic∑
k=0

mk+1i mj−ik (10)

for a suitable positive integer K5.
We now have

w=G hh−1u1v1 =G hu2v1 =G hu3v3v1
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with h∈Ei; u3 ∈Bi collected to the left with respect to Bi and v3v1 ∈Fi+1. Note that
u3 ∈Ni+1 since

u3 =Ni=Ni+1 u2 =Ni=Ni+1 1:

Hence the remaining task is to rewrite u3 to a word in Fi+1. Let Bi= {b1; : : : ; br}.
Since u3 is collected to the left, u3 is of the form bm11 · · · bmrr . Because Bi is a basis
for Ni=Ni+1 and u3 =Ni=Ni+1 1 we have b

ml
l =Ni=Ni+1 1 for l=1; : : : ; r. Thus ml is either

equal to 0; if bl is of in�nite order in Ni=Ni+1; or a multiple of the order of bl if bl is
of �nite order. Hence there exists a word v4 ∈Ni+1 and by inequalities (9) and (10) a
positive integer K6 such that

u3 =G v4; |v4| ≤K6mi and �P(u−13 v4)≤K6mi (11)

Thus, we get w=G hu3v3v1 =G hv4v3v1 with h∈Ei and v4v3v1 ∈Fi+1. We de�ne �i(w)
by hv4v3v1.
Since K1; : : : ; K6 depend on i but not on w; Li=K1 + · · ·+K6 also depends on i but

not on w. We get by (5), (7), (9) and (11)

|�i(w)|Nj ≤ |h|Nj + |v4|Nj + |v3|Nj + |v1|Nj ≤Li
b( j−1)=ic∑
k=0

mki mj−ik :

By (4), (6) and (8) we get

�P(w−1�i(w))≤�P(w−1w̃) + �P(w̃−1u1v1) + �P(v−11 u
−1
1 hv4v3v1)

≤K1mi + K2
d∑
j=i

b( j−1)=ic∑
k=0

mk+1i mj−ik

+�P(u−11 hu2) + �P(u
−1
2 v4v3)

≤ (K1 + K2 + K4)
d∑
j=i

b( j−1)=ic∑
k=0

mk+1i mj−ik

+�P(u−12 u3v3) + �P(v
−1
3 u

−1
3 v4v3):

Inequalities (10) and (11) now yield

�P(w−1�i(w))≤Li
d∑
j=i

b( j−1)=ic∑
k=0

mk+1i mj−ik :

In Proposition 1 we construct a rewriting process from G to HNi+1 using Lemma 2
and induction on i.
Let mj for j=1; : : : ; d be non-negative integers. By∑

∑d
r=1rpr≤ j

mp11 · · ·mpdd
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we denote the �nite sum of mp11 · · ·mpdd over all d-tuples (p1; : : : ; pd) of non-negative
integers pr such that

∑d
r=1 rpr ≤ j.

Proposition 1. There exists a rewriting process �i for i=1; : : : ; d from G to HNi+1
relative to P; (

⋃i
j=1 Ej ∪Fi+1) and a positive integer Ki such that for j=1; : : : ; d

|�i(w)|Nj ≤Ki
∑

∑d
r=1rpr≤ j

mp11 · · ·mpdd (12)

and

�P(w−1�i(w))≤Ki
∑

∑d
r=1rpr≤d+i

mp11 · · ·mpdd (13)

with w∈HNi+1; mj =
∑j

k=1 |w|Nk and Fd+1 = ∅. Moreover; �i(w)= hv with h a word
in the generators

⋃i
j=1 Ej and v∈Fi+1.

Proof. We proceed by induction on i. The case i=1 is implied by Lemma 2.
Suppose i¿1 and there exists a rewriting process �i−1 from G to HNi relative

to P,
⋃i−1
j=1 Ej ∪Fi such that (12) and (13) hold. Let w∈F represent an element in

HNi+1; mj =
∑j

k=1 |w|Nk ; �i−1(w)= hv where h is a word in the generators
⋃i−1
j=1 Ej and

v∈Fi. Hence v∈HNi+1 ∩Ni. By Lemma 2 there exists a rewriting process �i from Ni
to (Ni ∩H)Ni+1 relative to Pi; (Ei ∪Fi+1) and a positive integer Li such that �i(v)=G v;

|�i(v)|Nj ≤Li
b( j−1)=ic∑
k=0

m̃ki m̃j−ik ; (14)

�P(v−1�i(v))≤Li
d∑
j=i

b( j−1)=ic∑
k=0

m̃k+1i m̃j−ik (15)

with m̃j =
∑j

k=i |v|Nk for j= i; : : : ; d and m̃j =0 otherwise. We de�ne �i(w) by h�i(v);
since �i(v) is of the form h̃ṽ with h̃∈Ei and ṽ∈Fi+1.
By the induction hypothesis we have

m̃j ≤
j∑
k=1

|�i−1(w)|Nk ≤ jKi−1
∑

∑d
r=1rpr≤ j

mp11 · · ·mpdd : (16)

Substituting m̃ in (14) by (16) yields

|�i(w)|Nj ≤ |h|Nj + |�i(v)|Nj

≤ |h|Nj + Li

b( j−1)=ic∑
k=0




iKi−1 ∑

∑d
r=1rpr≤i

mp11 · · ·mpdd



k

· (j − ik)Ki−1

 ∑

∑j
s=1sqs≤ j−ik

mq11 · · ·mqdd




:
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Thus, we get for suitable positive integers D1 and D2; which depend on i but not on w;

|�i(w)|Nj

≤ |h|Nj + D1

b( j−1)=ic∑
k=0


 ∑

∑d
r=1rpr≤ik

mp11 · · ·mpdd




 ∑

∑j
s=1sqs≤ j−ik

mq11 · · ·mqdd




≤ |h|Nj + D2

b( j−1)=ic∑
k=0

∑
∑j
r=1rpr≤ j

mp11 · · ·mpdd

≤ (Ki−1 + D2j)
∑

∑j
r=1rpr≤ j

mp11 · · ·mpdd :

With Ki=Ki−1 + D2j inequality (12) holds.
Substituting m̃ in (15) by (16) yields

�P(w−1�i(w))≤�P(w−1hv) + �P(v−1�i(v))

≤�P(w−1hv)

+ Li
d∑
j=i

b( j−1)=ic∑
k=0




iKi−1 ∑

∑d
r=1rpr≤i

mp11 · · ·mpdd



k+1

·

(j − ik)Ki−1 ∑

∑d
s=1sqs≤ j−ik

mq11 · · ·mqdd




:

Thus, we get for suitable positive integers A1 and A2; which depend on i but not on w;

�P(w−1�i(w))

≤�P(w−1hv)

+A1
d∑
j=i

b( j−1)=ic∑
k=0




 ∑

∑d
r=1rpr≤i(k+1)

mp11 · · ·mpdd




 ∑

∑d
s=1sqs≤ j−ik

mq11 · · ·mqdd






≤�P(w−1hv) + A2
d∑
j=i

j
∑

∑d
r=1rpr≤ j+i

mp11 · · ·mpdd :

Together with the induction hypothesis we get

�P(w−1�i(w))≤ (Ki−1 + A2d2)
∑

∑d
r=1rpr≤d+i

mp11 · · ·mpdd :

We may assume, without loss of generality, that Ki−1+A2d2≤Ki. Thus inequality (13)
holds.
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Theorem 1. Let G be a �nitely presented nilpotent group; H a subgroup of G and let

G=N1⊇N2⊇ · · ·⊇Nd⊇Nd+1 = {1}
be a central series of G such that [Nr; Ns]⊆Nr+s for all positive integers r and s.
• There exists a �nite presentation P= 〈F |R〉 for G such that F is the disjoint
union of Nj for j=1; : : : ; d and Nj generates Nj. Each Nj contains a subset Ej
which generates H ∩Nj.

• Let E=
⋃d
j=1 Ej. Thus E generates H . There exists a rewriting process � from

G to H relative to P; E and a positive integer K such that for j=1; : : : ; d

|�(w)|Nj ≤K
∑

∑d
r=1rpr≤ j

np11 · · · npdd (17)

and

�P(w−1�(w))≤K
∑

∑d
r=1rpr≤2d

np11 · · · npdd (18)

with w∈H and nj =
∑j

k=1 |w|Nk .

Proof. By Proposition 1 with i=d.

4. Main result

Theorem 2. Let G be a �nitely presented nilpotent group of class c and H a sub-
group of G. There exists a rewriting process � from G to H; relative to some �nite
presentation of G and �nite set of generators of H; such that

��(n)� nc and ��(n)� n2c:

Proof. Let Ni= iG for i≥ 1. Thus Nc+1 = {1} and [Ni; Nj]⊆Ni+j for all i and j. Let
P= 〈F |R〉 be a �nite presentation of G of the form given in Section 3. Let w∈H and
n= |w|. We may assume, without loss of generality, that w is a word in the generators
N1. By Theorem 1 there exists a rewriting process � from G to H relative to P; E
and a positive integer K such that

|�(w)|Nj ≤K
∑

∑c
r=1rpr≤ j

mp11 · · ·mpcc

and

�P(w−1�i(w))≤K
∑

∑c
r=1rpr≤c+i

mp11 · · ·mpcc

with mj =
∑j

k=1 |w|Nk . Since w∈N1 we have |w|N1 = n and |w|Nk =0 for k¿1. Hence,

|�(w)|Nj ≤K
∑

∑c
r=1rpr≤ j

np1 · · · npc ≤Lnj
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and

�P(w−1�(w))≤K
∑

∑c
r=1rpr≤2c

np1 · · · npc ≤Ln2c

for a suitable positive integer L. By j≤ c we get

��(n)� nc and ��(n)� n2c:

Theorem 3. Let G be a �nitely presented nilpotent group of class c. Then

�G(n)� n2c:

Proof. By Theorem 2 there exists a rewriting process � from G to H = {1} such that
��(n)� n2c. Since H = {1} we get �G(n)� n2c.
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