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Abstract

We revisit the isovector pseudoscalar sum rule determination ofmu + md , using families of finite energy sum rules known
to be very accurately satisfied in the isovector vector channel. The sum rule constraints are sufficiently strong to allow a de-
termination of bothmu + md and the excited resonance decay constants. The corresponding Borel transformed sum rules are
also very well satisfied, providing a non-trivial consistency check on the treatment of direct instanton contributions. We obtain
[mu + md ](2 GeV) = 7.8± 1.1 MeV (in theMS scheme), only marginally compatible with the most recent sum rule determi-
nations, but in good agreement with recent unquenched lattice extractions.

 2001 Elsevier Science B.V.
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1. Introduction

Because of the Ward identity∂µA
µ
ud = (mu+md)×

ūiγ5d , a study of the correlator

Πud

(
q2)

(1)= i

∫
d4x eiq·x〈0|T (

∂µA
µ
ud(x)∂νA

ν
ud

†
(0)

)|0〉

allows one, in principle, to determinemu + md [1].
A number of such studies have been performed [1–4],
the most recent (Refs. [3] (BPR) and [4] (P98)) em-
ploying, respectively, 3- and 4-loop expressions for the
dominantD = 0 OPE contribution. We concentrate on
the results of P98 (which updates BPR) in what fol-
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lows. P98 quotes,2 for mu +md

(2)[mu +md ](2 GeV)= 9.8± 1.9 MeV.

Recent unquenched lattice simulations, in contrast,
yield [5,6]

[mu +md ](2 GeV)= 6.88+0.28
−0.44 MeV (CP–PACS),

[mu +md ](2 GeV)

(3)= 7.0± 0.4 MeV (QCDSF–UKQCD),

where the errors do not reflect the uncertainty involved
in using perturbative versions of the renormalization
constants. Because the consistency of the lattice and
sum rule determinations is not particularly good, we
revisit the sum rule treatment ofΠud .

In this Letter we studyΠud using Borel transformed
and finite energy sum rules (BSRs and FESRs). The

2 All quark masses, here and in what follows, are in theMS
scheme.
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BSRs have the form [7]

(4)M6B
[
Π ′′

ud

](
M2) =

∞∫
0

ds e−s/M2
ρud(s)

(5)�
s0∫

0

ds e−s/M2
ρud(s)+

∞∫
s0

ds e−s/M2
ρOPE
ud (s),

where M is the Borel mass,s0 the “continuum
threshold”, andB[Π ′′

ud](M2) the Borel transform of
Π ′′

ud(Q
2) ≡ d2Πud(Q

2)/(dQ2)2). The FESRs have
the form

(6)
−1

2πi

∮
|s|=s0

ds w(s)Πud(s) =
s0∫

0

ds w(s)ρud(s),

wheres0 is arbitrary andw(s) is any function analytic
in the region of the contour.

Theπ contribution toρud , [ρud(s)]π = 2f 2
πm

4
πδ×

(s − m2
π), with fπ = 92.4 MeV, is very accurately

known. The decay constants of theπ(1300) and
π(1800), needed to describe the remaining contribu-
tions toρud below s ∼ 4 GeV2, are not known, and
need to be determined as part of the sum rule analysis.

The LHS of Eq. (4) can be evaluated using the
OPE, provided thatM is sufficiently large compared
to the QCD scale. The condition thats0 be similarly
large, though necessary, is not sufficient for the OPE
to be employed reliably on the LHS of Eq. (6) since,
except for extremely larges0, the OPE is expected to
break down near the timelike real axis [8]. For the
isovector vector (IVV) channel, this breakdown can
be seen explicitly using the very precise spectral data
available from hadronicτ decay [9]: FESRs involving
w(s) = sk with k = 0,1,2,3 (which fail to suppress
contributions from the region of the circle|s| = s0
near the timelike real axis) are rather poorly satisfied at
scales 2 GeV2 < s0 <m2

τ [10]. The breakdown of the
OPE, however, turns out to be very closely localized
to the vicinity of the timelike axis: FESRs based on
weights having even a single zero ats = s0 are very
accurately satisfied over this whole range [10]. Thus at
the scales 2 GeV2 < s0 < 4 GeV2 of interest to us, the
supplementary constraintw(s0) = 0 must be imposed
in order to obtain reliable FESRs. We call such FESRs
“pinch-weighted”, or pFESRs.

The OPE representation ofΠud(Q
2) is known up

to dimensionD = 6, with the dominantD = 0 per-
turbative contribution known to 4-loop order [11,12].
Working withΠ ′′(Q2), which allows logarithms to be
summed via the scale choiceµ2 = Q2, one has [11,12]

[
Π ′′

ud

(
Q2)]

D=0 = 3

8π2

(�mu + �md)
2

Q2

(7)×
(

1+ 11

3
ā + 14.1793ā2 + 77.3683ā3

)
,

[
Π ′′

ud

(
Q2)]

D=4 = (�mu + �md)
2

Q6

(8)

×
(

1

4
Ω4 + 4

9
āΩss

3 −
[
1+ 26

3
ā

]
(mu +md)〈ūu〉

− 3

28π2 �m4
s

)
,

[
Π ′′

ud

(
Q2)]

D=6 = (�mu + �md)
2

Q8

(9)

×
(

−3
[〈mugd̄σ ·Gd +mdgūσ ·Gu〉]

− 32

9
π2aρVSA

[〈ūu〉2 + 〈d̄d〉2 − 9〈ūu〉〈d̄d〉]
)
,

where ā ≡ a(Q2) = αs(Q
2)/π , �mk ≡ mk(Q

2), with
αs(Q

2) andm(Q2) the running coupling and running
mass at scaleµ2 = Q2 in the MS scheme,Ω4 and
Ωss

3 are the RG invariant modifications of〈aG2〉 and
〈mss̄s〉 defined in Ref. [11], andρVSA in Eq. (9)
describes the deviation of the four-quark condensates
from their vacuum saturation values. We have dropped
D = 2 contributions, which are suppressed by two
additional powers ofmu,d , and additionalD = 4
contributions proportional to[mu + md ]2m4

u,d . The
Borel transforms of the above expressions are well
known, and may be found in Refs. [11,12].

In scalar and pseudoscalar channels, direct instan-
ton contributions are potentially important, but are
not incorporated in the OPE representation ofΠud

[13,14]. We estimate their size using the instanton liq-
uid model [15]. ILM contributions to the theoretical
side of theΠud BSR are given by

(10)

3ρ2
I (mu +md)

2M6

8π2

[
K0

(
ρ2
IM

2/2
) +K1

(
ρ2
IM

2/2
)]
,
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whereρI � (1/0.6 GeV) is the average instanton size
andKi are the MacDonald functions. ILM contribu-
tions play only a small (few percent) role in the BSR
analysis at scalesM2 > 2 GeV2, but are important for
FESR analyses. For polynomial weights, ILM FESR
contributions follow from [16]

−1

2πi

∮
|s|=s0

ds sk
[
Πud(s)

]
ILM

(11)

= −3[mu +md ]2
4π

s0∫
0

ds sk+1J1
(
ρI

√
s
)
Y1

(
ρI

√
s
)
.

We employ the following values for OPE/ILM in-
put: ρI = 1/(0.6 GeV) [14,15]; αs(m2

τ ) = 0.334±
0.022 [9]; 〈αsG2〉 = (0.07 ± 0.01) GeV4 [17];
(mu + md)〈ūu〉 = −f 2

πm
2
π ; 0.7< 〈s̄s〉/〈ūu〉 ≡ rc < 1

[11,12]; 〈gq̄σFq〉 = (0.8 ± 0.2 GeV2)〈q̄q〉 [18]; and
ρVSA = 0 → 10. TheD = 0 and 4 OPE contributions
are evaluated via the contour-improvement prescrip-
tion [19], using the analytic solutions forαs(Q2) and
m(Q2) obtained from the 4-loop-truncated versions of
theβ [20] andγ [21] functions.

2. Potential problems with the existing sum rule
treatment and the updated pFESR analysis

The BPR and P98 analyses employ FESRs with
w(s) = 1, s. The global normalization of the reso-
nance contributions is fixed by assuming resonance
dominance ofρud at 3π threshold and normalizing
the tails of the resonance contributions to the known
ChPT threshold expression. Direct instanton contribu-
tions are neglected. The relative strengths of the two
resonance contributions are constrained by optimizing
a “duality” match between OPE and spectral ansatz
versions of the ratio of thew(s) = 1- ands-weighted
FESRs.3 mu + md is then extracted from the op-
timized duality matching region of the (w(s) = 1)-
weighted FESR. The result of Eq. (2) corresponds to
s0 ∼ 2 GeV2. The determination is, in fact, not sta-
ble with respect tos0, falling roughly linearly from

3 The duality matching is equivalent to imposing the local
duality (OPE) version of the spectral function, up to an overall
multiplicative constant, over the whole of the matching window.

9.8 MeV at s0 � 2 GeV2 to 7.5 MeV at s0 � 4 GeV2

(see Fig. 2 of [4]).
Two potential problems with this analysis are (1)

the use of non-pinched-weighted FESRs at scales for
which they are poorly satisfied in the IVV channel,
and (2) neglect of direct instanton contributions. In
addition, the P98 result,

[mu +md ](1 GeV)

[mu +md ](2 GeV)
= 1.31,

corresponds (using 4-loop running) toαs(m2
τ )= 0.307, significantly lower than the recent ALEPH

determination. Since this will produce an overestimate
of mu +md , an update of OPE input is also in order.

Concerning the first problem, one could, of course,
be lucky: the scale at which the OPE can be safely
used right down to the timelike axis might turn out to
be lower in the isovector pseudoscalar than in the IVV
channel. If so, however, pFESRs employing the same
spectral ansatz and same value ofmu+md should also
be well satisfied at the scales used in P98. We test
this possibility using pFESRs based onwN(y,A) =
(1 − y)(1 + Ay) andwD(y,A) = (1 − y)2(1 + Ay)

(wherey = s/s0 andA is a free parameter), which are
known to be well satisfied in the IVV channel. The
resulting OPE/spectral integral match (corresponding
to the above values for the OPE input and, as in P98,
neglect of ILM contributions) is shown for thewN

case in Fig. 1, and is obviously quite poor. (The quality
of thewD match is even worse.)

We have reanalyzedΠud , using the P98 spectral
ansatz as input, but fixingmu + md via a com-
binedwN , wD pFESR analysis. If we do not include
ILM contributions, the optimized OPE/spectral inte-
gral match remains poor. Including ILM contributions
produces a reasonable optimized match. The corre-
sponding value ofmu +md is

(12)[mu +md ](2 GeV)= 6.8 MeV.

The quality of this match is shown in Fig. 2 for
the wN family and in Fig. 3 for thewD family.
The result of Eq. (12) is compatible with the P98
results corresponding tos0 � 4 GeV2 but significantly
smaller than that corresponding tos0 = 2 GeV2. Since,
in spite of optimization, the match forwN is best
where that forwD is worst, and vice versa, it appears
that some modification of the P98 spectral ansatz is
also required.
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Fig. 1. The wN OPE/spectral integral match corresponding
to central values of all OPE input, the quoted P98 value
[mu + md ](1 GeV) = 12.8 MeV and the P98 spectral ansatz. The
solid (dashed) lines represent the spectral (OPE) integrals. The
lower, middle and upper lines for each case correspond toA = 0,2
and 4, respectively.

In this work, we aim to determine simultaneously
the excited resonance decay constants,fπ(1300)≡ f1
and fπ(1800)≡ f2, which characterize the modifica-
tions of the spectral ansatz, andmu +md . To this end,
we perform a combinedwN andwD pFESR analysis.4

Our spectral ansatz is

ρud(s)= 2f 2
πm

4
πδ

(
s −m2

π

) + 2f 2
1 m

4
π(1300)B1(s)

(13)+ 2f 2
2 m

4
π(1800)B2(s),

whereB1,2(s) are standard Breit–Wigner forms for
theπ(1300)andπ(1800). We employ PDG2000 [23]
values for the masses and widths. This ansatz can be
used sensibly only up tos0 � (mπ(1800)+Γπ(1800))

2 �
4 GeV2. To maintain good convergence of the OPE
we also requires0 � 3 GeV2. For 3 GeV2 � s0 �
4 GeV2, the integratedD = 0 OPE series converges
well for all A � 0. LargerA produces larger relative
contributions from the resonance region, and hence
aids in the extraction off1 andf2. The results of this

4 The same treatment of the IVV channel results in a determina-
tion of fρ accurate to within the experimental error [22].

Fig. 2. ThewN OPE+ILM/spectral integral match corresponding to
central values of all OPE input, the ILM estimate of direct instanton
contributions, and use of the P98 spectral ansatz. The OPE+ILM
curves employ the optimized value,[mu +md ](2 GeV) = 6.8 MeV,
obtained in a combinedwN , wD pFESR fit. The conventions for
identifying spectral and OPE+ILM integrals, and theA = 0,2 and
4 cases, are as for Fig. 1 above.

Fig. 3. The OPE+ILM/spectral integral match, as in Fig. 2, except
for thewD rather thanwN weight family.



336 K. Maltman, J. Kambor / Physics Letters B 517 (2001) 332–338

analysis are

(14)

[mu +md ](2 GeV) = 7.8± 0.8Γ ± 0.5theory

± 0.4methodMeV,

(15)

f1 = 2.20± 0.39Γ ± 0.18theory

± 0.18methodMeV,

(16)0< f2 < 0.37 MeV.

The errors labelled “Γ ” result from varying the input
resonance parameters within the PDG2000 errors, and
are due essentially entirely to the (large) uncertainty
on theπ(1300)width. Those labelled “theory” reflect
uncertainties in the OPE input and our estimate of
the error associated with truncating theD = 0 series
at O(a3). Those labelled “method” are obtained by
studying the impact of employing different analysis
windows in s0 andA, and performing separatewN

andwD analyses. Further details of the analysis, and a
breakdown of the separate error contributions will be
given elsewhere [24]. The OPE+ILM/spectral integral
match corresponding to these results, shown in Fig. 4
for the wN family and Fig. 5 for thewD family, is
obviously excellent.

As noted above, the ILM contributions play a
non-negligible role in the pFESR analysis. In fact,
if one removes ILM contributions, an equally good
OPE/spectral integral match is obtained, but now cor-
responding to[mu + md ](2 GeV) = 9.9 ± 1.2Γ ±
1.0theory ± 0.5method MeV, f1 = 2.41 ± 0.50Γ ±
0.21theory± 0.27methodMeV andf2 = 1.36± 0.16Γ ±
0.09theory ± 0.11method MeV. The pFESR analysis
alone thus provides no evidence either for or against
including ILM contributions. Fortunately, the require-
ment of consistency between BSR and pFESR analy-
ses places non-trivial constraints on the ILM repre-
sentation. This works as follows. The pFESR analysis
provides a determination ofmu + md andf1,2 which
is sensitive to whether or not ILM contributions are in-
cluded. The outputf1,2, together withfπ , determine
the low-s part ofρud , and hence can be used as input
to a BSR analysis. The high-s part is, as usual, ap-
proximated by the continuum ansatz, with the contin-
uum threshold,s0, determined by optimizing stability
of the BSR output (in this casemu +md ) with respect
toM. The BSR and pFESR output values formu+md

should be compatible if the ILM representation is rea-
sonable. Errors associated with uncertainties in input

Fig. 4. The optimized OPE+ILM/spectral integral match for thewN

pFESR family, withmu +md , f1 andf2 given by the central values
of Eqs. (14), (15) and (16). The labelling of the hadronic integrals,
OPE integrals and theA= 0,2 and 4 cases, is as for Fig. 1 above.

Fig. 5. The optimized OPE+ILM/spectral integral match, as in
Fig. 4, except for thewD rather thanwN weight family.

OPE and resonance parameter values are common to
the pFESR and BSR analyses and strongly correlated.
Additional errors are present for the BSR analysis as
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a result of the crudeness of the continuum approxima-
tion and the uncertainties in the criterion for fixings0.
We assign a 20% error to continuum spectral contri-
butions, and allows0 to vary by±0.5 GeV2 about the
optimal stability value. We work in a window of Borel
masses 2 GeV2 �M2 � 3 GeV2 for which continuum
contributions are< 50% of the dominantD = 0 OPE
contribution and convergence of the Borel transformed
D = 0 OPE series is still good. For the case that the
ILM contributions are included in the pFESR analysis
we obtain, quoting only theadditional errors present
for the BSR analysis,

(17)[mu +md ](2 GeV) = 7.5± 0.9 MeV,

to be compared to thecentral value given in Eq. (14).
The agreement is excellent. The stability of the BSR
analysis, shown in Fig. 6, is also extremely good. In
contrast, if ILM contributions are omitted from the
pFESR analysis, the BSR result becomes[mu+md ]×
(2 GeV) = 8.8 ± 0.6 MeV, incompatible with the
pFESR determination. If one performs a pFESR op-
timization of f1,2 separately for eachmu + md , one
finds that, with no ILM contributions, the pFESR and
BSR values remain inconsistent, within the additional

Fig. 6.[mu +md ](2 GeV), as a function ofM2 for the BSR analysis
described in the text. The solid line corresponds tos0 = 3.7 GeV2,
which produces optimal stability formu + md with respect toM2

in the window 2 GeV2 � M2 � 3 GeV2. The lower (short) dashed
line corresponds tos0 = 4.2 GeV2 and the upper (long) dashed line
to s0 = 3.2 GeV2. Note the compressed vertical scale.

BSR errors, unless the pFESR input,[mu + md ] ×
(2 GeV), is< 8.1 MeV. The corresponding optimized
value for f1 for this marginal case turns out to be
consistent within errors with that quoted in Eq. (15),
though the OPE/spectral integral match is significantly
worse than that obtained for the optimized fit, includ-
ing ILM contributions. The low value formu + md

thus appears to be an unavoidable feature of the com-
bined analysis ofΠud .

3. Summary and discussion

Combining the 0.3 MeV difference of pFESR and
BSR central values in quadrature with all other sources
of error, we obtain, for our final result,

(18)[mu +md ](2 GeV)= 7.8± 1.1 MeV.

This is compatible, within errors, with the unquenched
lattice determinations of Refs. [5,6], and with the
result obtained by combining the ChPT determination
R ≡ 2ms/[mu + md ] = 24.4 ± 1.5 [25] with recent
determinations ofms using hadronicτ data [26].
A recent summary [27] gives 83 MeV<ms(2 GeV) <
130 MeV, which corresponds to 6.8 < [mu + md ] ×
(2 GeV) < 10.7 MeV. Our analysis, in fact, favors
values of ms in the lower part of this range, in
good agreement with recent unquenched lattice results
for ms .
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