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ABSTRACT

During the last several years, the focus of research on resting-state functional magnetic resonance imaging (fMRI)
has shifted from the analysis of functional connectivity averaged over the duration of scanning sessions to the
analysis of changes of functional connectivity within sessions. Although several studies have reported the pres-
ence of dynamic functional connectivity (dFC), statistical assessment of the results is not always carried out in
a sound way and, in some studies, is even omitted. In this study, we explain why appropriate statistical tests
are needed to detect dFC, we describe how they can be carried out and how to assess the performance of dFC
measures, and we illustrate the methodology using spontaneous blood-oxygen level-dependent (BOLD) fMRI re-
cordings of macaque monkeys under general anesthesia and in human subjects under resting-state conditions.
We mainly focus on sliding-window correlations since these are most widely used in assessing dFC, but also con-
sider a recently proposed non-linear measure. The simulations and methodology, however, are general and can
be applied to any measure. The results are twofold. First, through simulations, we show that in typical resting-
state sessions of 10 min, it is almost impossible to detect dFC using sliding-window correlations. This prediction
is validated by both the macaque and the human data: in none of the individual recording sessions was evidence
for dFC found. Second, detection power can be considerably increased by session- or subject-averaging of the
measures. In doing so, we found that most of the functional connections are in fact dynamic. With this study,
we hope to raise awareness of the statistical pitfalls in the assessment of dFC and how they can be avoided by

using appropriate statistical methods.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

FC, which consists of calculating a given FC measure, for example, the
Pearson correlation coefficient or phase-locking factor (Pereda et al.,

Resting-state blood-oxygen level-dependent (BOLD) functional
magnetic resonance imaging (fMRI) studies have traditionally investi-
gated patterns of functional connectivity (FC) that are static within the
scanning period. More recently, attention shifted towards temporal
fluctuations in FC within sessions. The latter is referred to as dynamic
functional connectivity (dFC), as opposed to the former, which is referred
to as static functional connectivity (SFC). The progress made in the study
of dFC has recently been reviewed in Hutchison et al. (2013a). The most
common and straightforward way to investigate dFC is using windowed
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2005), over consecutive windowed segments of the data. This gives a
time series of FC values, which can subsequently be used to assess fluc-
tuations in FC within sessions (Chang and Glover, 2010; Hutchison et al.,
2013b; Handwerker et al.,, 2012; Keilholz et al., 2013; Tagliazucchi et al.,
2012; Jones et al,, 2012; Allen et al,, 2012; Zalesky et al., 2014; Barttfeld
et al,, 2015). Although such an analysis seems straightforward, there are
two pitfalls that have not always been recognized in previous studies.
The first pitfall is to identify an observed value of a test statistic with
its true underlying value. This means that the mere presence of fluctua-
tions in an observed FC time series is taken as evidence for the presence
of dFC. The pitfall is that of overlooking the fact that the observed FC
values are estimates of the true (and unobservable) values, and hence,
are subject to statistical uncertainty. As an analogue, consider repeated
measurements of a physical quantity, say the speed of an approaching
car, by using a laser gun. While the car is approaching, multiple
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measurements are made, which, due to the imperfections in the instru-
ment and ambient noise, produces a time series of fluctuating values.
Although the fluctuations are real, they are due to noise, and do not nec-
essarily reflect fluctuations in the car’s speed, which could be constant.
In the same way, observed FC values can be viewed as measurements of
a quantity, namely, the true (and unobservable) FC. In classical statisti-
cal terms, one needs to distinguish between the sample FC, which is an
estimator of the population FC.

Thus, to decide whether fluctuations in an observed FC time se-
ries are due to statistical uncertainty or reflect true changes in popu-
lation FC, an appropriate statistical test has to be carried out. This is
typically done by calculating a test statistic (also called a measure,
index, or biomarker) that characterizes the fluctuations in the FC
time series and subsequently test if the observed value of the test
statistic falls outside the test statistics’ null distribution, that is, its
distribution if the correlations would be static. Several test statistics
have been proposed to test for the presence of dFC, including the var-
iance of the FC time series (Sakoglu et al., 2010), test statistics based
on the FC time series’ Fourier-transform (Handwerker et al., 2012),
and non-linear test statistics (Zalesky et al., 2014), among others
(Chang and Glover, 2010; Keilholz et al., 2013). Crucially, the null hy-
pothesis under which the distribution of the test statistic is con-
structed should correspond to the FC being static. This might seem
trivial, but the construction of such a distribution is far from trivial
and this forms the second pitfall in assessing dFC, which is the use
of an inappropriate null-hypothesis.

Since the null distribution cannot be derived mathematically for
most dFC measures, it needs to be approximated from the data at
hand. Ideally, such surrogate data is constructed such that they share
all statistical properties with the observed data, except that they lack
the property one wants to test for, in this case, dFC (Schreiber and
Schmitz, 2000; Pereda et al., 2005). In the literature on dFC, several
methods have been proposed to approximate null distributions for
dFC. For example, by randomly shuffling the Fourier phases of the
BOLD time series (Handwerker et al., 2012; Leonardi et al., 2013) or
by randomly selecting BOLD time series from different scanning ses-
sions (Keilholz et al., 2013). The pitfall here is that these two approaches
destroy the sFC in the data and hence correspond to a different null hy-
pothesis, namely, that of the FC being static and equal to zero. Addition-
ally, a priori it is unclear how this affects the results of the subsequent
statistical testing. A more appropriate way of constructing surrogate
data is to fit a time series model to the data and to approximate the
null distribution by bootstrapping from the model residuals, as done,
for example, in Chang and Glover (2010) and Zalesky et al. (2014). Yet

another way, which might be easier to use in practice, is to shuffle the
Fourier phases in such a way so that the sFC is preserved (Prichard,
1994). As far as we know, this method has only been applied in Allen
et al. (2012). In this study, we focus on the Fourier-based surrogate
method.

Material and methods
Statistical assessment of dynamic FC

Suppose we have recorded resting-state BOLD-fMRI time series
from two voxels or regions-of-interest (ROIs) like those displayed
in Fig. 1A and we want to decide if the functional connectivity be-
tween the two time series is dynamic, that is, if it changes over the
duration of the scan. Although the concept of functional connectivity
(FC) is wide and includes any kind of statistical relationship between
time series (Pereda et al., 2005; Friston, 2011), we focus on the
(Pearson) correlation coefficient, which is the most widely used FC
measure in resting-state fMRI research (Sakoglu et al., 2010; Chang
and Glover, 2010; Hutchison et al., 2013b; Handwerker et al., 2012;
Keilholz et al., 2013; Tagliazucchi et al., 2012; Jones et al., 2012;
Thompson et al., 2013; Zalesky et al., 2014). The most straightfor-
ward way to proceed is to calculate correlation coefficients on over-
lapping segments of the time series. This results in a time series of
correlation values as shown in Fig. 1B. Note that the windowed cor-
relations have different values for different windows. In particular,
we observe both negative and positive correlations, the latter are re-
ferred to as “hypersynchrony states” in Hutchison et al. (2013b). Al-
though in some studies, the observed fluctuations in FC are taken as
evidence for the presence of dynamic FC (dFC), most studies agree
that a statistical test is needed to draw this conclusion. Indeed, an ap-
propriate statistical test for dFC answers the question if the observed
fluctuations in the correlation time series can be distinguished from
those that would be observed if the correlation were static, that is, in-
dependent of time.

One way to answer this question is to construct confidence intervals
around the values in the correlation time series, as done, for example, in
Kang et al. (2011) and Hutchison et al. (2013b). If the data is a white-
noise Gaussian process, the confidence intervals can even be calculated
analytically. Otherwise, they can be approximated by resampling of the
windowed time series, a technique referred to as bootstrapping. The
confidence intervals in Fig. 1B (dotted lines) were obtained by such a
bootstrap procedure. More specifically, for each window, we selected
(with replacement) unpaired sample-pairs to build a bootstrapped
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Fig. 1. Statistical testing for dynamic FC. A, Simulation of two simultaneously recorded fMRI time series from two different voxels or ROIs. B, Time series of Pearson correlations obtained by
calculating the correlation coefficients on successive 60 s segments of the fMRI time series (maximal overlap). The correlation values are plotted as a function of the window-centers. The
dotted lines denote the 95% confidence intervals of the correlation values obtained by repeatedly permuting the windowed fMRI time series. The horizontal line denotes the average cor-
relation between the fMRI time series. C, Probability density of the standard deviation of the correlation time series under the null hypothesis. The observed value was 0.24 and is marked

by the vertical line.
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copy of the windowed data and calculated its sample Pearson correla-
tion coefficient. By repeating this many times, an approximation of the
null distribution is constructed, from which the confidence intervals
can be calculated. Note that there are several windows for which the
confidence interval does not contain the average correlation value,
that is, the correlation coefficient calculated from the entire time series,
denoted by the red line. In Kang et al. (2011), it has been proposed to
measure the extent of dFC by the fraction of windows whose confidence
interval does not contain the static correlation value. By itself, however,
a non-zero fraction does not imply the presence of dFC. For this to
decide, we need to return to the question what the value of a measure,
in this case the above fraction, would have been if the correlation was
static. We stress that this question needs to be addressed for any
measure that is used to detect dFC, whether this be the correlation
time series’ variance (Sakoglu et al., 2010) or some non-linear measure
(Zalesky et al., 2014).

This question can be formalized in a statistical hypothesis test in
which the null hypothesis corresponds to the correlation being static
and the alternative hypothesis corresponds to the correlation being dy-
namic. The question of what the value of a given measure would have
been if the correlations in the data were static then amounts to deter-
mining the measures’ distribution under the null hypothesis and calcu-
lating the probability that the observed value of the measure is drawn
from this distribution. Since for most measures, the null distribution is
unknown, appropriately randomized data is used, as done, for example,
in Chang and Glover (2010) and Zalesky et al. (2014). The randomized
data are known as surrogate data and are fundamental in the analysis
of non-linear and non-stationary time series (Schreiber and Schmitz,
2000; Pereda et al.,, 2005). As an illustration, Fig. 1C shows the null dis-
tribution of the standard deviation of the correlation time series com-
puted from the fMRI time series in Fig. 1A. The observed variance is
indicated by the vertical line. Thus, under the null hypothesis, the
measure would be a random drawing from this distribution. Since
the observed value is not contained in the 2.5% percentiles of the
distribution, the null hypothesis cannot be rejected, and therefore,
there is no evidence for the presence of dFC. In this example, this conclu-
sion is correct, since the time series were constructed to have a static
correlation.

Simulated BOLD-fMRI data

To measure the ability of a test statistic to detect dFC in resting-state
BOLD-fMRI data, we use simulated data. This allows us to control the FC
(dynamic) time-series, which, in practice, is not directly observable and
to investigate how the performance of the test statistic depends on the
dynamics of the correlations such as their strength and timescale. To
construct simulated fMRI time series, consider zero-mean Gaussian sto-
chastic processes X = (X, -, Xy) and Y = (Y, -, Yy) with variances o
and o, respectively, and let p,, be the population (Pearson) correlation
coefficient between X;, and Y,;:

E(XnYn)

pnzms 1)

where E denotes expectation value. Note that p, is allowed to depend on
time n, that is, to be dynamic. We moreover assume X, and X, to be in-
dependent for n # m and similarly for Y, and Y. This means that X and Y
do not have autocorrelations, which typically is the case for pre-
processed BOLD-fMRI data.

We now specify the dynamics of the correlation time series. It will
be convenient to parameterize the dynamics such that their parameters
correspond to observable properties, which can then be systematically
varied to assess the performance of a given test statistic. Furthermore,
we want the correlation time series to be stochastic and not time-
locked to (the beginning of) the scanning session, which reflects the
ongoing nature of resting-state BOLD fluctuations. Also, the correlation

values need to be restricted to the interval [— 1, 1]. To meet the last re-
quirement, we model p,, as a non-linearly transformed variable s,:

Pn = tan"' (P +sn), (2)

where the constant p€(—1, 1) denotes the average correlation between
X and Y. The time series s = (sy, -+, Sy) is obtained by sampling from a
continuous variable s(t) with sampling period TR = 2. The variable
s(t) is modeled by the following stochastic differential equation:

2

d d
Pst+8as[+ws[ = 0§, (3)

which describes a harmonic oscillator with intrinsic (angular) frequen-
cy o, damping 6, that is driven by white noise ; with variance 0. By
choosing s(t) in this way, we assure that it is a stochastic variable that
is not time-locked to the (beginning of the) scanning session.

Since the parameter vector (6, w, 0) is not directly observable from
the simulated time series s;, we fix 6 and use the parameter vector
(7,m) with 7, 1> 0, where

2

. S— (4)
\ 0?2 =& /4

and
o

= %0 (5)

The parameters T and ) are directly related to the observable dynam-
ics of s(t) because the autocovariance function of s(t) can be expressed
in terms of 6, T, and 7) (see Supplementary File 1). In particular, the (sta-
tionary) variance of s(t) equals 17 and its characteristic timescale is 7.
Fig. 2 shows three simulated correlation time series, each with three
dominant timescales.

Correlation time series

This study focuses on the performance of test statistics that are de-
rived from windowed correlations. For simultaneously recorded time
series x = (x1, -, Xy) and y = (y1, -, yn), the (Pearson) sample correla-
tion coefficient p is defined as
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Fig. 2. Simulated correlation time series. Panels A, B, and C display independent realiza-
tions of simulated correlation time series. The colors correspond to different dominant
timescales: 7 = 180 s (blue), 7 =90 s (red), and 7 = 45 s (green). In all cases, the average
correlation was set to zero (p = 0) and the strength of dFC was set to 0.5 (1) = 0.5). The
observation time is 300 s and the correlation time series are down-sampled to 0.5 Hz
(TR = 2 s).The three panels correspond to different realizations of the model.
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where X and y denote the sample means of x and y, respectively. It takes
values in the interval [— 1, 1] and measures the strength of the linear re-
lationship between x and y. If x and y are realizations of stationary sto-
chastic processes X = (Xi, -+, Xy) and Y = (Yq, -+, Yn), which means
that their expectations, variances, and (population) correlation coeffi-
cient p,, between X, and Y,, does not depend on n, p is an asymptotically
unbiased estimator of p. In this case, we refer to the correlation between
X and Y as being static. If p, depends on n, we refer to the correlation
between X and Y as being dynamic. In this document, we refer to p =
(p1, -, pn) as the (population) correlation time series.

A straightforward estimator of the correlation time series is obtained
by calculating the sample correlation coefficient from successive
windowed segments of x and y. In its simplest form, the sliding-
window estimator py, of py with window-length K is obtained by calcu-
lating p on the windowed time series (X, — p, Vi — n)s = Xk + h Yk + h)»
where h = (K — 1)/2 is the center of the window. Subsequently, k is
repeatedly shifted over M samples, yielding the sample correlation
time series p = (p;,-+,p.), Where L is the largest integer such that
L < (N — K)/M. This time series thus depends on two parameters: the
window-length K and the stepsize M. In the next section, we describe
two test statistics that are both based on the correlation time series:
a widely used linear measure and a recently proposed non-linear
measure.

Null hypothesis and test statistics

Having specified a model for the dynamics of the correlation time
series, we can specify the problem of detecting dFC in formal terms.
Specifically, the absence of dFC corresponds to the null hypothesis

Hy:m=0, (7)
and the presence of dFC corresponds to the alternative hypothesis

H;:m>0. (8)

Remember that in our model, 7% is the variance of the correlation
time series. Thus, within the context of this model, detecting dFC from
measurements x and y corresponds to rejecting Ho. Although this
might seem trivial, assessment of dFC in practice is far from trivial
and, as discussed above, remains to be a source of confusion in the sci-
entific discussion on resting-state fMRI dynamics.

In this study, we focus on two test statistics and their ability to detect
dFC. The first is the most widely used test statistic in resting-state fMRI
studies and is also the most straightforward. It is the standard deviation,
or equivalently, the variance of the sample correlation series and we will
denote it by :

L
W= > (i) (©)

i

where p = p;, -+, p; is the estimated correlation time series, and ft de-
notes the sample mean of p. The second test statistic, which we will de-
note by ¢, has been proposed recently (Zalesky et al., 2014) and is
defined as follows. Let m be the median of p and let 1y, -+, n, be the sam-
ples for which p crosses m. Thus, p makes ] — 1 consecutive excursions
from m. The length I,, and height H,, of the j-th excursion are defined as
I, = n; 1 — njand H, = max{|p;—m| : nj<i<nj,; }. The test statistic is
now defined as

J—1
! (10)
=

where oz and (3 control the relative weighting of the lengths and heights
of the excursions. Following Zalesky et al. (2014), we set « = 0.9 and

B = 1. We note that the estimated correlation time series used in the
computation of ¢ differs from the one defined in the previous section
in that the windows are multiplied by a weighting factor (see Zalesky
et al. (2014) for the exact definition).

Detection probabilities

A model of the dynamics of FC like the one described above allows an
assessment of the ability of an arbitrary test statistic T to detect the pres-
ence of dFC. Suppose that we have simulated two fMRI time series of
length N, a repetition time TR, and certain fixed value of the model pa-
rameter 6 = (p,7,7). Remember that, within the above described
model, the null hypothesis corresponds to Hy : 17 = 0 and the alternative
hypothesis to H; : 1> 0. If we now were to perform a statistical test using
the test statistic, what would be the probability of rejecting? If FC is stat-
ic, the probability of rejecting Hy is given by 100a%, where « is referred
to as the size of the test and is typically chosen as o = 0.05. Thus, the
probability of incorrectly rejecting Hy, that is, of making a Type I error,
is equivalent to 5%. For a given value of the model parameter 6, we de-
note the probability of rejecting Hy by r(0). This probability is given by

o) Frsio)ds. ()

In this formula, the function f;(—|0) denotes the probability density
of T, given 6, and &, denotes the 100(1 — «) % percentile of fr(—|0)
under Hy, that is, given 6 = (p, 7,0). The function ry is referred to as
the power function of T, because it measured the power of T to reject
Hop, and we approximate it using Monte Carlo simulations (see Supple-
mentary File 2 for more details).

To illustrate the use of the power function, we simulated two fMRI
time series x and y of length N = 301, a repetition time of TR = 2, and
0 = (0, 120, 0.5). Thus, the average correlation is zero (p = 0), and the
correlation is dynamic with strength 1) = 0.5 and characteristic time-
scale 7 = 120 s. Remember that 1) denotes the standard deviation of
the true fluctuations in correlation values. Suppose now that we use
the standard deviation of the sample correlation time series as a mea-
sure for dFC, that is, we take T = 0, and take a window-length of
K = 20 samples with maximal overlap (M = 1). What, then, is the prob-
ability of actually detecting dFC in the simulated time series? Fig. 3B
shows the probability density fr(—|(0, 120, 0)) of T under Hqy (blue
line). Its 95th percentile is indicated by the horizontal line and equals
€« = 0.27 (a = 0.05). The probability density of fr(—[(0, 120, 0.5)),
given 11 = 0.5, is shown in red. According to the definition of rrr, the
probability of detecting that the correlation between x and y is dynamic
is obtained by integrating fr(—|(0, 120, 0.5)) from &, to «, which gives
nir =~ 0.69. In this particular case, therefore, the probability of detecting
dFC is about 70%. So if we were to scan 20 subjects, each for 10 min
and with a TR of 2 s, we expect to detect dFC in 14 out of the 20 subjects.
Fig. 3A shows the power function for true dFC betweenn) = 0andn = 1.
For example, if, in reality, 1) = 0.1, that is, there is weak dFC, our chances
of detecting it are less than 10%.

The construction of surrogate data

Suppose we have calculated the value of a test statistic T from two
simultaneously recorded BOLD time series and obtained a value T*.
How can we decide if the observed value is statistically significant? An-
swering this question means performing a hypothesis test in which the
null and alternative hypotheses, Hy and Hj, respectively, correspond to
the absence and presence of dFC, respectively. In general, this is done
by calculating the percentile of T* in the distribution of T under Hy. If
T* falls within the 5% highest values (and assuming we perform a one-
sided test) we reject Hy and conclude that Hj is true, that is, we conclude
that the correlations are dynamic. The probability that we are incorrect
(Type I error) is then 5%.
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for kand equals K* = 0.2702. The probability of detecting that 7> 0 equals the area under the red density upwards from the * and equals m = 0.6914. Parameters were chosen as Ny = 301,
11 = 0 (blue density) and 1) = 0.5 (red density), K = 20 samples, 7 = 120 s, Nyq;q = 1000. B, Detection probability m, as a function of the strength of dFC 1}, obtained using 10 x 10*> Monte
Carlo samples. The black curve was obtained through Monte Carlo simulations and the error bars denote their minimum and maximum values for each value of 1.

Unfortunately, the null distribution of most test statistics is un-
known so that we have to approximate it using the data at hand.
More specifically, the null distribution is approximated by generating
a large number of appropriately randomized copies of the data, so-
called surrogate copies, and the value of the test statistic is then calculat-
ed for each of these (Schreiber and Schmitz, 2000; Pereda et al., 2005).
By choosing the randomization appropriately, each surrogate copy is
constructed under Hy, so that the resulting distribution is indeed an ap-
proximation of the unknown null distribution of T. Ideally, a surrogate
copy has the same statistical properties of the observed data, except
that it lacks the property we want to test for, which in the case, is dFC.
There exist two general kinds of surrogate data. The first is referred to
as constrained and is constructed directly from the observed data. The
second is referred to as typical and is constructed by fitting the data to
a model and subsequently using the model to generate surrogate data
(Schreiber and Schmitz, 2000).

The constrained randomization that is appropriate in the context of
dynamic FC was first introduced in Prichard (1994). Although it can be
applied to multivariate data, in this study, we only use the bivariate case.
Thus, let x4, -+, xy and y4, -+, yn be simultaneously recorded BOLD signals.
The method takes the discrete Fourier transformations Xj, ---, Xy and
Y1, -, Yy, of x and y, respectively, and multiplies each with a random
phase: X, = X,e'%n and Y,, = Y,ei*s, where ¢4, -, ¢y is a vector of inde-
pendent stochastic variables that are uniformly distributed in the inter-
val [0, 2m]. Crucially, both X and Y are multiplied by the same phases
&1, -+, PN SO as to preserve the (static) correlation structure. Subse-
quently, the inverse discrete Fourier transformation is applied to X1, -,
Xy and Yy, -+, Yy to yield randomized copies % of x and and ¥ of y.

Recordings and pre-processing

Functional MRI data were collected from three healthy male mon-
keys (Macaca mulatta) as described in detail previously (Logothetis
et al., 2012). All experimental procedures were approved by the local
authorities (Regierungsprasidium, Tubingen, Germany) and were in
full compliance with the guidelines of the European Community
(EUVD 86/609/EEC) for the care and use of laboratory animals. The ex-
periments were conducted under general anesthesia maintained with
remifentanil (0.5-2 g/kg/min) in combination with a fast-acting para-
lytic (mivacurium chloride, 5-7 mg/kg/h). Remifentanil is an ultrafast
acting p — opioid receptor agonist, and as such, has no significant effect
on neurovascular activity, in particular in brain regions beyond the pain
matrix (Wise, 2002; Pattinson et al., 2007). It is furthermore known to
only mildly affect the magnitude and time course of neural and vascular
responses (Logothetis et al., 1999, 2001; Goense and Logothetis, 2008).
The physiological state of the animal was monitored continuously and

maintained tightly within normal limits. Acidosis was prevented by
the administration of lactated Ringer’s solution with 2.5% glucose, in-
fused at 10 ml/kg/h.

We made measurements in a vertical 4.7 T scanner with a 40 cm di-
ameter bore (BioSpec 47/40v, Bruker BioSpin, Ettlingen, Germany). A
customized quadrature volume radiofrequency coil was used for imag-
ing of deep brain structures. Typically, 22 axial slices were acquired, cov-
ering the entire brain. BOLD activity from these slices was acquired at a
temporal resolution of 2 s with two-shot gradient-echo EPI images (rep-
etition time = 1000 ms, echo time = 20 ms, bandwidth = 150 kHz, flip
angle = 60 degrees, FOV = 96 x 96 mm, 2 mm slice thickness). T2-
weighted RARE images with the same FOV were obtained using a matrix
of 256 x 256, rare factor 8, effective TE of 60 ms, TR of 5000 ms, BW
42 kHz, and 4 averages. The anatomical images were later morphed to
match the EPI images.

In order to avoid different image intensities in the functional scans,
each voxel was normalized by dividing by the mean value of all voxels
having enough intensity and multiplied by a user value of 1000.

The T1-weighted image was segmented into gray matter, white
matter, and cerebrospinal fluid compartments and registered to the
MNI Macaque Atlas (http://www.bic.mni.mcgill.ca/ServicesAtlases/
Macaque) using a 12-parameter affine transformation. Pre-processing
of the fMRI data consisted of brain extraction (employing a mask com-
bining gray matter, white matter, and cerebrospinal fluid images), mo-
tion correction, co-registration to the T1-weighted image, and spatial
alignment to the macaque MNI template using the previously calculated
12-parameter affine transformation. After registration to MNI space, we
performed regression of head motion parameters and of white matter
and cerebrospinal fluid signals, as well as low pass-filtering with a cutoff
frequency at 0.05 Hz using a Chebychev type Il filter and local averaging
to obtain time series for each voxel of MNI Macaque space. Subsequent-
ly, the time series were grouped into 436 regions-of-interest (ROIs) ac-
cording to the Paxinos 2008 parcellation. All pre-processing steps were
carried out in Matlab using custom-written code and functions from the
Statistical Parameteric Mapping toolbox version 8 (see http://www. fil.
ion.ucl.ac.uk/spm).

We also analyzed resting-state BOLD-MRI data collected in 24
human participants, which were also used in a number of our previous
studies (Deco et al., 2013; Mantini et al., 2013; Deco et al., 2014;
Ponce-Alvarez et al., 2015). Human volunteers were informed about
the experimental procedures and signed a written informed consent.
The study design was approved by the Ethics Committee of Chieti Uni-
versity (Italy). MR data acquisition was performed with a 3 T MR Philips
Achieva scanner. Participants were instructed to continuously fixate a
point with no visual stimuli present in the background and not to
move during the scanning. The functional images were obtained using
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T2*-weighted echo-planar images (EPI) with BOLD contrast using
SENSE imaging. EPIs comprised 32 axial slices acquired in ascending
order and covering the entire brain (32 slices, 230 x 230 in-plane
matrix, TR/TE = 2000/35, flip angle = 90°, voxel size = 2.875 x
2.875 x 3.5 mm?). For each human subject, two consecutive scanning
runs of 10 min were performed. Furthermore, a 3D high-resolution
T1-weighted image, to be used for anatomical reference, was collected
by means of an MP-RAGE sequence (TR/TE = 8.1/3.7, voxel size =
0.938 x 0.938 x 1 mm?). The pre-processing of human fMRI data was
analogous to the one described above for macaque fMRI data, with the
only exception being that we spatially registered the functional images
to the MNI-ICBM Human Atlas (http://www.bic.mni.mcgill.ca/
ServicesAtlases/ICBM152NLin2009) instead of the MNI Macaque Atlas.
Furthermore, the brain parcellation used to obtain ROI time series by
local averaging was the one proposed by Hagmann and was composed
of 66 regions (Hagmann et al.,, 2008).

Dynamic FC analysis

We applied the methods of detecting dFC described in earlier sec-
tions to both the macaque and the human BOLD-fMRI data. As men-
tioned before, we had fMRI recordings for 25 sessions each from 3
macaque subjects and for 2 sessions each from 24 human participants.
The recording duration was 5 min with a sampling period of 2 s for
every session. The macaque data was parcellated into 436 ROIs while
human data was parcellated into 66 ROIs.

For every session, we obtained both the linear and non-linear test
statistics using two approaches. In the first approach, we obtained the
correlation time series for each ROI pair using a window-length of two
minutes and a step size of two seconds and then calculated the test sta-
tistics for each ROI pair. We then generated, for each session, 250 phase-
randomized surrogate time series for each ROI such that the stationary
correlation between every ROI pair was preserved within every set of
surrogates. Next, we calculated, for every ROI pair, values of both test
statistics for each of the corresponding 250 surrogates. Finally, we
pooled the values of all ROI pairs together in order to obtain a p-value
for the observed value of the test statistic. We also averaged the ob-
served and the surrogate test statistic values across sessions and obtain-
ed the corresponding p-values.

In the second approach, we calculated ROI-averaged test statistics to
increase the statistical power. Thus, we obtained, for each session, the
correlation time series for each ROI pair using a window-length of two
minutes and a step-size of one minute, calculated both statistics for
each pair and then for every ROI averaged its values of each test statistic
across all other ROIs. Thus, instead of the 94,830 and 2145 values of each
test statistic for the macaque and human data, respectively, we now had
only 436 and 66 values to compare against a surrogate distribution.
Therefore, in the second approach, we generated 10,000 surrogate
datasets for macaque subjects and 1500 surrogates for the human par-
ticipants, each of which preserved the stationary correlation between
every ROI pair and calculated the surrogate distribution of values of
both linear and non-linear statistics and obtained the corresponding
p-values. We repeated the procedure by averaging the observed and
surrogate test statistic values across sessions and obtained the corre-
sponding p-values.

Results
Dependence on correlation timescale

To assess how the detection power of the linear test statistic x de-
pends on the dynamics and strength of the (population) correlation sig-
nal p,, we calculated the detection probability m, for different values of
the correlation timescale T and the strength of dFC ). The remaining pa-
rameters were held fixed at values p = 0, TR = 2 s, N = 300 samples,
and M = 1. We let 7 range from 20 to 600 s in steps of 10 s and

between 0.1 and 1 in steps of 0.1. We let the window-length K vary
over the same range as T.

Fig. 4A shows color-coded plots of the probabilities m.((7, 1, K)) as a
function of 7 and 7). The different plots correspond to the values of n
displayed above each figure. The plots have several interesting features.
First, while the (absolute) probabilities increase with increasing 7, the
relative probabilities remain roughly constant. For example, choosing
K < 7 always yields a better chance of detecting dFC than choosing
K > 7, irrespective of the strength of dFC. Second, if 7 is small, say
7 <30 s, then dFC can never be detected, since no matter how strong,
the chance of detection m,, =~ o (which was set to 0.05). Third, the choice
of K that yields the highest probability of detecting dFC, denoted by Koy,
is roughly given by one-third of the characteristic timescale of the corre-
lation time series:

Kopt = 7/3. (12)

The plots also show, however, that the fluctuations in the correlation
time series are slow (large 7), Kop¢ < 7/3, so this choice of K should be
regarded as a rule-of-thumb only. It can be understood though, since
on the one hand, to reduce the variance of the test statistic, K should
be as large as possible. On the other hand, an upper-boundary for K is
given by 7 in the same way as the Nyquist frequency gives the upper-
bound for the observable frequencies in a time series, given the
sampling frequency. Needless to say, the rule = 7/3 only has theoretical
significance, since in practice, the timescale of fluctuations in the corre-
lation coefficient between (resting state) BOLD-fMRI time series is
unknown.

By averaging the test statistic over all timescales, however,
something can still be said. In Fig. 4B, we have plotted a set of detection
probability curves. They denote the probabilities averaged over all cor-
relation timescales and plotted against the window-length. The ten
curves correspond to the ten values of the strength of dFC and higher-
located curves correspond to higher values of 7). They show that, more
or less independent of the strength of dFC, in the absence of knowledge
about the true correlation timescale, the optimal window-length is
about 50 s. Interestingly, windows of this length are quite common in
experimental studies (Chang and Glover, 2010; Hutchison et al.,
2013b; Handwerker et al., 2012; Keilholz et al., 2013; Tagliazucchi
et al,, 2012; Jones et al., 2012; Allen et al., 2012; Zalesky et al., 2014;
Barttfeld et al., 2015).

Dependence on scanning duration and number of sessions

To asses how the detection probability depends on the duration
of the scanning session, we calculated it as a function of the num-
ber of samples N, which we varied between 150 and 1500 in
steps of 150. With a TR of 2 s, the scanning duration is thus varied
from 5 to 50 min in steps of 5 min. The model parameters were set
to (p,7,m) = (0,180,0.20) and the sliding-window parameters to
(K, M) = (30, 1).

The results are shown in Fig. 4C (left). The figure shows that the
probability of detecting dFC increases approximately linearly as a func-
tion of the scanning duration. As an example, the probability of detec-
tion dFC in a resting-state session of 5 min is about 15% and increases
to about 50% for a 50-min session.

Since long scanning sessions are impractical, at least in awake
human subjects, an alternative way to increase the detection probability
is to measure BOLD fluctuations during multiple sessions and subse-
quently to average the test statistic over the sessions. To asses how
the detection probability depends on the number of sessions, we calcu-
lated the detection probabilities as a function of the number of sessions
(each of 5 min), which ranged from 1 to 25. For each number of sessions,
the test statistics were averaged over the sessions. The results are
shown in Fig. 4C (right). The figure shows that the detection probability
increases approximately linearly with the number of sessions. In
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Fig. 4. Detection probabilities of windowed correlations. A, Color-coded probabilities of detecting dFC as a function of window-length K and correlation timescale 7. The ten figures cor-
respond to different values of 1) (the strength of dFC) as indicated above the figures. We let 1) range from 0.1 to 1 in steps of 0.1. The straight white lines are identical in each figure and
denote the line (K, 3K). It is added to illustrate a rule-of-thumb for choosing that is satisfied by optimal window-length. Roughly, it equals one-third of the correlation timescale. B, Detec-
tion probabilities averaged over all correlation timescales and plotted as function of the length of the sliding-window. The ten curves correspond to the ten values of 1) (higher curves cor-
respond to higher values of ). C, Detection probabilities as a function of observation time, that is, the duration of the scanning session (left) and as a function of the number of sessions
(right). In all cases, the model parameters were set to (p, T,1) = (0, 180,0.20) and the sliding-window parameters to (K, M) = (30, 1). Furthermore, in calculating the detection proba-
bilities in the right-hand side of the figure, the observation time was set to T = 300 s. The error bars in both figures denote the minimum and maximum probabilities from 10 simulations.
D, Shown are the detection probabilities for the linear (left) and non-linear (right) test statistics. The probabilities were calculated as a function of the correlation timescale, which ranged
from 20 to 600 s in steps of 1 s and strength of dFC, which ranged from 0.1 to 1 in steps of 0.1. The window-length was set to one-third of the correlation timescale and the windows were
slid through the simulated fMRI time series one sample at a time. The average correlation was set to p = 0 and repetition time was set to TR = 2 s.

particular, note that between 1 and 10 sessions (which correspond to a
total observation time of 300 s and 3000 s, respectively), the curves in
both figure panels roughly correspond. In fact, the observed differences
are entirely due to the fact that we have approximated the theoretical
detection probabilities. We note that instead of sessions, test statistics
can be averaged over subjects as well. In Section Application to human
resting-state BOLD-fMRI, we will see that this indeed increases the prob-
ability of detecting dFC.

These observations can be understood theoretically by considering a
simple case in which the distribution of the linear test statistic x can be
calculated analytically. Let’s assume that k is calculated using non-
overlapping windows (M = K) and that the population correlation
time series p, is constant within each window, say p; = py, within the
n-th window, and p,, is normally distributed with variance 7% Although
this form of the correlation time series is not a special case of our dy-
namical model for dFC, 7)? has the same interpretation, namely, it is
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the variance of the population correlation time series. Under these as-
sumptions, and if K and N are large and N is much larger than K, the ex-
pectation and variance of k are approximately given by

E[K*]~1/K + 17, (13)
and

(1/K +172)°

2] ~
Var[k®] =2 N/K

(14)

(see Supplementary File 3). Now, let’s fix K and consider what hap-
pens when N increases. The first formula states that the expectation of
2 approximately equals 7%, that is, the strength of dFC. The second for-
mula shows that the variance of k2 converges to zero. This means that,
irrespective of K, the overlap between the densities of k2 under
Hp : m = 0 and under H; : 11> 0 converges to zero. This implies that
the detection probability .. converges to 1. In this example, the pres-
ence of dFC, can thus always be detected, provided that the observation
time is long enough. The second formula also shows however, that if
dFCis small (17 = 0), a larger number of samples is required to detect it.

Linear versus non-linear measures

In the previous sections, we found that the probability of detecting
dFCin single scanning sessions with a typical duration of 10 min is rath-
er low (about 15%). This low probability could be due to the fact that the
used test statistic is rather insensitive to changes in FC. Alternatively, the
cause could lie in the correlation time series itself, namely in the large
uncertainty (variance) of the sample correlation coefficient. This
would imply that the sensitivity of any test statistic that is derived
from the correlation time series is low. To make a case for the latter,
we compared the detection probabilities of the (linear) test statistic K
with a recently proposed non-linear test statistic ¢, which we will de-
note by § (see Section Null hypothesis and test statistics for the defini-
tion). What is important here is that both test statistics are derived
from the correlation time series, because this will enable us to identify
the cause of the observed insensitivity.

In the following simulations, we set the observation time to 10 min
and varied the correlation timescale 7 between 20 and 600 s in steps
of 10 s. The strength of dFC, as measured by 7, was varied between 0.1
and 1 in steps of 0.1. The window-length for calculating the correlation
time series was set to one-third of the correlation timescale, since this
window-length was found to be optimal (see Section Dependence on
correlation timescale). The windows were slid through the simulated
fMRI time series with one sample at a time (M = 1). Furthermore, the
average correlation between the simulated fMRI time series was set to
zero (p=0)and TR = 2 s.

The resulting detection probabilities for both test statistics are
shown in Fig. 4D. We make two observations. First, the linear test statis-
tic yields high detection probabilities for lower dFC strengths than the
non-linear test statistic does. Second, while the linear test statistic is rel-
atively insensitive to the timescale in the correlation time series, high
detection probabilities of the non-linear test statistic are confined to
short correlation timescales. The cause for the latter is that the non-
linear test statistic is comprised of the product of the widths and heights
of the excursions in the correlation time series, of which there might be
only one or two if the correlation timescale is large.

In any case, since the non-linear test statistic doesn’t do a better job
in the detection of dFC, we suspect that the problem lies in the correla-
tion time series itself, rather than in the test statistics derived from it.
This conclusion is in line with the findings reported in Lindquist et al.
(2014).

Effect of low pass-filtering

Pre-processing of resting-state BOLD-fMRI time series often includes
low pass-filtering to remove artifacts and to select frequencies of inter-
est. Such filtering, however, can distort the correlation time series,
either directly or by introducing autocorrelations in the BOLD time se-
ries themselves. To provide insight into the relative strengths of these
two effects, we express the population correlation time series of the
low pass-filtered time series, denoted by pf't, in terms of p, and the nor-
malized impulse response h; of the filter. In Supplementary File 4, we
derive that

P (t) = p(O)®H’ (t), (15)

where ® denotes the convolution operator. This formula says that if a
BOLD time series is filtered by a filter with (normalized) impulse re-
sponse h(t), that is, convolved with h(t), the correlation time series is fil-
tered with impulse response h?(t). In the frequency domain, this
equation takes the form

P () = P(0)[H(@)®H ()], (16)
where P and H denote the Fourier transforms of p' and h, respective-
ly, and o denotes (angular) frequency. Note that for a zero-phase filter,
say with frequency response Hy, it holds that

H(®) = Ho(®)Ho(®)" =[Ho()|, (17)

so that H is real and hence causes no distortions in the phase-spectrum
of p.

Since the frequency response H ® H has a cutoff frequency that is
similar to H, we expect that if 1/7 < f., then p™'(t) & p(t). That is, we ex-
pect that if the dominant period in the (population) correlation time se-
ries p is smaller than the cutoff frequency f. of a zero-phase low pass-
filter (with steep roll-off), then the (population) correlation time series
of the filtered time series is not distorted by the filtering. When 1/7 > f,
the filtering will attenuate the fluctuations in p.

To illustrate this, we go back to the simulations described in the first
paragraph of this section in which we simulated BOLD time series with
1 = 0.5 and low pass-filtered them with cutoff frequency f. = 0.05 Hz.
Fig. 5A shows the population correlation time series (black trace) and its
filtered version (green trace), as calculated from the above equation.
Clearly, the filtering does not affect the correlation time series. Figs. 5B
and C show the raw and filtered BOLD time series themselves. The auto-
correlations that are visible in the filtered time series are caused by the
low pass-filtering and decrease the detection probability of dFC.

Thus, for cutoff frequencies that are typically used to filter fMR time
series (0.05 < f¢), fluctuations in dFC are most likely not affected. That is
to say, fluctuations that can be detected by sliding-window techniques,
since fluctuations with a timescale of 20 s or shorter will be attenuated
when f is as low as 0.05 Hz. We conclude that the decrease in detection
power of the sliding-window estimator  upon low pass-filtering fMRI
time series is entirely due to the fact that low pass-filtering creates au-
tocorrelations in the time series. It is worthy to note that high-pass fil-
tering, when carried out with an appropriate cutoff frequency relative
to the window-length, can minimize spurious fluctuations in the sam-
ple correlation time series (Leonardi et al.,, 2014).

Application to macaque BOLD-fMRI under general anesthesia

First we calculated the values of the linear and non-linear test statis-
tic for each ROI pair (see Section Dynamic FC analysis). Fig. 6A shows the
values of the linear (top) and non-linear (bottom) test statistic for all
ROI pairs, for each individual session, as well as averaged across sessions
(final column). For each session, the ROIs are arranged according to as-
cending order of the corresponding (Bonferroni corrected) p-values
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Fig. 5. Effect of low pass-filtering. A, Example of population correlation signal (black trace, Nsampi = 1501, = 0.5, 7 = 600), together with its filtered version (green trace) as calculated
from the equations in the text and a cutoff frequency f. = 0.05 Hz). B, Simulated BOLD-fMRI time series with population correlation signal as in the top. C, The same time series but low

pass-filtered with a cutoff frequency of f. Hz.

shown in Fig. 6B. Note that the variability in the test statistic values
across pairs in each individual session is larger than when they are aver-
aged across sessions (A, top and bottom panels). At the same time, there
are more ROI pairs with lower p-values in the averaged case in compar-
ison with any individual session. Importantly, note that the distribution
of session-averaged p-values is shifted to smaller values when the test
statistics are averaged across sessions. This indicates that session aver-
aging increases statistical power, as predicted from the simulations in
Section Dependence on scanning duration and number of sessions. Despite
increased statistical power, however, none of the session-averaged p-
values crossed the 5% significance threshold. The less conservative
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false discovery rate (FDR) correction for multiple testing also did not
yield statistically significant dynamic FC of any ROI pair, whether in
any individual session or averaged across sessions (see Figs. 6C and
D). This observation extended to subjects 2 and 3 (see Supplementary
Figs. 1 and 2, respectively).

To increase statistical power, we averaged the test statistic values
over ROIs (see Section Dynamic FC analysis). Fig. 7A shows these ROI-
averaged values for the linear (left panel) and non-linear (right panel)
test statistics and Fig. 7B shows the corresponding FDR-corrected p-
values. Fig. 7C shows the number of significant dynamic connections,
both for the individual sessions as well as for the session-averaged
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Fig. 6. Pairwise dynamic functional correlations in macaque monkeys under general anesthesia. A, Test statistic values for all 94830 ROI pairs, obtained individually for each of the 25 ses-
sions and averaged across all sessions (final column). B, p-values corresponding to test statistic values in A, corrected for multiple comparisons using the Bonferroni correction. Uncorrected
p-values were obtained by comparing the observed values of the test statistics with those obtained from 250 pairs of surrogate time series. In panels A and B, ROI pairs are arranged in
ascending order of (Bonferroni corrected) p-values. This is done for each individual session as well as for the average. C, Values of the test statistics between every ROI pair, averaged across
all 25 sessions. D, p-values corresponding to the session-averaged test statistic values in C, corrected for multiple comparisons using false discovery rate.
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Fig. 7. ROl-averaged dynamic functional correlations in macaque monkeys under general anesthesia. A, ROI-averaged values of the linear (left panel) and non-linear (right panel) test sta-
tistic for each of the 436 ROIs and for each of the 25 recording sessions, as well as averaged across sessions (final columns). The correlation time series of every ROI pair in each session was
obtained using a window-length of 2 min and a step size of 1 min. B, p-values corresponding to test statistic values in A, corrected for multiple comparisons using false discovery rate.
Uncorrected p-values were obtained by comparing the observed values of the test statistics with those from 10,000 phase-randomized surrogate time series (Section The construction
of surrogate data). C, Number of ROIs with statistically significant (at 95% confidence level) test statistic values calculated for each individual session as well as averaged across sessions.

(and ROI-averaged) test statistic values. A number of remarks are in
place here. First, while the fraction of significantly dynamic connections
is nearly zero for both the linear and the non-linear test statistics, a
much larger fraction of the connection is significantly dynamic when
averaging across sessions. This observation extends to subjects 2 and 3
as well (see Supplementary Fig. 3). This is entirely in line with our sim-
ulation results in Section Dependence on scanning duration and number
of sessions, which predicted an increase in statistical power when aver-
aging over sessions. Specifically, for the linear test statistic, there were

213 ROIs (109 in the left hemisphere and 104 in the right hemisphere)
with significant dynamic connections. For the non-linear test statistic,
there were 73 ROIs (38 in the left hemisphere and 35 in the right hemi-
sphere). This too is in line with our simulations (see Section Dependence
on scanning duration and number of sessions), which predicted the linear
test statistic to be more sensitive to dynamic FC than the non-linear test
statistic.

Fig. 8A shows the topography of session-averaged values of the lin-
ear (left panel) and non-linear (right panel) test statistic. Interestingly,
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Fig. 9. Average dynamic functional correlations in human resting-state BOLD-fMRI. The figure shows the topographic distribution of the session- and ROI-averaged values of the linear (left

panel) and non-linear (right panel) test statistic.

the values are distributed rather symmetrically across the hemispheres,
especially for the linear statistic, which is also the case for subjects 2 and
3 (see Supplementary Fig. 4). Fig. 8B shows the observed values
(magenta), together with the 10,000 values obtained from the surrogate
data (gray). The black line corresponds to the 95% confidence level.
Fig. 8C shows the corresponding uncorrected and FDR-corrected
p-values. Fig. 8D, the ROIs with significant dynamic FC are shown in
red. Again, note the rather symmetric distribution across hemispheres
in the case of the linear statistic (see Supplementary Fig. 4 for the results
from subjects 2 and 3). Another interesting observation is that out of the
213 significant ROIs in case of the linear statistic, a substantial number
(86) is sub-cortical. The cerebellum, in particular, seems to possess
high dynamic connectivity. Furthermore, in case of the linear statistic,
seven out of the nine cortical ROIs belonging to the default mode net-
work (DMN) in macaque monkeys (Mantini et al., 2011) were dynamic.
Specifically, these ROIs were areas 24 and 32 in the left anterior cingu-
late cortex, areas 9 and 46d in the left dorsolateral prefrontal cortex,
area 8b in the arcuate sulcus, area 23 in the posterior cingulate cortex,
parietal area, caudal part of temporal parietooccipital area, and medial
part 17 of the parietal area. Moreover, almost all areas belonging to
the hippocampal-entorhinal cortical region (CA1, CA2, CA3, CA4, para
and prosubiculum and caudal, olfactory, rostral and intermediate part
of the entorhinal cortex) demonstrated significant dynamic correlations
on average with all other areas.

Application to human resting-state BOLD-fMRI

Next, we sought to identify dynamic functional connectivity during
the resting-state in human participants. Thus, at first, we calculated
the linear and non-linear test statistic for each of the 2145 ROI pairs dur-
ing each of the 2 sessions of 24 human participants. Supplementary
Fig. 5A shows the values of the linear (top) and non-linear (bottom)
test statistic for all ROI pairs, for each session of individual participant,
as well as averaged across sessions from all participants (final column).
Similar to the case of macaque subjects, there was lower variability in
the test statistic values across pairs (A) and higher number of ROI
pairs with lower p-values (B) in the averaged case in comparison with
individual sessions. Thus, this analysis also confirms the prediction
from the simulations in Section Dependence on scanning duration and
number of sessions that session-averaging increases statistical power.
However, none of the session-averaged p-values, corrected for multiple
comparisons using FDR, crossed the 5% significance threshold, in line
with our findings in the macaque data.

We then averaged the test statistic values over ROIs as in the case of
macaque subjects. Supplementary Fig. 6A shows these ROI-averaged
values for the linear (left panel) and non-linear (right panel) test statis-
tics and Supplementary Fig. 6B shows the corresponding FDR-corrected
p-values. Supplementary Fig. 6C shows the number of ROIs with signif-
icant values of ROI-averaged test statistics, both for each session of
individual participants as well as averaged across sessions from all par-
ticipants. We found that, for individual sessions, very few ROIs displayed
significant dynamic FC averaged across all other ROIs irrespective of
whether linear or non-linear statistic was considered. This number in-
creased substantially when the test statistics were averaged across all
sessions of all participants, as predicted by our simulations (see
Section Dependence on scanning duration and number of sessions). Of par-
ticular interest—and in line with our observations on the macaque data
as well as with the simulations performed in Section Dependence on
scanning duration and number of sessions—all ROIs were found to be sig-
nificantly dynamic when using the linear test statistic, while only about
30% was found to be dynamic when using the non-linear test statistic
(see Supplementary Fig. 6C).

Fig. 9 shows the topographies of the values of the ROI-averaged lin-
ear and non-linear test statistics. A feature worth pointing out is their
symmetry across hemispheres: the (Pearson) correlation between the
values in the left and right hemispheres was 0.79 and 0.48, in case of
the linear and the non-linear test statistic, respectively. These observa-
tions are in line with tests done on the macaque data.

Discussion

The first goal of this study is to demonstrate the importance
of performing proper statistical tests in the analysis of dFC in
resting-state BOLD-fMRI data and to describe how such tests can be
carried out by using appropriate surrogate data (Prichard, 1994;
Schreiber and Schmitz, 2000). We note that such tests apply to electro-
physiological (EEG/MEG) and task-related data as well. We have tried to
explain why the mere presence of fluctuations in sliding-window corre-
lation time series cannot directly be taken as evidence for the presence
of dFC. The second goal is to stress the importance of selecting an appro-
priate null hypothesis, which is implicitly done by the way the data are
randomized to produce surrogates (Handwerker et al., 2012; Keilholz
et al,, 2013; Leonardi et al., 2013). The last goal is to assess the perfor-
mance of sliding-window based test statistics in detecting dFC in
resting-state BOLD-fMRI data. Our main conclusion is that in single
resting-state scanning sessions, detection probabilities are low, irre-
spective of the used test statistic being linear or non-linear. Indeed,
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the problem lies with the sliding-window technique itself. Through sim-
ulations, we have also shown, however, that detection probabilities can
be increased by averaging over multiple sessions. Our findings on spon-
taneous BOLD fluctuations in anesthetized macaque underscore these
conclusions.

Specifically, we sought to identify dFC in every pair of brain regions
in 25 sessions of BOLD-fMRI data from three macaque monkeys under
general anesthesia (Logothetis et al., 2012) using both a linear and a
non-linear test statistic. Importantly, we found no evidence for pairwise
dFC whether in individual recording sessions or by averaging the test
statistic values across sessions. However, reducing the number of multi-
ple comparisons by calculating ROI-averaged test statistics, we found
strong evidence for a distributed dFC network, but only after averaging
the test statistic values over sessions. The identified network was sym-
metric across hemispheres and included several cortical as well as
sub-cortical areas. In particular, almost all regions belonging to the hip-
pocampus and the entorhinal cortex were part of this network. This
finding goes along well with the fact that in this dataset, Logothetis
et al. recorded sharp-wave ripple events in the hippocampal region dur-
ing each recording session (Logothetis et al., 2012). They observed that
many cortical as well as sub-cortical regions displayed transient activa-
tions and de-activations, respectively, in response to these events.
Therefore, these events and the responses could have contributed to
the observed transient connectivities with cortical regions.

We also looked for dynamic FC in 48 sessions from 24 human partic-
ipants and, similar to the case of macaque subjects, we did not find any
statistically significant evidence for pairwise dFC whether in single ses-
sions or by averaging across sessions. However, calculation of ROI-
averaged test statistics yielded evidence for non-stationarity for several
regions, when we averaged across all 48 sessions. While the non-linear
test statistic yielded significant values for about a third of the total num-
ber of regions, the linear test statistic yield significance for all. This could
be aresult of the large number of sessions used for averaging as our sim-
ulations also show that the detection power increases with the number
of sessions used for averaging. The values of both statistics displayed
symmetry across hemispheres.

This study is limited in several ways. First, the simulated BOLD-fMRI
data were constructed using a specific model for the dynamics of func-
tional correlations. Specifically, we have assumed that the correlation
time series behave as noise-driven damped harmonic oscillations. In-
deed, other models have been used to simulate the dynamics of the cor-
relation time series such as vector autoregressive (VAR) models
(Cribben et al., 2012; Monti et al., 2014), deterministic oscillations
(Leonardi et al., 2014; Lindquist et al., 2014), and transients (Kang
et al.,, 2011; Lindquist et al., 2014). To a certain extent, these choices
are arbitrary, since the underlying correlation dynamics are unknown.
Apart from some basic requirements such as that the correlation signal
is not time-locked to the beginning of the simulation, the choice de-
pends on the question at hand. For example, in the current study, we
were interested in the dependence of detection probability on the
strength and timescale of the dynamic correlations. Second, we have re-
stricted ourselves to studying the performance of two test statistics,
while many more test statistics have been used in earlier studies
(Sakoglu et al., 2010; Chang and Glover, 2010; Hutchison et al., 2013b;
Handwerker et al., 2012; Keilholz et al., 2013; Tagliazucchi et al., 2012;
Jones et al., 2012; Thompson et al., 2013; Zalesky et al., 2014), which
could turn out to perform better in detecting dFC. Based on our results,
we predict that the performance of all test statistics based on sliding-
window correlations perform more or less similar. Rather, it is the esti-
mated correlation time series itself that is responsible for poor detect-
ability, as noted earlier by Lindquist et al. (2014).

A shortcoming of the surrogate data advocated in this study
(Prichard, 1994) from which the constrained surrogate data as used in
Chang and Glover (2010) and Zalesky et al. (2014) also suffers, is that
the null-hypothesis under which the surrogates are generated is more
specific than the null-hypothesis in which we are interested, namely,

that of the absence of dFC. More specifically, the surrogate null-
hypothesis is equivalent with the data being stationary. Although this
implies the absence of dFC, the latter does not imply stationarity of
the data. So when dFC is detected using either one of the two kinds of
surrogate data, the only conclusion we can draw is that the data is
non-stationary. This is a rather serious obstacle in the detection of dFC
which is further complicated by the possibility that dFC influences the
dynamics of the individual BOLD-fMRI time series so that the dynamics
of the correlation time series and those of the individual BOLD-fMRI
time series are entangled. Another possibility is that the signal-to-
noise ratio of the BOLD-fMRI processes changes during the scanning pe-
riod, which will impact the observed correlation values, although the
true correlation might as well be static (Hutchison et al., 2013a). We
thus see that the detection of dynamic FC is far from trivial. A possible
way out is explored in Lindquist et al. (2014), and consists of fitting a
parametric model to the data that takes into account possible non-
stationarities and changing variances in the individual time series.

Several studies have reported correlations between fluctuations in
BOLD-fMRI and measures derived from electrophysiological recordings
as well as behavioral measures (Tagliazucchi et al., 2012; Di and Biswal,
2013, 2015; Chang et al., 2013; Thompson et al., 2013). For example, in
Tagliazucchi et al. (2012), fluctuations in functional connectivity were
found to be correlated with EEG power in different frequency bands.
As another example, in Di and Biswal (2015), it was found that fluctua-
tions in functional connectivity within several resting-state networks
correlated with the level of activity of the respective networks. The
presence of such correlations by itself however, cannot be taken as evi-
dence that the functional correlations themselves are dynamic, and the
same applies to studies that report differences in dFC between condi-
tions (Sakoglu et al., 2010). What makes these studies interesting, in
our opinion, is that they suggest that the coordination between BOLD-
fMRI time series covaries with electrophysiological processes, thereby
extending studies that investigate electrophysiological correlates, for
example, EEG alpha power (Laufs et al., 2003; Moosmann et al., 2003;
Gongalves et al., 2006), of individual BOLD-fMRI time series. Thus, we
do not claim that observed fluctuations in sample dFC test statistics
are uninteresting or uninformative because the above cited studies
clearly demonstrated that they are. What we do claim, however, is
that without proper statistical testing, such fluctuations cannot be
interpreted as dynamic FC because dynamic FC has a specific statistical
meaning. This leads one to the important question whether a descrip-
tion of resting-state BOLD-fMRI data in terms of (time dependent) FC
is the most natural or meaningful one. We come back to this question
after clarifying the nature of a description of the data in terms of statis-
tical moments.

An important issue which might lead to confusion and should there-
fore be addressed carefully, is the following: Suppose we have at our
disposal a powerful statistical method which, when applied to a partic-
ular dataset, is unable to reject the null hypothesis of static FC. How is
this consistent with the highly dynamic nature of neural interactions?
Indeed, at rest, the dynamics of neural networks is extremely complex,
non-linear, and dynamic (Destexhe et al., 2003; Destexhe and
Contreras, 2006). To reconcile the two, we point out that a statistical de-
scription of the data by itself does not claim anything about the dynam-
ical nature of the underlying system. Rather, statistical descriptions are
often adopted in the absence of explicit deterministic descriptions and
therefore often reflect a lack of knowledge of the internal workings of
the system. The crucial point now is that only within a statistical de-
scription of the data, the notion of stationarity (or the lack thereof)
has meaning since it is an inherently statistical concept (it means that
the transition probability densities of a stochastic process are time-inde-
pendent). In fact, it is the complexity and large number of degrees of
freedom itself that allow us to adopt a statistical description of the sys-
tems’ dynamics in the first place. Thus, in our study, we do not claim
that the absence of dFC implies stationarity of the system itself, since
this notion has no meaning outside a statistical framework. The point
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of our study is this: if one adopts a statistical description of the data and
asks if the FC is dynamic, one needs to answer it with the appropriate
statistics tools. In the next paragraph, we argue that a purely statistical
description of resting-state BOLD-fMRI data might not be the most in-
formative one though.

A provoking question raised by our study is if dynamic functional
connectivity is the most natural way to conceptualize the organiza-
tion of resting-state BOLD fluctuations. This view reflects the as-
sumption that these fluctuations comprise a series of transiently
correlated activation patterns. Would it not be more natural to
view them as a series of instantaneous patterns of which dFC is a de-
rivative? Such co-activation patterns could be the building blocks of
spontaneous BOLD activity and dFC a reflection of these. Such a view-
point is taken, for example, in Majeed et al. (2011) and Liu and Duyn
(2013) (see Hutchison et al., 2013a for a review). There is experi-
mental evidence that supports this view. In Logothetis et al. (2012),
the authors simultaneously recorded BOLD-fMRI and hippocampal
local field potentials in macaques and used the recorded hippocam-
pal ripples as triggers to average the BOLD time series. Their main
finding was that hippocampal ripples induce distributed BOLD re-
sponses, with positive responses in neocortex and negative re-
sponses in sub-cortical structures. Another example is given in
Hasson et al. (2004), in which subjects viewed a movie during fMRI
acquisition. By averaging the BOLD signals over selective movie
frames, they found specific co-activation patterns corresponding to
faces, buildings, etc. Such observations suggest co-activation pat-
terns to be the hemodynamic correlates of neural and cognitive
events.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.11.055.
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