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This study aimed to investigate the role of ascorbate peroxidase (APX), guaiacol peroxidase (GPX),
polysaccharides, and protein contents associated with the early events of postharvest physiological
deterioration (PPD) in cassava roots. Increases in APX and GPX activity, as well as total protein contents
occurred from 3 to 5 days of storage and were correlated with the delay of PPD. Cassava samples stained
with Periodic Acid-Schiff (PAS) highlighted the presence of starch and cellulose. Degradation of starch
granules during PPD was also detected. Slight metachromatic reaction with toluidine blue is indicative
of increasing of acidic polysaccharides and may play an important role in PPD delay. Principal component
analysis (PCA) classified samples according to their levels of enzymatic activity based on the decision tree
model which showed GPX and total protein amounts to be correlated with PPD. The Oriental (ORI)
cultivar was more susceptible to PPD.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Cassava is vital as a starchy staple throughout the developing
world. The importance of cassava arises from its agronomic
benefits and limited requirement for inputs. For example, cassava
gives a high yield of carbohydrates, even on poor soils, has good
tolerance to drought, is relatively resistant to pest infestation and
disease and can be stored in the ground until required. However,
once harvested, cassava is more perishable than other tubers
because of it higher moisture content, greater susceptibility to
physical damage and higher metabolic activity. Cassava losses
are primarily affected by two types of postharvest deterioration:
primary physiological deterioration, the initial cause of loss of
market acceptability, and secondary deterioration from microbial
spoilage (Booth & Coursey, 1974). Successful marketing of cassava
is considerably constrained as the distance between production
and consumption increases (Westby et al., 2004). In addition to
physical loss of the crop, postharvest deterioration causes a reduc-
tion in quality resulting in price discounts that affect profitability
(Naziri et al., 2014; Wenham, 1995; Westby, 2002). Furthermore,
change in use can result in additional losses. For example, if
harvested cassava roots cannot be marketed within two or three
days of harvest, then they may be processed into dried products
of low quality with corresponding low value (Westby, 2002).
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Because cassava is increasingly used as human food, special
attention should be given to the development and transfer of dif-
ferent postharvest technologies to address the rapid deterioration
of cassava roots once harvested (Sánchez & Alonso, 2012). Indeed,
short storage life of harvested roots is an important constraint that
limits the full realization of cassava’s potential in developing
countries. Cassava roots undergo rapid deterioration 24–48 h after
harvest, a phenomenon known as postharvest physiological deteri-
oration (PPD). PPD is characterized by a blue-black discoloration of
the xylem vessels known as ‘‘vascular streaking”, which consider-
ably reduces the palatability and marketability of cassava roots.
The rapid postharvest deterioration of cassava restricts the storage
potential of fresh root to only a few days.

PPD has been strongly associated with mechanical damage
which occurs during harvesting and handling operations (Booth,
1976). Tips are frequently broken off as the roots are pulled from
the ground, and separation from the plant creates a further wound.
In addition, transport from field to market can result in further
abrasion. In most cases, physiological deterioration develops
from sites on damaged tissue, initially observed as blue-black
discoloration of the vascular tissue. Initial symptoms are rapidly
followed by a more general discoloration of the storage parench-
yma. Earlier publications on the subject of cassava deterioration
simply state that cassava roots will not store well, have a short
storage life, will not keep for more than a few days, and are highly
perishable (Rickard & Coursey, 1981), without giving any indica-
tion of the nature, or even the symptoms, of the deterioration
processes involved. Other publications refer loosely to ‘‘rots” or
‘‘decay”, giving the impression that deterioration essentially
results from microbiological infection.

The evolution of aerobic metabolic processes, such as respira-
tion and photosynthesis, unavoidably led to the production of reac-
tive oxygen species (ROS) in mitochondria, chloroplasts, and
peroxisomes. A common feature among the different ROS types
is the capacity to cause oxidative damage to proteins, DNA, and
lipids. Increasing evidence indicates that ROS also function as sig-
naling molecules in plants to control various processes, such as
defense responses against pathogens and deterioration (Apel &
Hirt, 2004). The cytotoxic properties of ROS explain the evolution
of complex arrays of non-enzymatic and enzymatic detoxification
mechanisms in plants. For example, the peroxidases (POX) are
enzymatic systems ubiquitous in fungi, plants, and vertebrates
and have been associated with defense responses. Ascorbate per-
oxidase (APX) is the most important peroxidase in H2O2 detoxifica-
tion, catalyzing the reduction of H2O2 to water by using the
reducing power of ascorbate (Jebara, Jebara, Limam, & Aouani,
2005). Similarly, guaiacol peroxidases (GPX), located in cytosol,
vacuole, cell wall, and apoplast, are also assumed to be involved
in a range of processes related to ROS-induced stress. However,
their role in the physiology and biochemistry of cassava deteriora-
tion remains to be elucidated (Ghamsari, Keyhani, & Golkhoo,
2007).

Plants store carbohydrate polymers in a number of forms.
Starch is the principal form, followed by fructans and cell wall-
stored polysaccharides. Primary cell walls from plants are compos-
ites of cellulose tethered by cross linking glycans (hemicelluloses)
and embedded in a matrix of pectic polysaccharides (Silva et al.,
2011). The high structural complexity of plant cell wall polysac-
charides has led to suggestions that some components might func-
tion as latent signal molecules that are released during pathogenic
infection and subsequently elicit defensive responses (Vorwerk,
Somerville, & Somerville, 2004). Acidic polysaccharides are
reported to be more bioactive than neutral ones, possibly because
acidic groups in acidic polysaccharides can form associations
with the target biomolecules, such as proteins, in hosts through
electronic interactions (Zhang et al., 2015). Moreover, acidic
polysaccharides have shown strong in vitro scavenging activities
on DPPH and hydroxyl radicals (Pereira et al., 2012), as well as
antioxidant capacity (Aguirre, Isaacs, Matsuhiro, Mendoza, &
Zúñiga, 2009).

Conserving cassava roots in storage is economically vital; there-
fore, the present investigation aimed to characterize the role of
APX, GPX, neutral and acidic polysaccharides, and protein contents
associated with the early events of PPD in cassava storage. Changes
in antioxidant enzymes and proteins were analyzed by UV–Vis
spectrophotometry. Morphological and anatomical changes in
acidic and neutral polysaccharides and proteins were investigated
by histochemical methods.
2. Material and methods

2.1. Cassava cultivars and on-farm trials

Cassava cultivars were grown in Southern Brazil over the
2011/2012 growing season. Four cultivars were selected for this
study, as follows: SCS 253 Sangão (hereinafter SAN), Branco (here-
inafter BRA, a landrace), IAC576-70 (hereinafter IAC, a commercial
variety), and Oriental (hereinafter ORI, a landrace). On-farm trials
were carried out at the Ressacada Experimental Farm (Plant
Science Center, Federal University of Santa Catarina, Florianópolis,
SC, Brazil – 27�3504800 S, 48�3205700 W) in September 2011, using
the four cassava cultivars noted above. Samples of cassava cuttings
for cultivation were provided by the Santa Catarina State Agricul-
tural Research and Rural Extension Agency (EPAGRI) at Urussanga,
the official state agriculture agency. The experimental design was
in randomized blocks, with 4 blocks (6.3 � 15 m/block) spaced at
1 m. Each block consisted of four plots (12 � 1.2 m/plot) spaced
at 0.5 m. Cassava cuttings (15 cm long) were planted upright and
spaced at 1 � 1 m. Each plot was considered a treatment, and all
crop management was mechanized. Chemical analysis of soil fertil-
ity was previously done, and cultivation was performed manually,
following agroecological field handlings.
2.2. Induction of PPD

Cassava root samples (12 months old) were collected for
analysis of non-stored samples and for induction of physiological
deterioration under controlled conditions in the laboratory.
Immediately after harvest, the roots were washed, proximal and
distal parts of the root were removed, and cross sections were
made (0.5–1 cm) over the remaining root, followed by storage at
room temperature (66–76% humidity, 25 �C). Induction of PPD
was performed for 11 days. Monitoring the progress of PPD and
associated metabolic disturbances was performed daily after
induction of PPD. Non-stored samples and those at 3, 5, 8, and
11 days after PPD induction were collected at each time point,
dried (35–40 �C) in an oven, milled with a coffee grinder (Model
DGC-20N series), and kept for analysis. For enzymatic analysis,
fresh samples (batch of seven roots from each cultivar) were col-
lected, grated using a food processor (Walita-Master Plus, Brazil),
and stored (�80 �C) until analysis.
2.3. PPD scoring

Five independent experiments of PPD were carried out in which
a randomized sampling of 3 sliced roots from each plant variety
was scored (from 1–10% of PPD to 10–100% of PPD) over the
11-day experimental period. The information was imaged through
a digital camera (OLYMPUS FE-4020, 14 megapixel), and the results
were analyzed by visual inspection of the images.
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2.4. Enzymatic activities during PPD

2.4.1. Protein determination
Protein content was determined in the cassava root samples

(non-stored and 3, 5, 8, and 11 days postharvest), using Coomassie
brilliant blue G-250 (Bradford, 1976) with bovine serum albumin
as standard (y = 0.0159x, r2 = 0.98), and represented in mg kg�1.

2.4.2. APX activity
Cassava root samples (1 g, grated samples) were collected

directly into liquid nitrogen in a mortar with 2% PVPP, 1 mM PMSF,
10 mM DTT, and 0.1 mM EDTA (MW: 292.2 g mol�1) in 50 mM
Na–P buffer, pH 7.5. For analysis of ascorbate peroxidase (APX),
the extraction buffer also contained 2 mM ascorbate (MW:
176.13 g mol�1). The suspension was centrifuged (4000 rpm,
30 min, 4 �C) and the supernatant used for assay of enzymatic
activity. Total APX (EC 1.11.1.11) activity was measured by moni-
toring the decline in absorbance at 290 nm, as ascorbate
(e = 2.8 mM�1 cm�1) was oxidized for 3 min (Nakano & Asada,
1981). The assay medium consisted of 1200 ll of 50 mM potassium
phosphate buffer (pH 7.0), 200 ll EDTA, 200 ll ascorbate, 200 ll of
sample, and 200 ll of 0.1 mM H2O2 to start the reaction. APX activ-
ity was expressed in mM ascorbate min�1 mg�1 of proteins.

2.4.3. GPX activity
Guaiacol peroxidase (EC 1.11.1.7) activity was measured using a

reaction medium containing 50 mM phosphate buffer (pH 7),
9 mM guaiacol, and 19 mM H2O2 (Lin & Kao, 1999). The kinetic
evolution of absorbance at 470 nm was measured during 1 min.
Peroxidase activity was calculated using the extinction coefficient
(26.6 mM�1 cm�1 at 470 nm). One unit of peroxidase was defined
as the amount of enzyme that caused the formation of 1 mM of
tetraguaiacol per minute.

2.5. alpha-Tocopherol activity (a-TOC, or vitamin E)

Tocopherol (EC 233-466-0) activity was assayed as described by
Backer (Backer, Frank, De Angells, & Feingold, 1980) with some
modifications. Briefly, 1 g of cassava sample was homogenized
with 5 ml of a mixture of petroleum ether and ethanol (2: 1.6,
v v�1), the extract was centrifuged (4000 rpm, 30 min, 4 �C), and
the supernatant was used to estimate a-TOC content. To one
milliliter of extract, 3 ml of 2% 2, 2-dipyridyl in ethanol were
added, mixed thoroughly, and kept in dark for 5 min. The resulting
red color was diluted with 4 ml of distilled water and mixed well.
The resulting color in the aqueous layer was measured at 530 nm.
The a-TOC content was calculated using a standard curve
(y = 0.1115x, r2 = 0.96) made with known amounts of a-TOC
(0–100 mg ml�1) and expressed in mg kg�1 of fresh weight (FW).

2.6. Histochemical analysis

2.6.1. Sample preparation
For histochemical analysis, cassava root samples (non-stored

and 3, 5, 8, and 11 days of PPD) were collected, and small pieces
were made (0.5 � 0.5 cm2) for subsequent fixation in
paraformaldehyde.

2.6.2. Light microscopy (LM)
Samples of cassava roots were fixed in 2.5% paraformaldehyde

in 0.1 M (pH 7.2) phosphate buffer (72 h). Subsequently, the
samples were dehydrated in increasing series of ethanol aqueous
solutions (Schmidt, Scariot, Rover, & Bouzon, 2009; Uarrota,
Schmidt, Bouzon, & Maraschin, 2011). After dehydration, the sam-
ples were infiltrated with Historesin (Leica Historesin, Heidelberg,
Germany). Sections (5 lm in length) were stained with different
histochemical techniques and investigated with an Epifluorescent
microscope (Olympus BX 41) equipped with Image Q Capture Pro
5.1 software (Qimaging Corporation, Austin, TX, USA).

2.6.3. Histochemical staining
LM sections were stained as follows: Periodic Acid-Schiff (PAS)

used to identify neutral polysaccharides, Toluidine Blue (TB-O)
0.5%, pH 3.0 (Merck Darmstadt, Germany) used for acid polysac-
charides through a metachromatic reaction (Schmidt et al., 2009),
and Coomassie Brilliant Blue (CBB) 0.02% (m v�1) in Clarke’s solu-
tion (Serva, Heidelberg, Germany) used for protein identification
(Schmidt, Maraschin, & Bouzon, 2010).

2.7. Data analysis and mining

All statistical analyses and graphics were implemented in R
language (R core team-2014, version 3.1.1-(R Core Team, 2014)),
using the respective packages and scripts (see Supplementary
data). Enzymatic activity data were represented as mean ±
standard deviation of three repetitions (n = 3). PPD was correlated
with all enzymes studied, and two-way ANOVA using randomized
complete design was applied using the ‘‘easyanova” package.
Multivariate analysis by both non-supervised and supervised tech-
niques was applied for descriptive and predictive models (see Data
article). Histochemical micrographs were performed in Photoshop,
version 7.
3. Results and discussion

3.1. Postharvest physiological deterioration scoring (PPD scoring)

The results of PPD scoring were summarized in Fig. 1A, and
images of root slices at different storage days can be found in
Fig. 1B. ORI showed a high rate of deterioration when compared
to the other cultivars, which agrees with findings previously
reported by our research group (Uarrota et al., 2014). Statistical dif-
ferences were not found (Tukey test, p < 0.05) among cultivars.
During storage time, significant differences in PPD were only found
between non-stored, samples stored during 3 days with those
stored during 5, 8, and 11 days. Imaging of PPD samples (Fig. 1B)
also revealed rapid deterioration of ORI samples, but also SAN
samples, with samples from BRA and IAC cultivars showing the
most tolerance to PPD. Since PPD scoring for these cultivars is
scarce in the literature, our results will serve as a basis for future
screening of these valuable genetic materials toward a better
understanding of cassava root deterioration.

3.2. Enzymatic activities during PPD and multivariate analysis

Several metabolites are critical for plant growth and develop-
ment and play an important role in integrating various stress sig-
nals, controlling downstream stress responses by modulating
gene expression machinery and regulating various transporters
or pumps and biochemical reactions (Tuteja & Sopory, 2008). On
the other hand, reactive oxygen species (ROS) are continuously
produced during PPD as byproducts of aerobic metabolism.
Depending on the nature of the ROS species, some are highly toxic
and rapidly detoxified by various cellular enzymatic and nonenzy-
matic mechanisms. Plants are supplied with several mechanisms
to combat increased ROS levels during abiotic stress conditions.
However, under other circumstances, plants appear to purpose-
fully generate ROS as signaling molecules to control various
processes, including pathogen defense, programmed cell death,
and PPD (Apel & Hirt, 2004). Our recently published work has
shown that some nonenzymatic mechanisms, such as secondary
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metabolites, including phenolics, carotenoids, flavonoids, and
anthocyanins, as well as certain enzymes, such as catalase, hydro-
gen peroxide, and superoxide dismutase, are highly involved in the
process of ROS detoxification (Uarrota et al., 2014) during PPD.
Ongoing experiments in our laboratory have also found hydroxy-
coumarins, mainly scopoletin, to be involved in PPD, as previously
reported in the literature by other research groups (Sánchez et al.,
2013; García, Sánchez, Ceballos, & Alonso, 2013; Zidenga, Leyva-
Guerrero, Moon, Siritunga, & Sayre, 2012; Wheatley & Schwabe,
1985). Isamah (2004) observed increases of peroxidase levels in
cassava roots undergoing PPD up to 24 h of storage, but decreasing
thereafter. Such increase in peroxidase levels was attributed to PPD
stress. Biochemical markers associated with PPD and the enzy-
matic activities measured were summarized in Fig. 2A–D. Specifi-
cally, APX (Fig. 2A) increased during PPD up to day 3 of storage
in the SAN and IAC cultivars and up to day 5 of storage in the
BRA cultivar. In the ORI cultivar, this trend was not observed. Anal-
ysis of variance of these data showed differences among cultivars
along all storage days (p < 0.05).

Our results suggest that APX may be involved in first-line
defense in order to maintain low levels of ROS formed during
PPD. The second line of defense is the presence of endogenous
antioxidant chemicals, some of which are the substrate of antioxi-
dant enzymes (e.g., ascorbate for APX), while others act in a man-
ner that is independent of these enzymes, such as phenols and
anthocyanins (van Doorn & Ketsa, 2014; Apel & Hirt, 2004).

The crucial role of APX in lowering ROS has been reported in the
literature (Foyer & Noctor, 2011; Gallie, 2013). Levels of APX have
been found to increase in response to environmental stresses, such
as water deficit, salt stress, drought, and both cold and hot temper-
ature, in many crops (Zhang, Zhang, et al., 2013; Sato, Masuta,
Saito, Murayama, & Ozawa, 2011; Wang et al., 2005). These find-
ings support the hypothesis that APX levels in cassava roots
increase as a consequence of PPD stress.

GPX activity (Fig. 2B) showed an increasing trend during PPD up
to day 5 of storage, except for IAC and SAN. Significant statistical
differences (p < 0.05) were found between ORI and BRA cultivars.

Studies reporting on GPX activity relative to PPD and stress-
induced increases in ROS concentrations are scarce in the litera-
ture. According to Doorn & Ketsa, increased activity of GPX has
been observed during exposure to low temperature in different
crops, such as coffee, cucumber, maize and rice. Other types of abi-
otic stress have also resulted in an increase of GPX activity, e.g.,
drought (Zhang & Kirkham, 1996), hypoxia (Bai, Li, Ma, Feng, &
Shu, 2010), and exposure to NaCl (de Azevedo Neto, Prisco,
Enéas-Filho, do Braga de Abreu, & Gomes-Filho, 2006). In the pre-
sent study, increases in GPX activity in cassava roots were
observed during the first 3 days of storage. GPX can use ascorbate
during oxidation reactions; therefore, these results indicate that
GPX may be involved in lowering stress-induced ROS during PPD
by, for example, converting hydrogen peroxide to water. Higher
GPX activity was also reported in stored mango (Ding, Tian,
Zheng, Zhou, & Xu, 2007), chilling injury of the peel of banana fruit
stored at 5 �C (Pongprasert, Sekozawa, Sugaya, & Gemma, 2011),
and stored peach fruit (Meng, Han, Wang, & Tian, 2009).

Total protein contents (Fig. 2C) in all cultivars increased up to
day 5 of storage, except for BRA, which presented a small decrease
at day 5, but continued to increase up to day 8. Significant differ-
ences (p < 0.05) in total protein contents in all cultivars and all
storage days were detected. Finally, as shown in Fig. 2D, small
quantities of alpha-Tocopherol were found, but no trend was
identified during storage days would lead to any significant corre-
lation with PPD in cassava roots. Increases in alpha-Tocopherol
were observed only in the IAC cultivar until day 3 of storage.
Tocopherols are present in all anatomical parts of plants, i.e., roots,
tubers, leaves, stems and flowers (Siger et al., 2015).

The accumulation of Tocopherol varies greatly in different plant
species and different plant parts as well. Tocopherols have diversi-
fied roles in plant growth and physiological processes. As an
antioxidant, Tocopherol plays a vital role in conferring tolerance
to several abiotic stresses, e.g., salinity, drought, metal toxicity,
ozone, and UV radiation. Several reports indicate that stress-
tolerant plants exhibit an enhanced level of Tocopherol, whereas
sensitive ones show a decreased level under stressful conditions,
leading to oxidative damage (Yao et al., 2015; Hasanuzzaman,
Nahar, & Fujita, 2014). Tocopherol plays a key role in scavenging
or quenching lipid peroxides, oxygen radicals, or singlet oxygen,
resulting in detoxification of reactive oxygen species and thus mit-
igating abiotic stress-induced damage (Semida, Taha, Abdelhamid,
& Rady, 2014). Tocopherol also works in coordination with other
antioxidants (e.g., ascorbate) and interacts with phytohormones,
such as ethylene, abscisic acid, salicylic acid, and jasmonic acid
(Hasanuzzaman et al., 2014). While many studies have explored
the role of Tocopherol in abiotic stress tolerance, many gaps
remain with respect to its activity in the context of PPD-induced
stress. Our results did not identify any relationship between
Tocopherol and PPD-induced stress.
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When data about enzymatic activity was summarized and cor-
related using Pearson’s correlation coefficient (PCC), a high positive
correlation was found between GPX and PPD (r = 0.60), followed by
a moderate correlation for APX (r = 0.35) and a negative correlation
between PPD and total protein content (Fig. 3). GPX and APX are
the main antioxidant scavengers during PPD. No involvement of
alpha-Tocopherol was observed in the context of PPD (r = 0.05).
Enzymatic systems have been associated with the reduction of
many stress systems in such crops as tobacco and wheat
(Curvelo et al., 2013). Our results demonstrated that APX and
GPX activity increased during PPD as an antioxidant mechanism
against ROS formed during the PPD process and indicated a poten-
tial role of proteins in PPD delay by the negative correlation
between PPD and total proteins. Future studies may extend these
findings toward a better understanding of cassava deterioration.

According to Sills and Gossett (2012), chemometric techniques
that include multivariate models, such as principal component
analysis, hierarchical clustering analysis, partial least squares dis-
criminant analysis (PLS-DA), linear discriminant analysis (LDA),
and support vector machines (SVM), can be applied to complex
and collinear data to extract relevant information. Both non-
supervised (PCA) and supervised (PLS-DA, LDA, and SVM) methods
reduce large datasets by combining collinear variables into a small
number of latent variables (LVs), which are then used in place of
the full dataset to build predictive models.

Enzymatic activity data in this study were subjected to both
non-supervised and supervised methods to better classify samples
according to their biochemical behavior (see Fig. 4A and B). As a
result, mathematical and predictive models were constructed to
screen cassava samples, and a similar profile was detected in all
samples, except those at day 11 of storage (Fig. 4A), using PCA as
the best non-supervised method. The total variance explained by
PCA was 67.50%, with 46.30% and 21.20% for PC1 and PC2, respec-
tively. Samples at day 11 of storage were found in (PC1+ and PC2�)



Fig. 3. Correlation matrix of enzyme data (APX, GPX, alpha-Tocopherol, and total
proteins) with PPD. Crude data (non-normalized) of enzymatic activities during
storage time were correlated with the level of PPD in the samples. Colors indicate
the degree of correlation as represented in the matrix figure scale. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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and the major group in (PC1� and PC2�). The loading values
showed that samples at day 11 grouped in that component because
of APX and GPX activities and PPD level. The other groups (non-
stored and samples stored during 3 and 5 days) were classified
according to protein content and APX activity.
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A decision tree model (Fig. 4B) identified protein amounts and
GPX as mainly related to PPD in cassava samples. According to
our model, with protein amounts above 7238 mg kg�1, 26% of
samples did not deteriorate. Lower amounts of proteins and GPX
activity higher than 0.23 lmol min�1 mg�1 seem to be associated
with diminished deterioration in cassava roots, i.e., 19%. Such
findings reinforce the strong involvement of GPX in PPD delay.
3.3. Histochemical analysis

3.3.1. Involvement of acidic and neutral polysaccharides in cassava
PPD

Polysaccharides are relatively complex carbohydrates and the
first biopolymers found in nature. These polymers are made up
of either single or multiple monosaccharides joined together by
glycosidic bonds forming large, often branched, macromolecules.
They play a number of roles in biological functions like respiration,
mechanical strength, source of energy, and stress tolerance
(Sanandiya & Siddhanta, 2014). They also may vary qualitatively
and quantitatively, depending on species, cultivar, tissue, location
of cultivation, time of harvest, and duration of storage (Sills &
Gossett, 2012). The high degree of structural complexity of plant
cell wall polysaccharides has led to suggestions that some compo-
nents might function as latent signaling molecules released during
pathogenic infection as defensive responses (Vorwerk et al., 2004).
They have also been implicated to possess many antibacterial and
antioxidant properties (Li & Shah, 2014; Zhang, Wang, et al., 2013).
Changes in plant polysaccharides, e.g., pectin and hemicelluloses,
under stress conditions have been reported, and increases in lignin
have also been found (Lima et al., 2014). Cell wall polysaccharides
have been implicated as a promising group of antioxidant com-
pounds (Kale et al., 2013), and their free radical scavenging activity
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Fig. 5. Light microscopy of cassava samples during storage, as analyzed by histochemical staining. (A) Samples stained with toluidine blue (TB) to indentify changes in acidic
polysaccharides. Cw indicates cell wall and S starch granules; (B) staining with Periodic Acid-Schiff (PAS) to identify neutral polysaccharides. Arrows indicate starch granules
and (C) staining with Coomassie brilliant blue (CBB) to identify proteins in cassava root parenchyma. Arrows indicate cell walls and starch granules.
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has been attributed to pectic polysaccharides (Mateos-Aparicio,
Mateos-Peinado, Jimenez-Escrig, & Ruperez, 2010).

Cassava samples at different storage days were stained with
toluidine blue (TB), and the results are summarized in Fig. 5A. All
cultivars showed metachromatic reaction in the cell walls and
around starch granules. This reaction was predominantly observed
up to 5 days of storage in the BRA and IAC cultivars, while for other
cultivars, it was observed only in the cell walls. Metachromatic
reaction indicates the presence of acidic polysaccharides that are
produced as oxidative stress increases in cassava samples, and
their role can be attributed to a reduction in PPD stress. Degrada-
tion of starch granules can also be observed during storage. Reports
attributing anatomical changes to PPD are scarce in the literature,
thus making the present work the first to report anatomical alter-
ation in relation to PPD, in particular the function of cassava pri-
mary cell walls. According to Bowen et al., 2006, a reduction in
the moisture content of plant matrix generally reduces the rate
of deterioration. However, oxidative stress is generally enhanced
during low-water activities, such as accumulation of hydrogen per-
oxide and increase in lipid peroxidation (Chakraborty & Pradhan,



Fig. 5 (continued)

744 V.G. Uarrota et al. / Food Chemistry 197 (2016) 737–746
2012). Under these conditions, oxygen can permeate through lipid
layers, such as found in cell membranes. Free radicals have been
implicated in the oxidative-reductive depolymerization of carbo-
hydrates; therefore, radicals generated by lipid oxidation may
attack starch.

Samples stained with Periodic Acid-Schiff (PAS) exhibited a
strong reaction for starch granules, but a lesser reaction in the cell
wall of samples from all cultivars studied during 11 days in stor-
age. The intense reaction indicates a major presence of neutral
polysaccharides, namely, starch, in these samples. Starch granules
can be easily observed in non-stored samples (Fig. 5B). During stor-
age, starch is probably degraded into monosaccharides. In nearly
all green plants, starch occurs as carbohydrate reserves. Starch
granules consist of two very different polymers, both structural
and functional: amylose and amylopectin. The functionality of
starch depends on (1) the average molar mass of amylose and amy-
lopectin and (2) its molecular structure and organization within
the granule (Jankovíc, 2013). It has also been reported that the
physicochemical properties of cassava starch are altered with the
complexation of oxalic and succinic acids (John & Raja, 1999) dur-
ing PPD (Sánchez et al., 2013).

When samples of cassava were stained by Coomassie brilliant
blue (CBB), a slight reaction was found up to day 3 of storage in
all samples for cell walls and around starch granules (Fig. 5C).
The reaction was more intense in BRA/SAN cultivars. These find-
ings corroborate the results of protein quantification, which
showed small increases in protein rates from day 3 to 5 of storage.
In general, cassava samples are poor in protein content, which
explains the small reaction observed in all samples.
4. Conclusions

The results of this study revealed that the ORI cultivar is the
most susceptible to deterioration. Based on BRA, IAC, SAN and
ORI cultivars, GPX and APX activity generally increased to reduce
PPD-induced stress during storage, and, together with total pro-
teins, these enzymes may, therefore, play a role in PPD delay in
cassava roots. Histochemical analysis demonstrated that acidic
polysaccharides seem to act as barrier components of plant cell
walls and may also play an important role in PPD delay in that
catabolization of starch was observed during PPD. By using multi-
variate analysis, a descriptive model was built, and it also con-
firmed that GPX, protein contents, and APX all play important
roles in PPD delay.
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