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INTRODUCTION

This is part three in this series of papers. Throughout this paper, k is a
field of characteristic zero. We first recall the definition of prehomogeneous
vector spaces.

Definition (0.1). Let G be a connected reductive group, V a represen-
tation of G, and / a non-trivial character of G, all defined over k. Then
(G, V, /) is called a prehomogeneous vector space if it satisfies the following
properties.

(1) There exists a Zariski open orbit.

(2) There exists a non-zero polynomial 2(x) # k[V] such that
2(gx)=/(g) 2(x).

Such 2(x) is called a relative invariant polynomial. We define
V ss=[x # V | 2(x){0] and call it the set of semi-stable points. If (G, V, /)
is an irreducible representation, the choice of / is essentially unique and we
may write (G, V ) as well. The theory of prehomogeneous vector spaces was
initiated by Sato�Shintani [21] and Shintani [24]. If (G, V ) is irreducible,
the classification is known (see [20]).

In parts one and two [27, 25], we considered cases (2), (5), (6), (7) in
the Sato�Kimura classification [20]. In this part, we consider the
prehomogeneous vector space G=GL(5)_GL(3), V=�2 k5 �k3. Except
for the case (29) in [20] (for which we haven't carried out our program),
the remaining applicable cases are either very easy or closely related to the
spin or half spin representations of the spin groups. In this sense, the
present case is rather an isolated case and that's why we consider this single
case separately here. However, this case is quite interesting, because it
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produces a family of (irrational) cubic forms in five variables whose values
at integer points are dense in R. This may be the family of cubic forms in
the lowest number of variables we can achieve by the theory of prehomoge-
neous vector spaces. We consider most of the remaining irreducible split
cases in part four.

Oppenheim conjectured in [13] that if Q(x) is a real non-degenerate
indefinite quadratic form in n�5 variables such that the ratio of at least
one pair of coefficients is irrational, for any =>0, there exists x # Zn such
that 0<|Q(x)|<=. Due to the result of Lewis [9], this is equivalent to
saying the set [Q(x) | x # Zn] is dense in R. There were many partial results
including the one by Davenport with the collaboration with others [4, 5,
6, 2, 19] for n�21. It was proved in the final form by Margulis (see [11])
for n�3 using ergodic theory.

We posed the question of generalizing the Oppenheim conjecture from
the viewpoint of prehomogeneous vector spaces in [27]. For more detailed
comments, the reader should see the introduction of [27]. Here, we briefly
state what we are going to prove.

Let H1=SL(5), H2=SL(3), H=H1_H2 . It is known that (G, V ) is a
prehomogeneous vector space (see [24, 29, 27] for the definition of
prehomogeneous vector spaces). A non-constant polynomial 2(x) on V is
called a relative invariant polynomial if there exists a character / such that
2(gx)=/(g) 2(x). Such 2(x) exists for our case and is essentially unique.
So we define V ss=[x # V | 2(x){0]. For x # V ss

R , let H%xR+ be the identity
component in classical topology of the stabilizer HxR . We will prove that
if x # V ss

R is ``sufficiently irrational'' (see Theorem (6.2) for the precise
definition), H%xR+HZ is dense in HR .

What Margulis did was to prove the above statement for the case
H=SL(3), V=Sym2(R3)*. Our method is based on the following theorem
due to Ratner.

Theorem (0.2) (Ratner). Let G be a connected Lie group and U a con-
nected subgroup of G generated by unipotent elements of G. Then given any
lattice 1/G and x # G�1, there exists a connected closed subgroup
U/F/G such that Ux1=Fx1. Moreover, F�F & x1x&1 has a finite
invariant measure.

Note that in the above theorem, the definition of a lattice contains the
condition that G�1 has a finite volume. The first statement was called
Raghunathan's topological conjecture, and the second statement was
proved by Ratner in conjunction with Raghunathan's topological conjec-
ture. Raghunathan's topological conjecture was published by Dani [3] for
one dimensional unipotent groups and was generalized to groups generated
by unipotent elements by Margulis [10]. The proof for the general case
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was given by Ratner in a series of papers [14�17]. For these, there is an
excellent survey article by Ratner [18].

Note that in the above theorem, if G is an algebraic group over Q and
1 is an arithmetic lattice, the group F becomes an algebraic group defined
over Q. For this the reader should see Proposition (3.2) [22, pp. 321�322].
It is also proved in Proposition (3.2) [22, pp. 321�322] that the radical of
F is a unipotent subgroup. In [22], only one lattice is considered, but one
can deduce the above statement for any lattice commensurable with the
lattice in [22] by a simple argument using Ratner's theorem.

We describe an application of the density of H%xR+HZ in HR . For any
non-zero point x in a vector space, we denote the point in the correspond-
ing projective space determined by x by [x]. Let V1 be a five dimensional
vector space defined over Q. We fix a rational basis [m0 , ..., m4] for V1 .

Let

Q(a)=a0a4& 1
4a1a3+ 1

12a2
2 ,

F(a)=72a0a2a4+9a1 a2 a3&2a3
2&27a0 a2

3&27a2
1a4

for a=�4
i=0 ai mi . If we identify V1 with the space of binary quartic

forms by a � a0v4
1+ } } } +a4v4

2 (v1 , v2 are variables), Q, F correspond to
quadratic and cubic SL(2)-invariant polynomials.

If g # GL(V1)R $GL(5)R , it naturally acts on P(Sym2 V*1)R and
P(Sym3 V*1)R . Note that (gQ)(a)=Q(g&1a), (gF )(a)=F(g&1a). Then the
following theorem follows from the consideration of H%xR+HZ .

Theorem (0.3). Suppose g[Q] � P(Sym2 V*1)Q . Then the set of values of
the cubic polynomial F(g&1a) at primitive integer points in Z5 is dense in R.

In Section 1, we consider various identifications concerning tensor
products of vector spaces. If x # V ss

R , by Ratner's theorem (Theorem (0.2)),
there exists a closed connected subgroup H%xR+ /F/HR such that
H%xR+HZ =FHZ . In Section 2, we construct equivariant maps from V ss to
various H-varieties.

We can summarize how we construct equivariant maps in Section 2 in
the following manner.

V ss V*1 �Sym2 V2 �
5

V*1 � 5 Sym2 V2 $Sym2 V*2

V*1 �Hom(V2 , V2) Sym2 V*1

Sym3 V*1
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The map V ss � V*1 �Sym2 V2 is similar to the one in [26], and
V*1 �Sym2 V2 � Sym2 V*2 is simply the Castling transform in [20]. It
turns out that if x # V ss, the corresponding quadratic form in three
variables is non-degenerate. Using this quadratic form, we can identify
V2 with its dual, and hence getting a map V*1 �Sym2 V2 � V*1 �
Hom(V2 , V2). Regarding an element of V*1 �Hom(V2 , V2) as a 3_3
matrix M(v) with entries in the space of linear forms in five variables
v=(v1 , ..., v5), we can consider tr(M(v)2), det M(v), which are a quadratic
form and a cubic form in five variables respectively. This rather indirect
way is how cubic forms in five variables arise from points in V ss.

In Section 3, we prove that these equivariant maps are well defined and
are non-trivial. These equivariant maps correspond to families of such F 's
with the property that it XF is the corresponding H-variety, F has a unique
fixed point in XF . Part of our consideration resembles the argument in
[23]. In Section 4, we describe the orbit space to determine when H%xR+ is
generated by unipotent elements. In Section 5, we classify all F's as above.
In Section 6, we prove Theorem (0.3).

1. PRELIMINARIES

We are going to do a lot of computations in Section 3 regarding
symmetric tensor products of vector spaces. We fix various normalizations
for that purpose in this section.

Let W be a vector space over k with a basis [e1 , ..., en]. Let W* be the
dual space with the dual basis [ f1 , ..., fn]. For a1 , ..., ad # W, we define

[a1 , ..., ad]d=
1
d !

:
_ # Sd

a_(1) � } } } �a_(d ) ,

where Sd is the group of permutations of [1, ..., d]. We identify Symd W
with the subspace of W �d spanned by elements of the form [a1 , ..., ad]d .
Similarly, we identify Symd W* with a subspace of (W*) �d. For
a1 , ..., ad1

, ad1+1 , ..., ad1+d2
# W, we define

[a1 , ..., ad1
]d1

[ad1+1 , ..., ad1+d2
]d2

=[a1 , ..., ad1+d2
]d1+d2

.

By this product, �Sym*W becomes an associative algebra. Since
[a1 , ..., ad]d=a1 } } } ad , we use this usual notation of product from now
on.
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Since (W*) �d and W �d are dual spaces of each other, there is a natural
pairing between Symd W and Symd W*. If a=a1 } } } ad # Symd W,
b=b1 } } } bd # Symd W*, we normalize this pairing by

(a, b)d=(b, a)d=
1
d !

:
_ # Sd

b1(a_(1)) } } } bd (a_(d)).

Then if i1+ } } } +in=d,

(ei1
1 } } } e in

n , f i1
1 } } } f in

n )d=
i1! } } } in!

d !
.

Therefore, Symd W* can be identified with the dual space of Symd W.
The map

W % a � id (a)=a�a� } } } �a # Symd W

is a polynomial map. So if f # Symd W*, f (a)= f (id (a)) is a polynomial
map from W to k and is homogeneous of degree d. We can identify
Symd W* with the space of degree k forms on W by this correspondence.
If a=�n

i=1 aiei ,

id (a)=�
d !

i1 ! } } } in !
a i1

1 } } } a in
n e i1

1 } } } e in
n ,

where the sum is over all (i1 , ..., in) such that i1+ } } } +in=d. So if
f =f i1

1 } } } f in
n , f (a)=a i1

1 } } } a in
n . Therefore, f corresponds to the monomial

ai1
1 } } } a in

n .
If G/GL(W) is a subgroup, G acts on W* by (gf )(v)= f (g&1v) for

g # G, f # W*. Whenever we consider the contragredient representation, we
consider this action.

2. DEFINITIONS OF EQUIVARIANT MAPS

Let G, V, H be as in the introduction. We construct H-equivariant maps
from V or V ss to various H-varieties in this section.

Let W=k2 be the space of two dimensional column vectors. Let [e1 , e2]
be the standard basis of W. Consider the usual action of GL(2) on W. This
induces an action of GL(2) on Symd W and Symd W* for any d. We define
new actions of GL(2) on Sym2 W, Sym4 W by g } x=(det g)&1 gx,
(det g)&2 gx where g } x is the new action and gx is the usual action. Note
that scalar matrices act trivially and therefore, this defines an action of
PGL(2) on Sym2 W, Sym4 W.
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Let V1=Sym4 W, V2=Sym2 W, V=�2V1 �V2 and G1=GL(V1)$
GL(5), G2=GL(V2)$GL(3), G=G1_G2 . Then G acts on V in the usual
manner and the above action of PGL(2) defines a homomorphism PGL(2)
� G. By Schur's lemma, this is an imbedding. In fact, Ker(PGL(2) � G1)
=Ker(PGL(2) � G2)=[1]. So we regard PGL(2) as a subgroup of G. Let
T� =Ker(G � GL(V )). By Schur's lemma again,

T� =[(tI5 , t&2I3) | t # GL(1)]$GL(1).

If (tI5 , t&2I3) # PGL(2), it acts trivially on V1 , V2 . So t=1. Therefore,
PGL(2) & T� =[1].

Let l0=e2
1 , l1=e1 e2 , l2=e2

2 and m0=e4
1 , ..., m4=e4

2 . Then [l0 , l1 , l2],
[m0 , ..., m4] are bases of V2 , V1 respectively.

We define a linear map ,1 : V � �4 V1 �Sym2 V2 $V 1* �Sym2 V2 by

V % :
N

i=1

pi �qi � 1
2 :

N

i, j=1

pi 7 pj �qi qj (2.1)

for p1 , ..., pN # �2 V1 , q1 , ..., qN # V2 . Regarding Sym2 V2 as a subspace of
V2 �V2 , we denote the element of V1* �V2 �V2 which corresponds to
,1(x) by ,� 1(x). Regarding V1* as the contragredient representation of
V1 , V1* �Sym2 V1 is a representation of G.

The following lemma can be proved as in [20, p. 80], and the proof is
left to the reader.

Lemma (2.2). For g = ( g1 , g2) # G, ,1( gx) = det g1 g,1(x), ,� 1(gx)=
det g1g,� 1(x).

If x=�0�i< j�4 m i 7 mj �xij with x ij # V2 ,

,1(x)= 1
2 :

0�i< j�4

:
0�k<l�4

m i 7 mj 7 mk 7 m l �x ij xkl .

Let m0* , ..., m4* # �4 V1 be elements such that m i 7 mj*=$ ijm0 7
} } } 7 m4 ($ij is Kronecker's delta). Explicitly,

m0=m1 7 m2 7 m3 7 m4 , m1=&m0 7 m2 7 m3 7 m4 , etc.

We identify �4V1 with the dual space of V1 by the pairing

V1_�
4

V1 % (a, b) � a 7 b

and choosing m0 7 } } } 7 m4 as the basis element of �5 V1 . Then
[m0* , ..., m4*] can be regarded as the dual basis of [m0 , ..., m4].
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Let

Pfaff0 (x)=x12x34&x13x24+x14x23 ,

Pfaff1 (x)=&(x02x34&x03x24+x04x23),

Pfaff2 (x)=x01x34&x03x14+x04x13 , (2.3)

Pfaff3 (x)=&(x01x24&x02x14+x04x12)

Pfaff4 (x)=x01x23&x02x13+x03x12 .

Then

,1(x)= :
4

i=0

m i* �Pfaff i (x). (2.4)

The quadratic polynomials Pfaff0 (x), ..., Pfaff4 (x) are the Pfaffians of
4_4 main minors of x if we regard x as an alternating 5_5 matrix with
entries in V1 . This idea was used in [26] for the case G=GL(5)_GL(4),
V=�2 k5 �k4 to parametrize quintic extensions of a given ground field.

Next we consider a linear map ,2 : V1* �Sym2 V2 � �5 Sym2 V2 $
Sym2 V2* defined by

V1* �Sym2 V2 % :
4

i=0

mi* �pi � p0 7 } } } 7 p4 # �
5

Sym2 V2 $Sym2 V2*.

(2.5)

Note that ,2 is the Castling transform discussed in [20].

Definition (2.6). 81=(1�34) ,2 b ,1 .

81 is a map from V to Sym2 V2*. The following lemma can also be
proved as in [20, p. 80], and the proof is left to the reader.

Lemma (2.7). 81(gx)=(det g1)4 (det g2) g2 81(x).

This map 81 was also considered in [12] (using ,1 also) for a different
purpose. We will show in Section 3 that the discriminant of 81(x) is not
identically zero and V ss consists of x's such that 81(x) is non-degenerate.

For x # V, let 8� 1(x)(:, ;) be the symmetric bilinear form on V2

associated with 81(x). In other words,

8� 1(x)(:, ;)= 1
2 (81(x)(:+;)&81(x)(:)&81(x)(;))

for :, ; # V2 .
We define a linear map jx : V1* �V2 �V2 � Hom(V2 , V1* �V2) by

jx(a�:�;)(#)=81(x)(:, #) a�; (2.8)
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for a # V1* , :, ;, # # V2 . If f # Hom(V2 , V1* �V2), we define gf # Hom(V2 ,
V1* �V2) by

(gf )(:)= gf (g&1
2 :)

where we are considering the action of g on the element f (g&1
2 :).

Lemma (2.9). jgx(g(a�:�;))=(det g1)4 (det g2) gjx(a�:�;) for all
a # V 1*, :, ; # V2 .

Proof. Let # # V2 . Then by Lemma (2.7),

jgx(g(a�:�;))(#)=8� 1(gx)(g2:, #) g1 a�g2;

=(det g1)4 (det g2)(g28� 1(x))(g2 :, #) g1a�g2;

=(det g1)4 (det g2) 8� 1(x)(:, g&1
2 #) g1 a�g2;

=(det g1)4 (det g2) g(8� 1(x)(:, g&1
2 #) a�;)

=(det g1)4 (det g2) g( jx(a�:�;)(g&1
2 #))

=(det g1)4 (det g2)(g( jx(a�:�;)))(#).

This proves the lemma. K

Definition (2.10). ,3(x)= jx(,� 1(x)).

Apparently, ,3 is a map from V to Hom(V2 , V1* �V2).

Lemma (2.11). ,3(gx)=(det g1)5 (det g2) g,3(x).

Proof.

,3(gx)= jgx(,� 1(gx))

=det g1 jgx(g,� 1(x))

=(det g1)5 (det g2) gjx(,� 1(x))

=(det g1)5 (det g2) g,3(x). K

By the basis [l0 , l1 , l2] for V2 , we can regard ,3(x) as a 3_3 matrix
with entries in V1*. Then the action of g=(g1 , g2) # GL(V1)_GL(3) is
obtained by considering g2,3(x) g&1

2 and then applying g1 entry-wise.
Therefore,

82(x)=tr(,3(x)2) # Sym2 V1*, Fx=det ,3(x) # Sym3 V1* (2.12)

define maps x � 82(x), Fx from V to Sym2 V1*, Sym3 V 1*.
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The following lemma is an easy corollary of Lemma (2.11).

Lemma (2.13). (1) 82(gx)=(det g1)10 (det g2)2 g1 82(x).

(2) Fgx(a)=(det g1)15 (det g2)3 Fx(g&1
1 a) for all a # V1 .

For later purposes, we describe how to compute 82(x), Fx . We have
already described how to compute ,1(x), 81(x) in (2.4), (2.5). Let
[ p0 , p1 , p2] be the dual basis of [l0 , l1 , l2]. Suppose

,� 1(x)= :
2

i, j=0

a ij � li � lj , 81 (x)= :
2

t, s=0

btspt �ps

with aij # V1* , bts # k for all i, j, t, s and a ij=a ji , bts=bst . We denote the
matrices (aij), (bts) also by ,� 1(x), 8� 1(x). Let #=�2

s=0 #s ls . Then

,3(x)(#)= jx(,� 1(x))(#)

= :
2

i, j, s=0

jx(a ij � l i � lj)(#s ls)

= :
2

i, j, s=0

8� 1(x)(l i � ls) aij #s � lj

= :
2

i, j, s=0

aijb is#s � lj

= :
2

i, j, s=0

ajib is#s � lj .

Note that �2
i=0 a jibis is the ( j, s)-entry of the matrix product ,� 1(x)

8� 1(x). So if we regard ,3(x) as a 3_3 matrix with entries in V1*, we get
the following relation

,3(x)=,� 1(x) 8� 1(x). (2.14)

3. EQUIVARIANT MAPS AT W

In this section, we prove that the equivariant maps we constructed in
Section 2 are well defined and are non-trivial by evaluating them at a point
w, which we will define in (3.10).

Let [l0 , l1 , l2], [m0 , ..., m4] be the bases of Sym2 W, Sym4 W we defined
in Section 2. Let [ p0 , p1 , p2] be the dual basis of [l0 , l1 , l2]. Let h be the
Lie algebra of PGL(2). Then h is the Lie algebra of SL(2) also. We con-
sider V as a representation of h also. Let 4 be the fundamental dominant
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weight of h. We denote the irreducible representation of h with highest
weight d4 also by d4. Then by considering weights, �2 V1 $64�24 and

64�24$84�64�44, 24�24$44�24�k, (3.1)

where k is the trivial representation.
Therefore, V contains the trivial representation precisely once.
Note that V 2* $h as an h-module. We identify Sym4 W* as the space of

homogeneous polynomials of degree four in two variables v= t(v1 v2)
(v corresponds to v1e1+v2e2). We identify a=a(v)=a0v4

1+ } } } +a4v4
2

with (a0 , ..., a4).
Let

H0=\0
0

1
0+ , H1=\1

0
0

&1+ , H2=\ 0
&1

0
0+ . (3.2)

An easy way to compute Lie algebra actions is to consider values in the
ring of dual numbers k[=]�(=2).

Let

0 1 0 0 0

0 0 2 0 0 0 1 0

A0=\0 0 0 3 0+ , A$0=\0 0 2+ ,

0 0 0 0 4 0 0 0

0 0 0 0 0

4 0 0 0 0

0 2 0 0 0 2 0 0

A1=\0 0 0 0 0+ , A$1=\0 0 0+ , (3.3)

0 0 0 &2 0 0 0 &2

0 0 0 0 &4

0 0 0 0 0

4 0 0 0 0 0 0 0

A2=\0 3 0 0 0+ , A$2=\2 0 0+ .

0 0 2 0 0 0 1 0

0 0 0 1 0

Then the actions of h on V1 , V2 are easy to describe and with respect to
the bases [e0 , ..., e4], [l0 , l1 , l2], H0 , H1 , H2 map to

(A0 , A$0), (A1 , A$1), &(A2 , A$2)

respectively.
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Since the action of g # PGL(2) on a(v) # Sym4 W* is a(g&1v), the action
of H # h on a=a(v) is given by

a((1&=H) v)=a(v)+=(Ha)(v).

Then easy computations show that

H0 a=(0, &4a0 , &3a1 , &2a2 , &a3),

H1 a=(&4a0 , &2a1 , 0, 2a3 , 4a4), (3.4)

H2 a=(a1 , 2a2 , 3a3 , 4a4 , 0).

For a=(a0 , ..., a4), b=(b0 , ..., b4), we define

Q(a, b)=a0b4& 1
4a1b3+ 1

6a2b2& 1
4a3 b1+a4 b0 . (3.5)

Then Q is a non-degenerate symmetric bilinear form, invariant under the
action of PGL(2). This implies Q(Ha, b) is an alternating form for any
H # h. We regard this alternating form as an element of �2 (Sym4 W*)*$
�2 Sym4 W.

Lemma (3.6). The map H � fH(a, b)=Q(Ha, b) is an h-homomorphism
from h to �2 Sym4 W.

Proof. Note that the action of H # h on an element f (a, b) in
�2 (Sym4 W*)* is given by (Hf )(a, b)=&f (Ha, b)& f (a, Hb). So if
H, H$ # h,

(H$fH)(a, b)=&fH(H$a, b)& fH(a, H$b)

=&Q(HH$a, b)&Q(Ha, H$b)

=&Q(HH$a, b)+Q(H$Ha, b)

=Q([H$, H] a, b)

= f[H$, H](a, b). K

This defines an h-homomorphism h � �2 V1 . Regarding this homo-
morphism as an element of �2 V1 �h*$�2 V1 �V2=V, we get a fixed
point of V under the action of PGL(2). We compute this element explicitly.

Note that the linear map defined by

H0 � 1
2v2

2 , H1 � v1v2 , H2 � 1
2 v2

1 (3.7)

is an h-homomorphism.
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By (3.4),

Q(H0a, b)=a0b3& 1
2a1 b2+ 1

2a2 b1&a3b0 ,

Q(H1a, b)=&4a0 b4+ 1
2 a1b3& 1

2a3 b1+4a4 b0 , (3.8)

Q(H2a, b)=a1b4& 1
2a2 b3+ 1

2a3 b2&a4b1 .

Note that [e2
1 , 2e1e2 , e2

2] is the dual basis of [v2
1 , v1 v2 , v2

2], and (m0 , v4
1)4

=1, (m1 , v3
1v2)4= 1

4 , etc. We identify 7 2V1 with the space of alternating
bilinear forms on V1* by assuming

m 7 m$(a, b)=(m, a)1 (m$, b)1&(m, b)1 (m$, a)1

for m, m$ # V1 , a, b # V 1*. So by the corresponding H � fH ,

H0 � 4m0 7 m3&12m1 7 m2 ,

H1 � &4m0 7 m4+8m1 7 m3 , (3.9)

H2 � 4m1 7 m4&12m2 7 m3 .

Since [H0 , H1 , H2] corresponds to [ 1
2 v2

2 , v1 v2 ,1
2v2

1] and [2l2 , 2l1 , 2l0] is its
dual basis, this correspondence can be regarded as the element 8w where

w=(m0 7 m3&3m1 7 m2)� l2+(&m0 7 m4+2m1 7 m3)� l1

+(m1 7 m4&3m2 7 m3)� l0 . (3.10)

These considerations show the following proposition.

Proposition (3.11). The element w # V is fixed by PGL(2).

In [20, p. 95], instead of w, the element

w$=(m0 7 m1+m2 7 m3 , m1 7 m2+m3 7 m4 , m0 7 m2+m1 7 m4)

was considered (we shifted the indices in [20] because we are using indices
0, ..., 4). However, by replacing m0 , ..., m4 in w by m4 , m2 , m0 , m1 , m3

respectively, and multiplying scalars to basis elements of �2 V1 , we get the
above element w$. Therefore, we are considering essentially the same
element as in [20].

In [20, p. 96], the Lie algebra of G%w$ �T� (G%w$ is the identity component
of the stabilizer) is computed and is isomorphic to the Lie algebra of
PGL(2). Therefore, this is the case for w also. Since we are assuming
ch k=0, this implies G%w=PGL(2)_T� if k is algebraically closed (see [7]).
For arbitrary k, we still have the inclusion PGL(2)_T� /G%w . Since this is
an isomorphism over k� , we get the following proposition
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Proposition (3.12). G%w=PGL(2)_T� .

By the basis [e0 , ..., e4], we regard V as the space of 5_5 alternating
matrices with entries in V2 . Then

0 0 0 l2 &l1

0 0 &3l2 2l1 l0

w=\ 0 3l2 0 &3l0 0 + .

&l2 &2l1 3l0 0 0

l1 &l0 0 0 0

By the definition (2.3),

Pfaff0 (w)=&3l 2
0 , Pfaff1 (w)=&3l0 l1 ,

Pfaff2 (w)=&2l 2
1&l0 l2 , (3.13)

Pfaff3 (w)=&3l1 l2 , Pfaff4 (w)=&3l 2
2 .

Note that we are regarding them as elements of Sym2 V2 and not Sym4 W.
By the basis [l0 , l1 , l2], we regard ,� 1(w) as a 3_3 matrix with entries in

V 1* as in Section 2. Then

3m0*
3
2m1*

1
2 m2*

,� 1(w)=&\ 3
2m1* 2m2*

3
2m*3+ . (3.14)

1
2m2*

3
2m*3 3m4*

Let

n0=l 2
0 , n1=l 2

1 , n2=l 2
2 , n3=l0 l1 , n4=l1 l2 , n5=l0 l2 # Sym2 V2 .

(3.15)

Then [n0 , ..., n5] is a basis of Sym2 V2 . Let n0* , ..., n5* be elements of
�5 Sym2 V2 $Sym2 V 2* such that n i 7 nj*=$ ijn0 7 } } } 7 n5 . Then

Pfaff0 (w) 7 Pfaff1 (w) 7 Pfaff2 (w) 7 Pfaff3 (w) 7 Pfaff4 (w)

=(&3n0) 7 (&3n3) 7 (&2n1&n5) 7 (&3n4) 7 (&3n2)

=&34n0 7 n3 7 (2n1+n5) 7 n4 7 n2

=&34(2n0 7 n3 7 n1 7 n4 7 n2+n0 7 n3 7 n5 7 n4 7 n2)

=34(n1*&2n5*).

Therefore,

81(w)=n1*&2n5*. (3.15)
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We identify Sym2 V 2* with the dual space of Sym2 V2 . Then with respect
to the basis [ p0 , p1 , p2], n1* , n5* correspond to p2

1 , 2p0p2 . Therefore,
81(w)= p2

1&4p0p2 . We regard 8� 1(w) as a 3_3 matrix as in Section 2.
Then

0 0 &2

8� 1(w)=\ 0 1 0+ . (3.16)

&2 0 0

Therefore,

m2* &3
2m1* 6m0*

,3(w)=,� 1(w) 8� 1(w)=\3m*3 &2m2* 3m1*+ . (3.17)

6m4* &3
2m*3 m2*

So, we get the following proposition easily.

Proposition (3.18). Let a=a0m0+ } } } +a4 m4 . Then

(1) 82(w)(a)=(tr(,3(w)2))(a)=72(a0 a4& 1
4a1a3+ 1

12a2
2),

(2) Fw(a)=(det ,3(w))(a)
=72a0 a2 a4+9a1a2a3&2a3

2&27a0a2
3&27a2

1a4 .

By these considerations, 81 , 82 are non-trivial maps. By (3.16), the
discriminant 2(x) of 81(x) is a non-zero polynomial. By Lemma (2.7),
2(x) is a non-constant polynomial. Therefore, it is a relative invariant
polynomial. So we reproved that w # V ss

k . Since our case is known to be a
regular prehomogeneous vector space, V ss

k is a single Gk -orbit if k is
algebraically closed. Therefore, V ss consists of x's such that 81(x) is
non-degenerate.

Since 82(w) is non-degenerate, 82(x) is non-degenerate for all x # V ss.

4. THE ORBIT SPACE GK "V SS
K

In this section, we prove that Gk"V ss
k corresponds bijectively with

GL(1)k _GL(3)k -equivalence classes of ternary quadratic forms over k.
We first recall the relation between the orbit space Gk"V ss

k and the
Galois cohomology set.

For any algebraic group G over k, let H1(k, G) be the first Galois
cohomology set. We choose the definition so that trivial classes are those
of the form [g&1g_]_ # Gal(k� �k) (g # Gk� ) and the cocycle condition is h_{=
h{h{

_ for a continuous map [h_]_ # Gal(k� �k) from Gal(k� �k) to Gk� .
Let (G, V ) be an arbitrary regular prehomogeneous vector space, and

w # V ss
k . Then for any x # V ss

k , there exists gx # Gk� such that x= gxw. Then
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cx=[g&1
x g_

x]_ # Gal(k� �k) determines a cohomology class in H1(k, Gw) and
does not depend on the choice of gx . The following theorem is due to
Igusa [8].

Theorem (4.1) (Igusa). The correspondence

Gk"V ss
x % x � cx # Ker(H1(k, Gw) � H1(k, G))

is bijective.

Note that Ker(H1(k, Gw) � H1(k, G)) is the set of elements c # H1(k, Gw)
which map to the trivial class in H1(k, G). In our case, H1(k, G) is trivial.
Therefore, Gk"V ss

k $H1(k, Gw).
We recall the correspondence between GL(1)k_GL(3)k -equivalence

classes of ternary quadratic forms and quarternion algebras. Let V3=
Sym2 V 2*. Then GL(V2)$GL(3) acts on V3 in the usual manner. We let
GL(1) act on V3 by the usual multiplication. Then GL(1)_GL(3) acts on
V3 . Let [l0 , l1 , l2] and [ p0 , p1 , p2] be as before. Let w� = p2

1&4p0p2 , and
Q the corresponding quadratic form. It is well known (and is easy to
verify) that the stabilizer of w� is isomorphic to SO(Q)_GL(1) and
SO(Q)$PGL(2).

Therefore, (GL(1)k_GL(3)k)"V ss
3k corresponds bijectively with

H1(k, PGL(2)). Since PGL(2) is isomorphic to the automorphism group of
the associative algebra M(2, 2), H1(k, PGL(2)) corresponds bijectively
with isomorphism classes of quarternion algebras. Given a ternary quad-
ratic form, the corresponding quarternion algebra is the Clifford algebra
associated with the quadratic form.

Now we go back to our situation. Let G, H, V be as before. We consider
the element w # V ss

k which we defined in (3.10). We pointed out in (3.12)
that G%w $PGL(2)_GL(1).

Proposition (4.2). The group Gw is connected.

Proof. We may assume that k is algebraically closed. Suppose
g # Gk�T� k . The identity component of the stabilizer of w in G�T� is
isomorphic to PGL(2). The conjugation by g induces an automorphism of
PGL(2). Since there is no outer automorphism of PGL(2), by changing g
if necessary, we may assume that g commutes with elements of PGL(2).
Since V1 , V2 are irreducible representations, by Schur's lemma, g is
represented by an element of the form (t1 I5 , t2I3). This element fixes w if
and only if t2

1 t2=1. So g=1 (in G�T� ). K

Proposition (4.3). (1) The map 81 : V � V3=Sym2 V 1* induces a
bijection Gk"V ss

k $(GL(1)k_GL(3)k)"V ss
3k .
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(2) If x # V ss
k , the projections of Hx to G1 , G2 induce isomorphisms to

the images. In particular, Hx $SO(81(x)).

Proof. Let c # H1(k, Gw). Then c becomes trivial in H1(k, H ) also.
Let g=(g1 , g2) # Hk� be the element such that c is represented by
[g&1g_]_ # Gal(k� �k) . Then the orbit in V ss

k corresponding to c is gw. By
Lemma (2.7), 81(gw)= g2 81(w).

Since H1(k, Gw)$H1(k, PGL(2)) and the projection of PGL(2) to G2 is
an isomorphism to its image,

H1(k, Gw) % [g&1g_]_ # Gal(k� �k) � [g&1
2 g_

2]_ # Gal(k� �k) # H1(k, PGL(2))

is a bijection. Note that we are considering PGL(2)/G for the first element
and PGL(2)/G2 for the second element. Since (GL(1)k _GL(3)k)" V ss

3k $
H1(k, PGL(2)), this proves (1).

Note that (PGL(2)_T� ) & H=PGL(2). So Hw $PGL(2). We already
pointed out that statement (2) holds for w in Section 2. Let x # V ss

k . By
Lemma (2.7), the projection of Hx to G2 is contained in SO(81(x)). So it
is enough to prove (2) when k is algebraically closed. But then x is in the
orbit of w and (2) follows easily. K

Remark (4.4). The map 81 induces a map Gk"V ss
k � GL(3)k "V ss

3k also,
but this may not be surjective. This may be regarded as the section
(GL(1)k_GL(3)k)"V ss

3k � GL(3)k"V ss
3k defined by x � (det x)&1 x.

5. INTERMEDIATE GROUPS

Let x # V ss
R . By Proposition (4.3), HxR is connected in classical topology.

So H%xR+=HxR . If 81(x) is definite, HxR is compact by Proposition (4.3)
also. Then HxRHZ /HR �HZ is a compact set. Therefore, an analogue of
the Oppenheim conjecture is not applicable to such points. The set of real
indefinite non-degenerate ternary quadratic forms is a single GL(1)R _
GL(3)R -orbit. Therefore, we only consider x # GR w.

We determine all the closed connected subgroups between H%xR+ and
HR for all x # GRw for the rest of this section. This reduces to the
consideration of Lie algebras. We consider an arbitrary ground field k of
characteristic zero and specialize to k=R in (5.10).

We first describe possible candidates for such subgroups. By Lemmas
(2.7), (2.13), 81 , 82 are H-equivariant maps. As we pointed out at the
end of Section 3, 81(x) # Sym2 V1*, 82(x) # Sym2 V2* are non-degenerate
for x # Gkw. So let SO(81(x)), SO(82(x)) be the corresponding special
orthogonal groups.

In the following definition, x # Gkw.
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Definition (5.1). (1) Hx1 /GL(V1), Hx2 /GL(V2) are the images of
the projections of Hx to G1 , G2 respectively.

(2) Hx3=SO(82(x))/GL(V1).

Note that both Hx1 , Hx2 are isomorphic to Hx , and Hx $PGL(2).
Let h be the Lie algebra of PGL(2) as before. Let h1=sl(5), h2=sl(3)

(Lie algebras of SL(5), SL(3)). If f is a Lie algebra between h and h1_h2 ,
it is an h-module. So we first decompose h1 , h2 to direct sums of irreducible
h-modules.

Let

2b2 &3b1 b0 0 0

12b3 &b2 &2b1 3b0 0

B=B(b0 , ..., b4)=\ 6b4 3b3 &2b2 3b1 6b0 + ,

0 3b4 &2b3 &b2 12b1

0 0 b4 &3b3 2b2

c3 3c2 &c1 c0 0

12c4 &2c3 &4c2 0 4c0

C=C(c0 , ..., c6)=\ 6c5 &6c4 0 &6c2 6c1 + ,

4c6 0 &4c4 2c3 12c2
(5.2)

0 c6 &c5 3c4 &c3

d4 &d3 d2 &d1 d0

4d5 &4d4 4d3 &4d2 4d1

D=D(d0 , ..., d8)=\6d6 &6d5 6d4 &6d3 6d2+ ,

4d7 &4d6 4d5 &4d4 4d3

d8 &d7 d6 &d5 d4

b$2 &b$1 b$0
B$=B$(b$0 , ..., b$4)=\2b$3 &2b$2 2b$1+ ,

b$4 &b$3 b$2

where b0 } } } # k.
We define

U2=[B(b0 , ..., b4) | b0 , ..., b4 # k],

U3=[C(c0 , ..., c6) | c0 , ..., c6 # k],
(5.3)

U4=[D(d0 , ..., d8) | d0 , ..., d8 # k],

V2=[B$(b$0 , ..., b$4) | b$0 , ..., b$4 # k].
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Let U1 , V1 be the images of h in h1 , h2 . U1 , V1 are clearly, sub
h-modules.

Lemma (5.4). The subspaces U2 , U3 , U4 , V2 are irreducible sub
h-modules with highest weights 44, 64, 84, 44 respectively.

Proof. By straightforward computations,

[A0 , B(1, 0, ..., 0)]=[A0 , C(1, 0, ..., 0)]=[A0 , D(1, 0, ..., 0)]=0,

[A$0 , B$(1, 0, ..., 0)]=0,

[A1 , B(1, 0, ..., 0)]=4B(1, 0, ..., 0), (5.5)

[A1 , C(1, 0, ..., 0)]=6C(1, 0, ..., 0),

[A1 , D(1, 0, ..., 0)]=8D(1, 0, ..., 0),

[A$1 , B$(1, 0, ..., 0)]=4B$(1, 0, ..., 0).

Also

[A2 , B(b0 , ..., b4)]=B(0, b0 , 6b1 , b2 , 4b3),

[A2 , C(c0 , ..., c6)]=C(0, 2c0 , c1 , &12c2 , c3 , 10c4 , 3c5), (5.6)

[A2 , D(d0 , ..., d8)]=D(0, d0 , 2d1 , 3d2 , ..., 8d7),

[A$2 , B$(b$0 , ..., b$4)]=B$(0, b$0 , 2b$1 , 3b$2 , 4b$3).

The author used MAPLE [1] to find U2 , U3 , U4 but computed (5.5),
(5.6) manually. So these computations can be managed manually in
principle, but we checked (5.5) (5.6) by MAPLE also.

By (5.6), U2 is spanned by elements of the form ad(A2) i B(1, 0, 0, 0, 0)
(ad(V) is the adjoint representation). Since

ad(A0) B(1, 0, 0, 0, 0)=0, ad(A1) B(1, 0, 0, 0, 0)=4B(1, 0, 0, 0, 0),

U2 is an irreducible sub h-module with highest weight 44.
Other cases are similar. K

Proposition (5.7). (1) [U2 , U2]=U1 �U3 .

(2) [U2 , U3]=U2 �U4 .

(3) [U2 , U4]=U3 .

(4) [U3 , U3]=U1 �U3 .

(5) [U3 , U4]=U2 �U4 .

(6) [U4 , U4]=U1 �U3 .

(7) [V2 , V2]=V1 .
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Proof. We first consider (1). Since U2 is irreducible, for any non-zero
element X # U2 , U2 is generated by X as an h-module. So [U2 , U2] is
generated by [X, U2] as an h-module also.

By straightforward computations,

[B(0, 0, 1, 0, 0), B(b0 , ..., b4)]

=&
21b1

5
A0&

21b3

5
A2 +C \0, &4b0 , &

8b1

5
, 0, &

8b3

5
, &4b4 , 0+ .

(5.8)

We chose B(0, 0, 1, 0, 0) because it is diagonal.
By (5.8), [U2 , U2]/U1 �U3 . By choosing b1=b3=0 in (5.8),

[U2 , U2] contains a non-zero element of U3 . This implies [U2 , U2]
contains U3 . By choosing b1 {0 in (5.8), [U2 , U2] contains an element of
the form X+X$ where X # U1 is non-zero and X$ # U3 . So X # [U2 , U2].
This implies [U2 , U2] contains U1 also. This proves (1).

Other cases follow from the following relations and by similar
arguments. We found these relations manually. However, it can be checked
by a routine program in MAPLE (which we did).

[B(0, 0, 1, 0, 0), C(c0 , ..., c6)]

=B \&
16c1

7
, &

16c2

7
, 0, &

16c4

7
, &

16c5

7 +
+D \0, &3c0 , &

12c1

7
, &

15c2

7
, 0, &

15c4

7
, &

12c5

7
, &3c6 , 0+ ,

[B(0, 0, 1, 0, 0), D(d0 , ..., d8)]

=C(&3d1 , &4d2 , &d3 , 0, &d5 , &4d6 , &3d7),

[C(0, 0, 0, 1, 0, 0, 0), C(c0 , ..., c6)],

=6c2A0&6c4A2+C(&c0 , c1 , c2 , 0, &c4 , &c5 , c6),

[C(0, 0, 0, 1, 0, 0, 0), D(d0 , ..., d8)],

=B \20d2

7
,

10d3

7
, 0, &

10d5

7
, &

20d6

7 +
+D \2d0 , &d1 , &

13d2

7
, &

9d3

7
, 0,

9d5

7
,

13d6

7
, d7 , &2d8+ ,

[D(0, 0, 0, 0, 1, 0, 0, 0, 0), D(d0 , ..., d8)]

=&14d3A0&14d5A2+C(&5d1 , 5d2 , 3d3 , 0, 3d5 , 5d6 , &5d7),

[B$(0, 0, 1, 0, 0), B$(b$0 , ..., b$4)]

=&3b1 A$0&3b3A$2 . K

178 AKIHIKO YUKIE



File: DISTL2 223120 . By:CV . Date:14:05:98 . Time:10:57 LOP8M. V8.B. Page 01:01
Codes: 2965 Signs: 1899 . Length: 45 pic 0 pts, 190 mm

Note that the Lie algebras of Hw1 , Hw2 are isomorphic to sl(2). We
denote the Lie algebra of Hw3 by so(5) (more precisely so(3, 2)). Since
dim so(5)=10, so(5)=U1 �U3 by counting the dimension.

Proposition (5.9). If h/f/h1_h2 is a Lie subalgebra, f is one of the
following subalgebras.

h, sl(2)_sl(2), sl(2)_sl(3), so(5)_sl(2),

so(5)_sl(3), sl(5)_sl(2), sl(5)_sl(3).

Proof. Let f be as above. Note that sl(3) does not contain any
h-module which is isomorphic to U3 or U4 . Suppose f#U4 . Then
f#U1 �U3 by Lemma (5.7)(1). So f#U2 by Lemma (5.7)(5). Since f#U1 ,
f#U1 �V1 . Therefore, f#sl(5)_sl(2). So f=sl(5)_sl(2) or sl(5)_sl(3).

Suppose the projection of f to the first factor contains U2 . Then there
exists an h-homomorphism : : U2 � V2 such that (x, :(x)) # f for all x # U2 .
By Lemma (5.7)(1), the projection of f to the first factor contains U3 .
Since U3 is not equivalent to any other factor, f contains U3 . By
Lemma (5.7)(4), f#U1 . Since f#h, f#U1 �V1 . If x # U2 , y # U1 , ( y, 0)
# f. So [( y, 0), (x, :(x))]=([ y, x], 0) # f. Since [U1 , U2]=U2 , f#U2 . By
Lemma (5.7)(2), f#U4 and it reduces to the previous case.

Suppose f does not contain U4 and the projection to the first factor does
not contain U2 . Suppose f#U3 . By Lemma (5.7)(4), f#U1 . Therefore, f
has so(5) as the first factor. This implies f=so(5)_sl(2) or so(5)_sl(3).

Suppose the projection of f to the first factor is U1 . If f#V2 , f#V1 also.
Therefore, f=sl(2)_sl(3). Otherwise the projection of f to both factors are
sl(2). Since there is no sub h-module between h and U1 _V1 , f is h or
sl(2)_sl(2). K

Now we specialize to the field k=R.

Proposition (5.10). Let x # GRw and HxR /F/HR be a closed con-
nected subgroup. Then F is one of the following subgroups.

HxR , Hx1R _Hx2R , Hx1R _SL(3)R ,

Hx3R_Hx2R , Hx3R_SL(3)R , SL(5)R _Hx2R , SL(5)R_SL(3)R .

Proof. If x= gw for g # GR , HxR= gHwRg&1, etc. So we may assume
that x=w. Then this proposition follows from the previous proposition. K
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6. AN ANALOGUE OF THE OPPENHEIM CONJECTURE

In this section, we prove an analogue of the Oppenheim conjecture.
In the following lemma, x # V ss

C . We define Hx1C , etc. as in Definition (5.1).

Lemma (6.1). (1) If y # VC is fixed by HxC , y is a scalar multiple of x.

(2) If y # Sym2 V2* is fixed by Hx2C , y is a scalar multiple of 81(x).

(3) If y # Sym2 V1* is fixed by Hx1C or Hx3C , y is a scalar multiple of
82(x).

Proof. Consider (1). Let x= gw with g # GC . Then HxC= gHwCg&1,
and g&1y is fixed by HwC . So we may assume x=w. By (3.1), V contains
the trivial representation of h precisely once. Therefore, the set of fixed
points of HwC is of dimension one. This proves (1).

Consider the first part of (3). As in (1), we may assume x=w. Since
Hw1C $PGL(2)C , it is enough to show that Sym2 V*2C contains the trivial
representation of the Lie algebra hC of PGL(2)C precisely once. Let 4 be
the fundamental dominant weight of h as before. Since V1 $V1* $44, by
considering weights, it is easy to see that

Sym2 V*2C $(84)C � (44)C �C.

The second part of (3) and (4) are well known and were used in the
proof of the Oppenheim conjecture for quadratic forms. K

In the following theorem, let x # GRw. Then H%xR+ is generated by
unipotent elements. Let HxR /F/HR be the closed connected subgroup
such that HxR HZ =FHZ . By Ratner's theorem (Theorem (0.2)), such F
exists.

Theorem (6.2). (1) If 82(x) � P(Sym2 V1*)Q , F=SL(5)R _Hx2R or
F=SL(5)R _SL(3)R .

(2) If 81(x) � P(Sym2 V2*)Q and 82(x) � P(Sym2 V1*)Q , F=SL(5)R

_SL(3)R .

Proof. Suppose F=HxR . Then F is defined over Q. Therefore, for any
_ # Aut(C�Q), H _

xC=HxC . Since H _
xC=Hx_C , x_ is fixed by HxC . So x_ is

a scalar multiple of x by Lemma (6.1). Since this is the case for all _,
[x] # P(V )Q . Since 81 , 82 are defined over Q, 81(x), 82(x) are Q-rational
points.

We show that 82(x) # P(Sym2 V1*)Q if F=Hx1R _Hx2R or Hx1R_
SL(3)R . Since the argument is similar, we only consider the first case.
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For any _ # Aut(C�Q),

H _
x1C_H _

x2C=Hx_ 1C_Hx_ 2C=Hx1C_Hx2C .

Since HxC /Hx3C , 82(x_) is fixed by Hx1C . This implies 82(x_)=82(x).
Since 82 is defined over Q, 82(x_)=82(x)_=82(x) by Lemma (6.1).
Therefore, 82(x) # P(Sym2 V1*)Q .

By a similar argument, if F=Hx1R _Hx2R , H3R_Hx2R , or SL(5)R_
Hx2R , [81(x)] # P(Sym2 V2*)Q . Also if F=Hx3R_Hx2R or Hx3R_SL(3)R ,
[82(x)] # P(Sym2 V1*)Q .

By these considerations, conditions in (1), (2) force F to become the
given subgroups. K

Lemma (6.3). Let x # GRw. Then for any non-zero real number r, there
exists h # HR and a primitive integer point a # V1Z such that Fh&1x(a)=r.

Proof. We may assume x=*w where * # R"[0]. Since F*h&1w(a)
=*60Fw(ha), the above condition is equivalent to Fw(ha)=*&60r. Put t=
&*&20(r�2)1�3. Then

t&1 0 0 0 0

0 1 0 0 0

h=\\ 0 0 t 0 0+ , I3+0 0 0 1 0

0 0 0 0 1

and a= t(0 0 1 0 0) satisfy the condition. K

In the following theorem, x # GRw.

Theorem (6.4). If [82(x)] � P(Sym2 V1*)Q , the set of values of the
cubic form Fx(a) at primitive integer points is dense in R.

Proof. Let r be a non-zero real number. We choose h=(h$, h") # HR

and a # V1Z as in Lemma (6.3). By Theorem (6.2), there exist h1=(h$1 , h"1)
# HxR and h2=(h$2 , h"2) # HZ such that h$1h$2 is close to h$. Then

Fx(h$2a)=Fh
2
&1x(a)=Fh

2
&1h

1
&1x(a)=F (h

2
$&1h$

1
, 1) x(a)

is close to

F(h$&1, 1) x(a)=Fh&1x(a)=r.

Note that Fh&1x does not depend on the second component of h.
Since h$2a # V1Z is primitive, this proves the theorem. K

181PREHOMOGENEOUS VECTOR SPACES



File: DISTL2 223123 . By:CV . Date:14:05:98 . Time:10:57 LOP8M. V8.B. Page 01:01
Codes: 7541 Signs: 2897 . Length: 45 pic 0 pts, 190 mm

Note that if x= gw with g=(g1 , g2) # GR ,

[82(x)]= g1[82(w)], Fx(a)=(det g1)15 (det g2)3 Fw(g&1
1 a).

Therefore, writing down Fw , etc. explicitly, we get the statement of
Theorem (0.3).

Remark (6.5). We proved Theorem (6.4) as a consequence of
Theorem (6.2). But we don't need our prehomogeneous vector space if we
just want to prove Theorem (6.4). For that purpose, we only have to
consider the situation PGL(2)/SL(5) and apply Ratner's theorem using
the computations in Section 5. We discuss this issue in [28].
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