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Invariants, Patterns and Weights for Ordering Terms

URSULA MARTIN AND DUNCAN SHAND†

School of Computer Science, University of St Andrews, St Andrews, Fife KY16 9SS,
U.K.

We prove that any simplification order over arbitrary terms is an extension of an order
by weight, by considering a related monadic term algebra called the spine. We show

that any total ground-stable simplification order on the spine lifts to an order on the
full term algebra. Conversely, under certain restrictions, a simplification ordering on
the term algebra defines a weight function on the spine, which in turn can be lifted
to a weight order on the original ground terms which contains the original order. We

investigate the Knuth–Bendix and polynomial orders in this light. We provide a general
framework for ordering terms by counting embedded patterns, which gives rise to many
new orderings. We examine the recursive path order in this context.

c© 2000 Academic Press

1. Introduction

Orders on terms and other structures have been much studied in the context of termi-
nation proofs of rewriting systems, algorithms, logic programs and the like, and since
the pioneering work of, for example, Dershowitz (1982), Lescanne (1981) and others an
extraordinary variety of orders has been found: see Steinbach (1995) for a recent survey.
More recently attention has focused on how we might classify the orders of interest, and
as a first step compute numerical or logical invariants for them. This is valuable not only
for understanding more clearly the apparent diversity of these complicated structures,
but also because it may help us see more readily how to try to prove termination. Fur-
thermore, in some cases these invariants give us more information about the termination
problems we are trying to solve.

We call a topological space C a classifying space for a set D if there is a mapping from
D to C: thus if elements of D have different images under the mapping they must be
distinct. An invariant for an element of D is some number or ordinal naturally associated
with elements of C, and hence, under the mapping, with D, so that if elements of D have
distinct invariants they are distinct. Thus, for example, square matrices in one of the
usual normal forms form a classifying space for linear transformations of a vector space,
and the rank or the determinant are numerical invariants.

Every well-founded total order is order-isomorphic to an ordinal called its order type,
which may be regarded as measuring its proof theoretic strength. If a well-order � proves
that a rewrite system R is terminating, then the order-type of the order can be related
to the derivation complexity of R (Hofbauer, 1992; Cichon and Weiermann, 1997), which
in turn can be related to the proof theoretic and algorithmic complexities of the relation
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being computed by R (Cichon and Weiermann, 1997). For total monotonic orders over
terms in unary function symbols the order types have been classified (Hofbauer, 1992;
Touzet, 1997): for example, for terms over two unary function symbols, there are three
possible order types (Martin and Scott, 1997).

Thus the order type is a very weak invariant. Scott (1994) went much further and
showed that any total monotonic order on terms in unary function symbols can be lin-
earized: that is, it is an extension of an order by weight, defined by first weighting each
of the function symbols with a non-negative weight, and then weighting terms by adding
up the weights of the function symbols they contain. Any pre-order by weight can be
extended in continuum many ways to a total order of this kind, and different weightings
give different orders provided one is not a scalar multiple of the other: in the case of two
function symbols Martin and Scott (1997) and Prohle and Perlo-Freeman (1997) provide
a finer classification.

It follows that any such order � over Σ, a set of n unary function symbols, is associated
with an equivalence class p(�) = [(w1, . . . , wn)] = {(aw1, . . . , awn) 0 < a ∈ R} of
sequences of non-negative real weights. The set of all such p(�) bijects with Pn, the
non-negative orthant of projective n-space, and this establishes Pn as a classifying space
for these orders. This means that there is a surjective mapping from the set of orders to
the classifying space, which is a topological space, and we may use this to regard the set
of orders as a topological space also. Further consideration of the weights allows us to
construct various invariants.

If R is a set of rewrite rules over Σ∗ we may define a subset R> of Pn, namely the
subset (possibly empty) of all those p for which any ordering � with p = p(�) proves R
terminating. Thus, for example for R = {a2 −→ b3} we have R> = {[(α, β)] 2α > 3β},
which is an open connected subset of Pn.

The classifying space and the associated invariants have been applied by Martin (1996)
to classify the rewriting systems they prove terminating: these are group and semigroup
presentations. In a similar vein Martin (1989), Mora and Robbiano (1986) and others
classified monotonic orders on multisets, and this classification has been used to investi-
gate (Faugere et al., 1993) the so-called Gröbner walk and Gröbner fan of an ideal in a
polynomial ring. This enables us to understand all Gröbner bases for an ideal in a uni-
form framework, and to transform one into another without recomputing from scratch.
For both groups and Gröbner bases this has important practical applications, in that a
rewrite system which is fast to produce (for example because it has few rules) may not
be fast to compute with (for example because it has long derivation sequences) (Linton
and Shand, 1996).

The above results concern numerical invariants and classifying spaces for orders on
strings and multisets. This paper is concerned with developing similar results for terms.
The first main section considers how we may assign numerical invariants to orders on
terms, and hence establish Pn as a classifying space for term orders over n non-constant
function symbols. The second concerns a general framework for ordering terms by count-
ing embedded patterns: we construct a large class of new term orders and show how our
method subsumes earlier constructions. A final section looks at the recursive path order
in the light of our results. We now explain our results in more detail.
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1.1. linearizable orders

The first section of this paper considers how we may associate numerical invariants
to term orders. That is to say, we establish a uniform framework for classifying and
comparing orders on terms, with the aim of finding some analogue of Scott’s results
for strings. At first sight this might seem somewhat implausible: there are an enormous
number of monotonic orders on terms, and it might seem unlikely that we could come up
with anything as elegant as Scott’s result. The key is to identify a distinguished subset
of the term algebra on which the orders we are considering behave like orders on strings,
then to apply Scott’s methods to this subset, and finally to relate the results to the
original order.

As a running example throughout this section we consider the polynomial order on
T = T ({f, g, x, y, d}), for f, g binary operators, d a constant and x, y variables. We define
[x] = X, [y] = Y, [d] = D, [f(x, y)] = 2XY 2 and [g(x, y)] = X2 + Y 2.

Our distinguished subset S, called the spine of T , will be defined as follows in this
case, and analogously in general. Let F (x) = f(x, x), F i+1(x) = f(F i(x), F i(x)) and
G(x) = g(x, x), Gi+1(x) = g(Gi(x), Gi(x)). Then the spine of T is S = T ({F,G, x}),
the set of terms on the unary operators F,G. Thus in our example the spine contains
g(f(x, x), f(x, x)) = G(F (x)) and f(g(x, x), g(x, x)) = F (G(x)).

If � is any order on T which is a total stable simplification order on restriction to S,
then by Scott (1994) there exists τ with ∞ ≥ τ ≥ 0 such that for all i, j we have

F i(x) � Gj(x) if i > jτ and F i(x) ≺ Gj(x) if i < jτ.

Further if we define µ : S → R by

µ(s) =
k∑
p=1

(ip + τ jp)

for
s = F i1Gj1F i2Gj2 . . . F ikGjk(x),

then s � t if µ(s) > µ(t) and s ≺ t if µ(s) < µ(t). The sequence (1, τ) is a numerical
invariant of the order � on T : in general over n symbols there is a sequence of n values
called the weight sequence which behaves similarly. The equivalence class of the weight
sequence under scalar multiplication is an element of Pn, establishing this as a classifying
space for our class of orders.

For our running example we have

[G(G(x))] = [g(g(x, x), g(x, x))] = 8X4

[g(g(x, x), f(x, x))] = 4X6 + 4X4

[G(F (x))] = [g(f(x, x), f(x, x))] = 8X6

[f(g(x, g(x, x)), x)] = 8X6 + 2X4

[F (G(x))] = [f(g(x, x), g(x, x))] = 16X6

[F (F (x))] = [f(f(x, x), f(x, x))] = 16X9.

Thus, for i, j ≥ 1, F i(x) � Gj(x) if [F i(x)] = aX3i is greater than bX2j = [Gj(x)]
in the polynomial ordering, where a, b are certain powers of 2. Thus τ = log 2/log 3.
The restriction of this polynomial order to S is total: it is just a certain lexicographic
extension of the weight order defined by τ . The order � corresponds to [(1, log 2/log 3)],
the class of (1, log 2/log 3) in P2.
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Now consider the rewrite system R = {F (F (x)) −→ G(G(G(x)))}, and the subset R>
defined above. Our polynomial ordering lies in R>, and in fact R> = {[(1, α)] α < 2/3}
a connected open subset of P2.

In general the description we have of the restriction of� to S also gives us an alternative
way of looking at � on T . For it turns out that every element u of T has a least upper
bound ū in S, and if ū ≺ v̄, then u 6� v. Thus in our example u = g(g(x, x), f(x, x)) has a
least upper bound ū = G(F (x)) in S and v = f(g(x, g(x, x)), x) has a least upper bound
v̄ = F (G(x)): the table above confirms that u ≺ ū ≺ v ≺ v̄.

We can go further: if we have a total simplification order on S we can lift it under
certain conditions to a simplification pre-order � on T . If the order on S is the restriction
to S of some ordering � on T , then � ⊆ �. Thus in our running example we can lift
the weight-lexicographic order on S induced by the polynomial order to a pre-order on
T which contains the polynomial order.

In Section 3 we develop this theory precisely. The subalgebra generated by {F,G} is an
example of a so-called one-parameter family in T , that is, a subalgebra that is isomorphic
to a free algebra on unary function symbols. An order � is said to be linearizable over
a one-parameter family S if there is a weight sequence (µi) satisfying the appropriate
generalization of the property of the example. As � is total on S = T (G), we may assume
without loss of generality that

G = {1G, . . . , nG}
where nG(x) � n−1G(x) � · · · � 1G(x). Then � |S is linearizable over S if there is a
sequence of real numbers, called a weight sequence, satisfying

1 = µn ≥ µn−1 ≥ · · · ≥ µ1 ≥ 0

such that � |S ⊇ >µ, where the weight function µ : S → R is defined by µ(s) =∑
iG∈G #(iG, s)µi and s >µ t if and only if µ(s) > µ(t).
In our running example F = 2G,G = 1G and 1 = µ2 > µ1 = log 2/log 3 so for example

µ(F (G(x))) = 1 + log 2/log 3.
Our main theorems are as follows.

Theorem 3.3. Let T be a term algebra, S = T (G) a one-parameter family in T and �
a σ-stable simplification order on T which is total on restriction to S. Let u(x), v(x) be
elements of S. Then there exists a τ (∞ ≥ τ ≥ 0) such that

ui(x) � vj(x) if i > jτ and
ui(x) ≺ vj(x) if i < jτ.

Theorem 3.4. Let T be a term algebra, S = T (G) a one-parameter family in T and �
a σ-stable simplification order on T which is total on S. Then � |S is linearizable over
S with classifying space Pn.

Theorem 3.5. Let T be a term algebra, S = T (G) a one-parameter family in T , where
G = {1G(x), . . . , nG(x)}, and � a σ-stable simplification order on T which is total on S.
Then for each s in S there exist non-negative integers i1, . . . , in and permutations π, ψ
of {1, 2, . . . , n} such that

π(1)G
iπ(1)

π(2)G
iπ(2) . . . π(n)G

iπ(n)(x) � s � ψ(1)G
iψ(1)

ψ(2)G
iψ(2) . . . ψ(n)G

iψ(n)(x).



Invariants, Patterns and Weights for Ordering Terms 925

The spine, which we described informally above, is a particular example of a one-
parameter family, having additional properties which allow us to lift orders on the spine
back to T . We have two main results of this kind:

Theorem 3.6. Let T be a term algebra containing constants, and let � be a total sim-
plification order on the spine S of T , preserved under substitutions σ : {x} → S. Then
there is a simplification pre-order � on T such that if s, t ∈ S and s � t, then sσ � tσ
for any ground substitution σ.

Theorem 3.7. Let � be an order on T which is a total simplification order on restriction
to S, preserved under ground substitutions σ : {x} → T , with weight function µ on S.
Suppose that there is a unique maximal constant. Then there is a function µ̄ : T → R

such that �⊆≥µ̄ so that if u � v, then µ̄(u) > µ̄(v).

In our example we have µ̄(g(g(x, x), f(x, x)) = 1 + log 2/log 3.
We give further examples of one-parameter families in Section 4.1, and compute weight

sequences for some of the standard orders in Sections 4.2 and 4.3.
The Knuth–Bendix order is a particular order by weight defined on terms: we show that

any weight sequence arises as the weight sequence of the restriction of a Knuth–Bendix
order to a suitable one-parameter family.

Theorem 4.7. Let 0 < µ1 ≤ · · · ≤ µn = 1 and T = T (F ∪ X ) where |F \ FC | = n and
|FC | ≥ 1. Then there is a G ⊂ T with |G| = n, a one-parameter family S = T (G ∪ {x})
and a simplification order > on T which is total on restriction to S and has weight
sequence (µ1, . . . , µn) over S.

We then investigate general Knuth–Bendix orders, computing the weight sequences and,
in the case where |G| = 2, the further invariants of Martin and Scott (1997). The polyno-
mial orders, first defined in Lankford (1975) and refined by, for example, Ben Cherifa and
Lescanne (1987), give us a rich source of examples, and in Section 4.3 we use a technique
of Cropper and Martin (2000) to compute the weight sequences for polynomial orders. In
particular, if one of the generators of S has a non-linear interpretation, then the weight
sequence of S is determined solely by the degrees of the interpretations of the generators
of S.

1.2. orders by counting patterns

The results above concern ordering terms inside one-parameter families by counting
occurrences of embedded subterms of the form F k(x) for suitable patterns F . Orders
by counting occurrences of various kinds of patterns, which may be subterms or some
other combinatorial device, are a recurrent theme in the theory of orders, beginning with
Knuth and Bendix’s original paper on rewriting (Knuth and Bendix, 1970) where they
described how to order terms by extending a weight function on the function symbols,
and continuing with various developments by Steinbach (1995), Martin (1993) and others.

The principle of such constructions over a term algebra T is to count occurrences of
some set of patterns P1, to order the vectors thus obtained using a division order >1 on
vectors, to lift this order to obtain a pre-order on T , and then to break ties by considering
a new set of patterns P2. Certain compatibility conditions on the Pi are needed to ensure
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that a simplification order is obtained. In Section 5 we present a very general framework
for such constructions, which allows us to define continuum many new monotonic orders,
even over a fixed signature. Essentially we count embedded subterms which are members
of a pattern class, a set of variable arity terms P which is closed under taking principal
subterms. The compatibility conditions are expressed by requiring that P is the disjoint
union of subsets Pi, where each Pi (for i ≥ 2) does not contain a term and any of its
principal subterms, together with certain conditions on the >i.

As an example consider the two terms s = g(a, g(a, g(a, a))) and t = g(g(a, a), g(a, a)).
Both contain the same number of occurrences of the varyadic subterms g, a and g(a, a).
However, s contains more occurrences of the varyadic subterm g(g) than t: our methods
show that this allows us to construct a monotonic order � with s � t, using the pattern
class {a, g, g(g)}. Similarly t contains more occurrences of the varyadic subterm g(g, g)
than s, and we may construct a monotonic order �′ with t �′ s, using the pattern class
{a, g, g(g, g)}.

Section 5.1 presents the main result: proving that our construction gives rise to a
monotonic order. In Section 5.2 we show the power of the new orders by showing that
uncountably many distinct orders may arise in this way, even for two unary function
symbols. Specifically we show that for any positive real λ there is an order �(λ) with
fNg2MfN �(λ) g

Mf2NgM for N/M > λ and gMf2NgM �(λ) f
Ng2MfN for N/M < λ.

So for example if λ = π, then

f32g20f32 �(λ) g
10f64g10 �(λ) f

31g20f31.

A suitable pattern class in this case is {f, g, fg, gf, fgf, gfg}. The order is induced by
assigning the weight α+βλ to a term containing α occurrences of fgf and β occurrences
of gfg and comparing the weights.

We then show that the weight part of the Knuth–Bendix order (Knuth and Bendix,
1970), and Martin’s “zig-zag” order (Martin, 1993) are special cases of our new construc-
tion.

1.3. patterns for syntactic orders

We continue our investigations of patterns by considering in Section 6 the recursive
path order, >rpo which can be expressed using numeric invariants but does not quite fit
the construction of Section 5. We show first that it cannot be regarded as an extension of
any order constructed using the technique of Section 5. However, it does correspond to a
pre-order on another numeric invariant: the height of a maximal subterm in the largest
operator. If F is a set of function symbols equipped with a precedence �, and f in F
is not a constant and is larger than any other element of F under �, we define skel(s),
the f -skeleton of a term s, to be a maximal embedded subterm of s involving only f
and constants. We prove that >rpo extends the ordering induced by the heights of the
skeletons, that is to say:

Theorem 6.7. Let f,F and � be as above. Then, for s, t ∈ T (F),

(1) If height(skel(s)) > height(skel(t)), then s >rpo t
(2) If s >rpo t, then height(skel(s)) ≥ height(skel(t)).

This result is true in particular when F contains only one non-constant function sym-
bol, bigger than all constants, and reduces to the statement that in this case the recursive
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path order is just an extension of the order by height. Our next result, Theorem 6.10,
allows us to say more, by showing that in this case terms of equal height are ordered
by considering certain subterms of maximal depth. This may seem a specialized class,
but it includes for example all combinator terms on the binary function symbol. (explicit
application), and constants K, I and Y .

It is tempting to conjecture that Theorem 6.7 generalizes, that is that for arbitrary
signatures the recursive path order extends the recursive path order on f -skeletons, but
we give an example to show that this is false. However, for the case of two unary function
symbols Theorem 6.12 shows that a result of this kind is true: it involves counting not
arbitrary subterms but subterms which are maximal in a certain class, a technique it
may be possible to generalize.

2. Definitions

2.1. basics

The set of natural numbers {0, 1, 2, . . .} is denoted N and the set of positive natural
numbers {1, 2, 3, . . .} is denoted N+. The set of real numbers (respectively positive real
numbers) is denoted R (respectively R+). We will also denote R+ ∪ {0,∞} by R∞.

A strict partial order on a set S is a transitive irreflexive relation on S. A pre-order
on a set S is a transitive reflexive relation on S. If ≥ is a pre-order the relation > on
S defined by, for all x, y ∈ S, x ≥ y and x 6≤ y, is a strict partial order on S and the
relation ≈ defined by x ≈ y if and only if x ≥ y and x ≤ y is an equivalence relation on
S. The notation a ≷ b ⇒ c ≷ d denotes if a > b then c > d and if a < b then c < d. A
strict partial order (or pre-order) > on S in which any two distinct elements s, t ∈ S are
comparable, that is s > t or t > s, is called a total order. A strict partial order > on a set
S is called well-founded if there are no infinite descending chains s1 > s2 > s3 > . . . of
elements of S. A strict partial order �E on S is said to be an extension of a strict partial
order � also on S, denoted by �E⊇�, if for all a, b ∈ S, a � b implies that a �E b. An
extension of a pre-order � on a set S is a pre-order �E also on S, such that �E⊇� and
for all a, b ∈ S a ≈ b implies that a ≈E b.

If {(Si, >i)|i ∈ {1, . . . , n}} is a sequence of strict partially ordered sets, then the
combination >= (>1, >2, . . . , >n) on the direct product S1 × S2 × · · · × Sn is defined by
s = (s1, s2, . . . , sn) > t = (t1, t2, . . . , tn) if and only if there is an i with si >i ti, and
sj = tj for all j < i. Then > is a strict partial order. If each >i is total, then > is total. If
each >i is well-founded, then > is well-founded. The combination >= (>1, >2, . . .) on the
direct product S1×S2×· · · of an infinite sequence of strict partially ordered sets is defined
similarly; however, > need not be well-founded even if each component is, as for example
if each Si = N, we have (1, 0, 0, . . .) > (0, 1, 0, . . .) > (0, 0, 1, . . .) > · · ·. Let > be an order
on T , let n be a fixed natural number, and let Tn be the set of n-tuples over T . Then the
lexicographic lifting from the left of > to Tn is the combination >LexL= (>1, >2, . . .) on
S1 × S2 × · · · where Si = T and >i=>, for i = 1, . . . , n. The lexicographic combination
≥1;>2 of a pre-order ≥1 and a pre-order or strict partial order >2 on a set S (where
>1 is the associated strict partial order and ≈1 the associated equivalence relation) is
defined by, for s, t ∈ S, s ≥1;>2 t if and only if either s >1 t, or (s ≈1 t and s >2 t).

If � is a strict partial order on K and µ : S −→ K is a function, then the relation
>µ defined on S by s >µ t if and only if µ(s) � µ(t) is a strict partial order on S, called
the strict partial order induced by µ, or the lifting of µ. This construction is often used
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when K is the real numbers, � is the usual ordering on the reals and µ is some kind
of weight function. If the restriction of � to the image of µ is well-founded, then so is
>µ. The relation ≥µ defined on S by s ≥µ t if and only if µ(s) � µ(t) or µ(s) = µ(t)
is a pre-order on S, called the pre-order induced by µ. If > is any order on S which is
an extension of >µ, then >=≥µ;>. Two ordered sets are said to be order-isomorphic if
there is an order-preserving bijection between them.

2.1.1. terms

We work throughout with a finite set of function symbols F and a countable set of
variables X . We will use notions of both fixed and variable arity terms. In fixed arity
terms, each f ∈ F is associated with a fixed natural number, called its arity. Symbols
f ∈ F with arity 0 are called constants, which we will denote throughout by FC ⊆ F .
Symbols g ∈ F with arity 1 are called unary. A fixed arity term is either a constant,
a variable, or an expression f(t1, . . . , tn) where f has arity n and t1, . . . , tn are terms.
We denote the set of all fixed arity terms constructed from symbols in F and X by
T (F ∪ X ). A term is called monadic if all of its function symbols are unary. We will
often denote a monadic term u(x) = a1(a2(. . . (an(x)) . . .)) by a1a2 . . . an(x), and use
the notation um(x) to denote repeated application u(. . . (u(x)). A variable arity term
is either a variable, a function symbol or an expression f(t1, . . . , tn) where f ∈ F and
t1, . . . , tn are terms. We denote the set of all variable arity terms by V (F ∪ X ).

We shall be investigating orders on fixed arity terms. We shall generally abuse notation
and call fixed arity terms terms, and will only differentiate between fixed and variable
arity terms when necessary. Let t be either a fixed or a variable arity term. We define
the head of t (denoted hd(t)) to be t if t ∈ F ∪X , or f if t = f(t1, . . . , tn). We define the
head arity of t (denoted hdar(t)) to be 0 if t ∈ F ∪X , or n if t = f(t1, . . . , tn). Note that
if t is a fixed arity term, then hdar(t) is just the arity of hd(t). A term s is said to be a
subterm of a term t if s = t or t = f(t1, . . . , tn) and s is a subterm of one of the ti. We
call a subterm s of a term t = f(t1, . . . , tn) a principal subterm of t if s = ti for some
1 ≤ i ≤ n.

Let t be a term. We define the height of t (denoted by height(t)) to be 1 if t ∈ F ∪ X
or 1 + max{height(ti)|1 ≤ i ≤ n} if t = f(t1, . . . , tn). A term in which no variable occurs
is called a ground term. We denote the set of all ground fixed arity terms by T (F), and
the set of all ground variable arity terms by V (F). Let > be a strict partial order or
pre-order on T (F ∪X ). > is called monotonic if s > t implies that f(s1, . . . , s, . . . , sn) >
f(s1, . . . , t, . . . , sn) for all s, t, si ∈ T (F ∪ X ) and f ∈ F .

A substitution σ : X → T (F ∪ X ) is a mapping from variables to terms. The image of
x under σ is denoted xσ. The mapping σ on variables can be extended to a mapping on
terms uniquely: (f(t1, . . . , tn))σ = f(t1σ, . . . , tnσ) for all terms f(t1, . . . , tn). Let � be a
strict partial order or pre-order on T (F ∪ X ), and s, t ∈ T (F ∪ X ). We call � σ-stable
if s � t implies sσ � tσ for all ground substitutions σ : {x} → T (F), and stable if this
property holds for all substitutions σ. A monotonic strict partial order or pre-order >
on T (F ∪X ) is called a simplification order or simplification pre-order if it possesses the
subterm property; i.e.

s = f(s1, . . . , si, . . . , sn) > si

for all terms s and i = 1, . . . , n. A σ-stable simplification order is well-founded (see
Dershowitz, 1982).
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Let A be a set. We denote the set of all finite multisets with elements taken from A by
Mult(A). Let � be a strict partial order or pre-order on T (F ∪ X ), ∼ be an equivalence
relation on T (F ∪ X ) with � ∩ ∼= ∅, and A,B ∈ Mult(T (F ∪ X )). Then we define the
multiset extension (denoted A) of � to be:

A A B ⇔ A \M B 6= ∅ and
∀t ∈ (B \M A) ∃s ∈ (A \M B) such that s � t

where A \M B is the multiset difference of A and B with respect to ∼, i.e. A \M B = A
if 6 ∃x ∈ A, y ∈ B, x ∼ y and A \M B = (A \ {x}) \M (B \ {y}) if x ∈ A, y ∈ B and x ∼ y.

2.1.2. the homeomorphic embedding relation

In this section we define the homeomorphic embedding relation for variable arity terms
(Gallier, 1991), and #(u, v), the number of times the term u embeds in the term v.

Definition 2.1. We define �emb, the varyadic homeomorphic embedding relation, on
V (F ∪ X ) as follows: t = g(t1, . . . , tn)�emb f(s1, . . . , sm) = s if and only if either:

(1) there is an i, 1 ≤ i ≤ n such that ti �emb s, or
(2) f = g and for all i, there exist ji such that tji �emb si and 1 ≤ j1 ≤ · · · ≤ jm ≤ n.

We let �emb denote the strict part of �emb.

Note that the restriction of this definition to fixed arity terms is the usual homeomorphic
embedding for fixed arity terms. We have (Dershowitz, 1982):

Theorem 2.2. Let F be a finite set of function symbols, X be a set of variables, T =
T (F ∪ X ) be a term algebra and �emb be the homeomorphic embedding relation on T .
Then any simplification order � on T is an extension of �emb, and a strict partial order
> on T is well-founded if it extends �emb.

We introduce the following notation for conciseness.

Notation 2.3. Let l,m, n, p, jk ∈ N for 1 ≤ k ≤ m, such that p ≤ m ≤ n and l < n.
We will denote jp, . . . , jm is a strictly ascending subsequence of l, l + 1, l + 2, . . . , n, i.e.
l ≤ jp < jp+1 < · · · < jm ≤ n, by (jk)mk=p @ [l, n].

Definition 2.4. Let u, v ∈ V (F). We define #(u, v), the number of times that u embeds
in v, as follows:

Case 1 if v ∈ F then #(u, v) = 1 if u = v and 0 otherwise
Case 2 if v = f(v1, . . . , vn), u ∈ F then #(u, v) = #(u, f) +

∑n
k=1 #(u, vk)

Case 3 if v = f(v1, . . . , vn), u = g(u1, . . . , um) then
Case 3a if f 6= g or (f = g and m > n) then

#(u, v) =
∑n
k=1 #(u, vk)

Case 3b if f = g and n ≥ m then
#(u, v) =

∑
(jk)mk=1@[1,n] (

∏m
i=1 #(ui, vji)) +

∑n
k=1 #(u, vk).
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For example we have #(f(a, a), f(f(a), f(a))) = 1, #(f(a, a), f(f(a, a))) = 1 and
#(f(a), f(f(a, a))) = 4. We note that if u, v ∈ T (F), then #(u, v) defines the number of
times u homeomorphically embeds in v, since the restriction of varyadic embedding to
T (F) is the usual homeomorphic embedding relation for fixed arity terms.

2.2. orders

We review definitions of standard orders.

2.2.1. polynomial orders

We follow definitions of polynomial interpretations and orders from Steinbach (1995)
and Cropper and Martin (2000).

Suppose a ∈ R+ and ei ∈ N for 1 ≤ i ≤ n. Then Xe1
1 Xe2

2 . . . Xen
n is called a monomial

over a set of variables {X1, . . . ,Xn}. The degree of the monomial is the sum of the ei. If
M is a finite set of monomials, then a sum p =

∑
{r ∗m 0 6= r ∈ R,m ∈ M} is called

a polynomial over R on the variables V = {X1, . . . , Xn}, written p ∈ R[X1, . . . ,Xn]. If
M = { }, then p is represented by 0. A monomial occurs in the polynomial p if m ∈M :
a variable X occurs in p if X occurs in a monomial which occurs in p. A polynomial
is called univariate if only one variable occurs in it. The degree deg(h) of a non-zero
polynomial h is the degree of the largest monomial occurring in it.

A polynomial interpretation [.] : F ∪ X → R+[V] over R+ is defined by:

(1) assigning a polynomial to each n-ary function symbol f such that [f ](X1, . . . , Xn) ∈
R+[X1, . . . , Xn], where each Xi appears in at least one monomial with non-zero
coefficient and

(2) [x]() = X ∈ V if x ∈ X .

The polynomial interpretation [.] can be extended to [.] : T (F ∪X )→ R+[V] by defining

[f(t1, . . . , tn)] = [f ]([t1], [t2], . . . , [tn]).

Let FC 6= ∅ and [.] be a polynomial interpretation of T (F ∪ X ) over R+ and µ =
min{[c]|c ∈ FC}. Then the order >poly is defined by, for t, u ∈ T (F ∪ X ), t >poly u if
[t](a1, . . . , an) > [u](a1, . . . , an) for all a1, . . . , an ∈ R+ such that a1, . . . , an ≥ µ. There
are a variety of additional conditions which may be imposed upon [.] to ensure that >poly

is σ-stable or a simplification order: see Steinbach (1995).
If F consists of unary function symbols, then we may define a different order on T , the

eventually dominates order >Dpoly (Cropper and Martin, 2000). Let A(x) =
∑n
i=0 aiX

i,
B(x) =

∑m
i=0 biX

i with ai, bi ∈ R, n,m ≥ 1 and an, bm 6= 0. Then A(x) is said to
eventually dominate B(x) if there is a χ(A,B) ∈ R such that A(r) > B(r) for all
r > χ(A,B), or equivalently if either n > m or n = m and (an, . . . , a0) is greater than
(bm, . . . , b0) in the lexicographic order from the left. This order is total on univariate real
polynomials.

Definition 2.5. Let T = T (F ∪ {x}), and let [.] be a polynomial interpretation of F
over R+. Then the order >Dpoly on T is defined by, for all s, t ∈ T , s>Dpoly t if and only
if [s](X) eventually dominates [t](X).
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In this case it is somewhat easier to analyse when >Dpoly is a σ-stable simplification
order. We have (Cropper and Martin, 2000):

Theorem 2.6. Let F , [.] and >Dpoly be as above and suppose that for each f ∈ F either
deg([f(x)]) > 1 or [f(x)] = afX + bf with af > 1 or af = 1 and bf > 0. Then >Dpoly is
a simplification order which is stable under substitution, and if further [.] is injective on
T then >Dpoly is total on T .

2.2.2. Knuth–Bendix order

In this section we define the Knuth–Bendix order, which first appeared in Knuth and
Bendix (1970). This order has been much studied: see, for instance, Dick et al. (1990)
and Steinbach (1995).

Definition 2.7. Let ρ be a positive real number and let µ : F ∪X → R+ ∪ {0} satisfy:

(1) for all variables x, µ(x) = ρ,
(2) for all c ∈ Fc, µ(c) ≥ ρ, and
(3) at most one unary function symbol f ∈ F has µ(f) = 0.

We extend µ to terms T (F ∪ X ) by the homomorphism

µ(f(t1, . . . , tn)) = µ(f) +
n∑
i=1

µ(ti).

Let � be a precedence on F such that if there is a unary f ∈ F with weight 0, then
f � g for each g ∈ F \ {f}. Then the Knuth–Bendix order >kbo is defined by, for
t, u ∈ T (F ∪ X ): t >kbo u if for all x ∈ X : #(x, t) ≥ #(x, u) and either:

(1) µ(t) > µ(u) or
(2) µ(t) = µ(u) and

(a) t = fn(x) and u = x for some n ≥ 1 and x ∈ X , or
(b) t = h(t1, . . . , tn), u = g(u1, . . . , um) and h � g, or
(c) t = h(t1, . . . , tn), u = h(u1, . . . , un) and (t1, . . . , tn)>LexL

kbo (u1, . . . , un).

The following proposition follows from Knuth and Bendix (1970).

Proposition 2.8. The Knuth–Bendix order is a σ-stable simplification order.

2.2.3. the recursive path order

In this section we define the recursive path order (Dershowitz, 1982). Let F be a finite
set of function symbols equipped with a pre-order � and X be a finite set of variables.
We define ≥rpo, the recursive path order on T (F ∪ X ) as follows. Let s = f(s1, . . . , sn),
t = g(t1, . . . , tm) where n = α(f) ≥ 0 and m = α(g) ≥ 0. Then s≥rpo t if and only if one
of the following holds

(1) f � g and s >rpo ti for i = 1, . . . ,m
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(2) f ≈ g and {{s1, . . . , sn}} wrpo {{t1, . . . , tm}}
(3) ¬(f � g) and there is a j such that sj ≥rpo t.

where wrpo is the multiset extension of ≥rpo. We denote by ≥rpo the pre-order thus
defined, and >rpo the related strict partial order, so s >rpo t if and only if s ≥rpo t and
¬(t≥rpo s).

We have (Dershowitz, 1982):

Proposition 2.9. Let ≥rpo be defined on T = T (F ∪ X ) as above.

(1) ≥rpo is a simplification pre-order on T .
(2) if s = f(s1, . . . , sn), t = f(t1, . . . , tn) and there is a j with 1 ≤ j ≤ n such that

sj >rpo ti for 1 ≤ i ≤ n, then s >rpo t.

Note that, for example, f(f(a, a), a) ≈ f(a, f(a, a)) so >rpo is not total.

2.2.4. orders on vector spaces

In what follows we shall need orders on Rn: we recall some background from Martin
(1989, 1995).

A strict partial order on Rn is called monotonic if u > v implies u+w > v +w for all
u, v, w ∈ Rn, and a division order if further each Ep > 0 for 1 ≤ p ≤ n, where Ep is the
pth coordinate vector, that is the vector with a 1 in the pth position and zeros elsewhere,
and 0 is the zero vector. The restriction to Nn of any division order is well-founded.

To obtain strict partial orders on Rn we proceed as follows (see Martin, 1989). Let A
be any real matrix with n rows. The strict partial order >A is defined by u >A v if and
only if uA is greater than vA in the lexicographic order from the left. It is a monotonic
order. If further each coordinate vector is greater than 0 it is a division order. All total
monotonic and division orders arise in this way, and each orthogonal matrix A gives rise
to a distinct such strict partial order. The n! orthogonal matrices obtained by permuting
the rows of the identity matrix give n! lexicographic orders on Rn, which are just the
lexicographic extensions of the n! possible permutations of the standard basis vectors.

Vectors are sometimes “ordered by weight”, that is a fixed vector h of non-negative real
weights is given and the strict partial order is defined by u > v if and only if u.h > v.h,
where . is the usual dot product of vectors. Orders by weight are equivalent up to scalar
multiples of w. An orthogonal matrix whose first column is the corresponding vector
of weights (suitably normalized) gives rise to a total monotonic or division order which
extends such an order by weight. Conversely given an orthogonal matrix as above, its
first column defines a weight order which the matrix order extends.

Multiplication by a non-negative scalar defines an equivalence relation on non-zero
n-vectors over the non-negative reals. The set of equivalence classes bijects with a topo-
logical object, the non-negative orthant in projective n-space, which we denote by Pn.
This analysis of the weights means that we have a surjective mapping from the set of
monotonic orderings of Rn to Pn : thus Pn forms a classifying space for this set of
orderings.

Thus, given a set of pairs of vectors (ui, vi), we may decide whether or not there is
an order by weight which orders each pair from left to right by deciding if there is a
vector w with non-negative entries and ui.w > vi.w for each i: this is a standard linear
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programming technique. If there is no such w, then it will not be possible to find such
an order. In terms of the classifying space, this is equivalent to determining whether or
not a certain subset is empty.

In the case n = 1 our theory reduces to saying that there is one division order on R:
the usual linear order denoted by >l . There are two further monotonic orders: the trivial
order and the reverse of >l .

2.3. orders on monadic terms

In this section we will review some recent work on classifying orders on monadic terms
over a finite set A = {a1, . . . , an} of unary function symbols. The results will be applied
in Section 3 to prove our results about orders on terms. The first two theorems are from
Scott (1994).

Theorem 2.10. Let A = {a1, . . . , an} be a set of unary function symbols, x be a variable
and let � be a total stable simplification order on T = T (A ∪ {x}). Given u(x), v(x) ∈
T \ {x} there exists τ such that 0 ≤ τ ≤ ∞ and for all i, j ≥ 1 we have

ui(x) �≺ v
j(x) if i ≷ jτ.

Theorem 2.11. Let A = {a1, . . . , an} be a set of unary function symbols, x be a variable,
and let � be a total stable simplification order on T = T (A ∪ {x}), so without loss of
generality we may assume that a1(x) ≺ a2(x) ≺ · · · ≺ an(x). Then there exist µ1, . . . , µn
with 0 ≤ µ1 ≤ · · · ≤ µn = 1, such that if µ : T → R is defined by

µ(u) =
n∑
i=1

µi #(ai, u),

then � is an extension of the order >µ induced on T by lifting µ.

The order � on T is said to be linearizable, the sequence (µ1, . . . , µn) is called a weight
sequence for (T,�) and the function µ : T → R is called a weight function for �, and
defines a weight pre-order �µ on T such that �=�µ;�. To compute the µi note that
by Theorem 2.10 for each r = 1, . . . , n − 1, there is a τr with 0 ≤ τr ≤ 1 such that
air+1(x) �≺ a

j
r(x) if i ≷ jτr. Let µn = 1 and µr = τn−1 · · · τr for i = 1, . . . , n− 1. We note

that Pn forms a classifying space for the set of total stable simplification orderings on T :
the reasoning is as for vector spaces in Subsection 2.2.4.

In the case of two letters, Martin and Scott (1997) refines Theorem 2.11 somewhat as
follows: we use this result in developing our examples in Section 4.

Definition 2.12. Let F = {f, g} be a set of unary function symbols. Given a real
number λ > 0, the pre-order �λ on T (F ∪ {x}) with respect to {f, g} is defined by

gp0fgp1f . . . fgpm(x)�λg
q0fgq1f . . . fgqn(x)

if and only if either m > n, or m = n and

pnλ
n + · · ·+ p1λ+ p0 > qnλ

n + · · ·+ q1λ+ q0.

We abuse notation and extend this to the case λ = 0,∞ in the obvious way.
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Thus, a λ pre-order first orders by the number of f ’s and then by the number of g’s biased
according to position among the f ’s, so that in particular if i > jλ then gif(x)�λfg

j(x)
and if i < jλ then fgj(x)�λg

if(x).

Theorem 2.13. Let � be a total stable simplification order on T (F ∪ {x}) and suppose
that f(x) � g(x). Then there is a constant µ1 with 1 ≥ µ1 ≥ 0 such that �=≥µ;� where
(1, µ1) is a weight sequence for � . Then either µ1 > 0, or µ1 = 0 in which case there is
a real constant ∞ ≥ λ ≥ 0 such that �=≥µ1 ; �λ;� .

3. Linearizable Orders

In this section we prove our main theorem concerning the linearization of term orders.
We proceed by defining the notion of an independent set and a one-parameter family
over a term algebra T . We then show that if T is equipped with a σ-stable simplification
order satisfying certain conditions, then any one-parameter family is order-isomorphic
as an algebra to a certain algebra on unary function symbols equipped with a σ-stable
simplification order. This means that we may apply the results for strings explained above
to the latter, and hence read off our results. We then address the question of lifting orders
on the spine to orders on the whole term algebra.

3.1. the main theorem

We now establish the basic definitions for the main result. Our first task is to define a
one-parameter family: this will be a subalgebra which is isomorphic to a term algebra on
monadic terms. Thus we need candidates for the generators of the one-parameter family:
these are the one-parameter terms. We need conditions on the subalgebra they generate
to ensure that we obtain a free algebra: this gives us the notion of an independent set.

Let T = T (F ∪ X ) be a term algebra with function symbols F and variables X . An
element of T \X is called a one-parameter term over T if it contains exactly one variable
x of X , which may occur more than once. If G = {jG(x)|j ∈ I} is a set of one-parameter
terms and x ∈ X let the span of G be:

TG,x = {x} ∪ {j1Gi1(j2G
i2(· · · (jkGik(x)) · · ·)|1 ≤ m ≤ k, jm ∈ I, im ∈ N}.

We call G independent if for all s, t ∈ TG,x with

s = j1G
i1(j2G

i2(· · · (jkGik(x)) · · ·)), t = j′1
Gi
′
1(j′2G

i′2(· · · (j′
k′
Gi
′
k′ (x)) · · ·)),

then s = t if and only if k = k′ and for all p, 1 ≤ p ≤ k, we have ip = ip′ and jp = jp′ .
We call S ⊆ T a one-parameter family in T if S = TG,x for some x ∈ X and G ⊆ T is an
independent set.

As an example for f ∈ F \ FC let f̂(x) = f(x, x, . . . , x). Let H = {f̂(x)|f ∈ F \ FC}.
Then TH,x is a one-parameter family, called the spine of T . So in the running example
of the introduction the one-parameter terms are {F (x) = f(x, x), G(x) = g(x, x)} and
they form an independent set and generate a one-parameter family.

Now suppose that G = {jG|j ∈ I}. We define the associated unary algebra SA as
SA = T (A ∪ {y}), where A = {ai|i ∈ I} is a set of unary function symbols and y is
a variable. We define α : S → SA by α : x → y, and α : iG(z) → ai(α(z)) for all
i ∈ I, z ∈ S. We have the following.
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Lemma 3.1. Given T,G, S, SA, α as above, then α : S → SA is a bijection.

Proof. Routine. 2

Now suppose that > is an order on T . Then > defines a relation >α on SA by

s >α t⇔ s = α(s′), t = α(t′), s′, t′ ∈ S and s′ > t′.

We have the following.

Theorem 3.2. Let T,G, S, SA, α be as above, and suppose > is a strict partial order on
T . Then:

(1) >α is a strict partial order on SA
(2) >α is total if and only if > |S is total
(3) >α is a simplification order if and only if > |S is a simplification order
(4) >α is stable under substitution if and only if > is preserved under σ for any σ :
{x} → S.

Proof. Routine. 2

Thus (S,> |S) is order isomorphic to (SA, >α), and abusing notation we may thus regard
S as both TG,x and as a subset of T = T (F ∪ X ). In particular for s ∈ S we may define
both #(f, s) for f ∈ F and #(G, s) for G ∈ G.

Applying the results on monadic terms quoted in Section 2 to SA, and lifting to S via
α using Theorem 3.2, we now obtain analogues of these results for terms.

Theorem 3.3. Let T,G, S be as above and let � be a σ-stable simplification order on
T which is total on restriction to S. Let u(x), v(x) be elements of S. Then there is a
τ ∈ R∞ such that for all p ∈ T , ui(p) �≺ v

j(p) if i ≷ jτ .

Proof. The result holds for all p∈S via the lifting and for all p ∈ T as � is σ-stable. 2

In our running example if we take � to be the polynomial order induced by [f(x, y)] =
2XY 2, [g(x, y)] = X2 + Y 2, [d] = D, [x] = X, [y] = Y and u(x) = F (x), v(x) = G(x) we
have τ = log 2/log 3.

The next two results follow from Theorems 2.10 and 2.11.

Theorem 3.4. Let T , G, S and � be as above. Then � |S is linearizable over S, with
classifying space Pn.

Proof. As � is a σ-stable simplification order and � |S is total on S it corresponds
to a total σ-stable simplification order �α on SA, for which the required µi exist by
Theorem 2.11. Thus if u(x), v(x) in S satisfy ui(x) �≺ v

j(x) if i ≷ jτ , then α(u), α(v)
satisfy the same equation with ai for iG, so α(u) �≺ αα(v) and it follows that u �≺ v. 2

As � |S is total on S, we may assume without loss of generality that G = {1G, . . . , nG}
where nG(x) � n−1G(x) � · · · � 1G(x), that (S,� |S) has a weight sequence sat-
isfying 1 = µn ≥ µn−1 ≥ · · · ≥ µ1 ≥ 0, and weight function µ on S given by
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µ(s) =
∑

iG∈G #(iG, s)µi, and that � |S =�µ;�. In our running example 1 = µ2 >
µ1 = log 2/log 3 > 0, so for example µ(G(F (x))) = 1 + log 2/log 3.

We also have the following.

Theorem 3.5. Let T , G, S and � be as above. Then there exist permutations π and ψ
of {1, . . . , n} such that, for s ∈ S,

π(1)G
tπ(1)

π(2)G
tπ(2) . . . π(n)G

tπ(n)(x) � s � ψ(1)G
tψ(1)

ψ(2)G
tψ(2) . . . ψ(n)G

tψ(n)(x)

where ti = #(iG, s).

Proof. The analogous result for strings was proved in Martin (1990): translating via α
as in the previous theorem gives our result. 2

Thus, in our running example we have that an element s of S with #(F, s) = n,#(G, s) =
m satisfies FnGm � s � GmFn.

3.2. the spine of T (F ∪ X )

In this section we show how stronger results can be obtained in the case where S =
TH,x, the spine of T = T (F ∪ X ). We first show that any total simplification order �
on S can be lifted to a simplification pre-order � on T (F) which is compatible with �
on ground images of S, that is if s, t ∈ S and s � t, then sσ � tσ for any substitution
σ : {x} → T (F).

We already know that any order � on T which is a total simplification order, stable
under substitution on restriction to S = TH,x, induces a weight function µ on S, so that
� |S =≥µ;�. We show further that, under minor restrictions on F and �, µ can be lifted
to a function µ̄ : T (F) → R such that �⊆≥µ̄, so that if u, v ∈ T (F) and u � v, then
µ̄(u) ≥ µ̄(v).

To make these results precise takes some further technicalities, which arise because
S contains no constants. We suppose that T = T (F ∪ X ) and S = TH,x as above, and
suppose that d ∈ FC . Then S bijects with Sd = TH,d = {s(d)|s(x) ∈ S}, and any order
� on S induces an order �′ on Sd by s(d) �′ t(d) if and only if s(x) � t(x). Thus the
bijection is an order isomorphism, so if � is total or a simplification order, then �′ will
also have this property.

Thus we have the following.

Theorem 3.6. Let T , H be as above, and let � be a total simplification order on S =
TH,x, preserved under substitutions σ : {x} → S. Suppose FC 6= ∅. Then there is a
simplification pre-order � on T (F) such that if s, t ∈ S and s � t, then sσ � tσ for any
σ : {x} → T (F).

Proof. Let d ∈ FC . Then Sd bijects with S and we may define � on Sd by u(d) � v(d)
if and only if u(x) � v(x). For each u in T (F) we define u′ ∈ Sd, and let u�v if and only
if u′ � v′ or u′ = v′. To define u′ we proceed recursively over the structure of u. So if
a ∈ FC , let a′ = d ∈ Sd. If u = f(u1, . . . , un) ∈ T and {u′1, . . . , u′n} is the corresponding
subset of Sd, then {u′1, . . . , u′n} has a unique maximal element U , since Sd is totally
ordered under �. Let u′ = f(U, . . . , U) ∈ Sd.

It is clear that � is transitive and reflexive. If u = f(u1, . . . , un), then u′ = f(U, . . . , U)
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where U = max�{u′1, . . . , u′n} so u′ � U � u′i for all i. So u� ui for all i and � has the
subterm property.

To show that � is monotonic suppose u, v ∈ T (F) with u � v, so u′ � v′. Consider
p = f(u, t2, . . . , tn) and q = f(v, t2, . . . , tn), where p′ = f(U, . . . , U), q′ = f(V, . . . , V ) and
U = max�{u′, t′2, . . . , t′n}, V = max�{V ′, t′2, . . . , t′n}. Let t = max�{t′2, . . . , t′n}. There
are four cases to consider:

(1) Case t � u′ and t � v′. In this case U = V = t so p′ = q′, and it follows that
p′ � q′ and p� q.

(2) Case t � u′ and t � v′. In this case U = u′ � t = V so p′ � q′ and p� q.
(3) Case t � u′ and t � v′. This case cannot occur as v′ � t � u′ � v′, so v′ � v′,

which is impossible.
(4) Case t � u′ and t � v′. In this case U = u′, V = v′, so U � V and p′ � q′, so

p� q.

So in each case, p� q as required. Thus � is a simplification pre-order.
If σ : {x} → T (F), then (xσ)′ = q(d) ∈ Sd and if s, t are elements of S, then

[s(xσ)]′ = s((xσ)′) = s(q(d)) and similarly [t(xσ)]′ = t(q(d)). Now s(x) � t(x), so s(d) �
t(d) and hence s(q(d)) � t(q(d)) because of the stability property of the hypothesis, so
s(q(d)) � t(q(d)) and hence s(xσ) � t(xσ) as required. 2

For our second result we proceed as follows.

Theorem 3.7. Let T,H, S be as above, and � an order on T which is a total simpli-
fication order on restriction to S, preserved under substitutions σ : {x} → T (F), with
weight function µ on S. Suppose that FC has a unique maximal element d. Then there
is a function µ̄ : T (F)→ R such that:

(1) µ̄(s(d)) = µ(s(d)) for all s(d) ∈ Sd,
(2) �⊆≥µ̄ so that if u � v, then u ≥µ̄ v.

Proof. As before we work with Sd, which is order-isomorphic to S since � is preserved
under substitutions σ : {x} → T (F). We show first that every element of T (F) has
an upper bound in Sd, that is that there is an element ū ∈ Sd with u � ū. The proof
is by induction on the height of u. If u is a constant, then u � d, so set ū = d. If
u = f(u1, . . . , un), then by induction each ui has an upper bound ūi in Sd, and as
� is total on Sd, the set {ū1, . . . , ūn} has a unique maximal element U . Thus u =
f(u1, . . . , un) � f(ū1, . . . , ūn) � f(U, . . . , U) ∈ Sd as required.

Now if u is any element of T (F) the upper bounds of u in Sd form a non-empty subset
of Sd. Now ≺ is total on Sd, so this subset has a unique minimal element ū, the least
upper bound of u in Sd: that is to say that u � ū and if u � h and h ∈ Sd, then ū � h.
Thus we can define µ̄ as follows. If s(d) ∈ Sd, then µ̄(s(d)) = µ(s(x)) ∈ R. If u ∈ T (F),
then µ̄(u) = µ̄(ū) = µ(s(x)) where ū = s(d) ∈ Sd. Since � is total on S, any two elements
of T are comparable under ≥µ̄.

Now suppose that u � v. If u ≥µ̄ v, then we have the required result, so we may suppose
that v >µ̄ u, that is to say that µ̄(v) > µ̄(u), that is µ̄(v̄) > µ̄(ū) so µ(V (x)) > µ(U(x))
where v̄ = V (d), ū = U(d). Hence V (x) � U(x) so v̄ � ū. Thus as ū � u we have
v̄ � ū � u � v. Now consider v̄. This is the least upper bound of v in Sd. But ū � v, ū



938 U. Martin and D. Shand

also lies in Sd and v̄ � ū, which contradicts the fact that v̄ is the least upper bound of
v. Thus u ≥µ̄ v as required. 2

Thus, in our running example µ̄(g(g(d, d), f(d, d))) = µ(G(F (x))) = 1 + log 2/log 3.

4. One-parameter Families

In this section we note some examples of one-parameter families TG,x over term algebras
T = T (F ∪ X ) which satisfy the hypotheses of our main results and will be used below.
We then investigate the Knuth–Bendix and polynomial orders in the light of the results
above.

4.1. examples

We have already seen that the spine of T = T (F ∪ X ) is a one-parameter family. In
Examples 4.1–4.5 below it is straightforward to prove by induction that TG,x is a one-
parameter family, and there exist σ-stable simplification orders on T which are total on
TG,x. Example 4.6 shows a one-parameter family which does not admit an order of the
required kind.

Example 4.1. Let x ∈ X and let G be a non-empty subset of the spine of T ,

G ⊆ {φf (x) = f(x, . . . , x)|f ∈ F \ FC}.
Note that φnf (x) is the unique maximal tree under embedding of height n+1 in T ({f, x}).

Example 4.2. Let x ∈ X and let G be a non-empty subset of

{θf (x) = f(x, a, . . . , a)|f ∈ F \ FC}.
Note that θnf (x) is a minimal tree under embedding of height n+ 1 in T ({f, a, x}).

Example 4.3. This example subsumes the two previous examples. Let x ∈ X, f ∈ F\FC
and let f̂(x) be any term containing at least one occurrence of both f and x, so f̂(x) ∈
T ({f, x} ∪ FC) \ (T ({f} ∪ FC) ∪ {x}). Let G be a non-empty subset of

{f̂(x)|f ∈ F \ FC}.

Example 4.4. Let f ∈ F \ Fc, x ∈ X and suppose Fc 6= ∅ and let G be a non-empty
subset of

{f(a, x)|a ∈ Fc}.

Example 4.5. More generally, let f ∈ F\Fc, x, y ∈ X and suppose Fc 6= ∅. Let F (x, y) ∈
T ({f, x, y}) and let G be a non-empty subset of

{F (x, a)|a ∈ Fc}.

Example 4.6. Each of the examples above has some kind of constraint to ensure inde-
pendence and σ-stability. The latter will fail if two distinct terms in TG,x are unifiable,
that is become equal under substitution. For example consider T = T ({f, a, x}), and
let G = {F (x) = f(a, x), G(x) = f(x, a)}. Then TG,x is a one-parameter family, but in
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any total order � on T , we have either F (x) � G(x) or G(x) � F (x), but under the
substitution σ : x→ a we have σ(F (x)) = σ(G(x)), violating σ-stability.

4.2. Knuth–Bendix order

We now investigate the Knuth–Bendix order in this framework. We have shown in
Theorem 3.4 that any σ-stable simplification order over a one-parameter family gives rise
to a weight sequence. We now show that given any sequence 0 < µ1 ≤ µ2 ≤ · · · ≤ µn = 1
then it arises as the weight sequence of the restriction of a Knuth–Bendix order to a
one-parameter family S = TG,x ⊂ T (F ∪ X ) where |G| = n.

We then investigate Knuth–Bendix orders in more detail in the case that |G| = 2,
extracting for any such G and any Knuth–Bendix order the τ, λ of Theorem 2.13 and the
weight sequence of Theorem 2.11.

To prove our first result we need to construct a Knuth–Bendix order.

Theorem 4.7. Let 0 < µ1 ≤ · · · ≤ µn = 1 and T = T (F ∪ X ) where |F \ FC | = n and
|FC | ≥ 1. Then there is a G ⊂ T with |G| = n, a one-parameter family S = TG,x and a
simplification order > on T which is total on restriction to S and has weight sequence
(µ1, . . . , µn) over S.

Proof. Let a ∈ FC . For each fi ∈ F\FC = {f1, . . . , fn} consider Fi(x) = fi(x, a, . . . , a),
where the first principal subterm of Fi(x) is x and the rest are a. Let αi = α(fi)−1, and
relabel the fi if necessary so that αn ≥ αn−1 ≥ · · · ≥ α1. Define a Knuth–Bendix order
on T with precedence fn � fn−1 � · · · � f1 � a and weights given by:

w(c) = 1 for c ∈ FC
w(x) = 1 for x ∈ X
w(fn) = k

w(fr) = µr(k + αn)− αr for r = 1, . . . , n− 1

where k is chosen large enough that

µrk > αr + 1 for r = 1, . . . , n− 1,

and so each w(fr) > 1. Now the precedence and the weights satisfy the conditions of the
definition, and so they define a Knuth–Bendix order >kbo on T whose restriction to S
can easily be seen to be total. We have

w(F ir(x)) = i(w(fr) + αr) + 1
= iµr(k + αn) + 1

and hence

w(F ir+1(x)) ≷ w(F jr (x)) if i ≷ j
µr(k + αn)
µr+1(k + αn)

.

Thus

τr =
µr(k + αn)
µr+1(k + αn)
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and applying the formula given after Theorem 2.11 we have

τn−1 · · · τr =
µr(k + αn)
µn(k + αn)

= µr

as required. 2

Now we investigate one-parameter families for the Knuth–Bendix order in the case |G| =
2. So suppose that T = T (F) and suppose that S = TG,x is a one-parameter family
over G = {F,G}. We suppose that >= >kbo is a Knuth–Bendix order on T , defined
using the notation of Definition 2.7, and that the restriction of > to S is total, so that,
interchanging F and G if necessary, we may assume that F (x) > G(x). It follows from
Definition 2.7 that w(F (x)) = αF +ρvF where αF ≥ 0 and vF = #(x, F (x)), the number
of occurrences of x in F (x) regarded as an element of T . For n ≥ 1 we have:

w(Fn(x)) = nαF + ρ if vF = 1

= αF
(vnF − 1)
(vF − 1)

+ ρvnF if vF > 1

and similarly for G with w(G(x)) = αG + ρvG. For clarity of exposition we shall also
assume that αF , αG > 0 and αF 6= αG. We obtain the following result, which uses the
notation of Theorem 2.13 to describe >α.

Theorem 4.8. Let T,G, >,w be as above and let >α be the order induced on SA by >,
and �λ be the λ order with respect to F,G.

Then one of the following holds:

(1) vF = vG = 1 and >α =≥τ ;> with 1 > τ = αG
αF
6= 0. So >α has:

(a) weight sequence (1, τ) and
(b) F i(x) ≷ Gj(x) if i ≷ jτ .

(2) vF > vG = 1 and >α =≥τ ; �λ;> with τ = 0, λ = vF > 1 so >α has:

(a) weight sequence (1, 0) and
(b) F (x) > Gi(x) for all i and
(c) FGj(x) ≷ GkF (x) if jvF ≷ k.

(3) vF ≥ vG > 1 and >α =≥τ ;> with 1 ≥ τ = log vG
log vF

> 0 so >α has:

(a) weight sequence (1, τ) and
(b) F i(x) ≷ Gj(x) if i ≷ jτ and
(c) F i(x) ≷ Gj(x) if i = jτ and αF

αG
≷ vF−1

vG−1 .

Proof. Note first that F (x) > G(x), so from the definition of the Knuth–Bendix order
we have vF ≥ vG, and so we have three cases vF = vG = 1, vF > vG = 1 and vF ≥ vG > 1.
Furthermore, if u > v then #(x, u) > #(x, v), so as > is total on S we have that if

#(x, F i(x)) ≷ #(x,Gj(x)) then F i(x) ≷ Gj(x),

where #(x, F i(x)) = viF .

(1) If vF = vG = 1, then w(F (x)) = αF + ρ, w(G(x)) = αG + ρ, and as F (x) > G(x)
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and αF 6= αG we have αF > αG. Further, w(F i(x)) = iαF +ρ, w(Gj(x)) = jαG+ρ
so if i

j ≷
αG
αF

, then F i(x) ≷ Gj(x). Thus >α =≥τ ;> with 1 > τ = αG
αF

> 0 and >α
has weight sequence (1, τ).

(2) If vF > vG = 1, then for all i, #(x, F (x)) = vF > viG = 1 = #(x,Gi(x)), so
F (x) > Gi(x). We have #(x, FGj(x)) = vF = #(x,GkF (x)) and w(FGj(x)) =
αF + vF (jαG + ρ) and w(GkF (x)) = kαG + (αF + vF ρ), so if jvF ≷ k, then
w(FGj(x)) ≷ w(GkF (x)) and thus FGj(x) ≷ GkF (x). Thus >α =≥τ ; �λ;> with
τ = 0 and λ = vF > 1, and >α has weight sequence (1, 0).

(3) If i ≷ jτ , then viF ≷ v
j
G and F i(x) ≷ Gj(x). If i = jτ and αF

αG
≷ vF−1

vG−1 , then

w(F i(x)) = αF
viF − 1
vF − 1

+ ρviF ≷ αG
vjG − 1
vG − 1

+ ρvjG = w(Gj(x)).

Thus >α =≥τ ;> with 1 ≥ τ = log vG
log vF

> 0 and > has weight sequence (1, τ). 2

We have the following corollary.

Corollary 4.9. Let T,G, >,w be as above, and suppose that at least one of F,G con-
tains more than one occurrence of x. Then the weight sequence for >α is determined
solely by #(x, F (x)) and #(x,G(x)).

4.3. polynomial orders

In this section we investigate polynomial orders in this framework. We suppose that
we have a polynomial order on T which induces a total order on a one-parameter family
S = TG,x, and we compute the values of τ and λ in the case |G| = 2, and the weight
sequences in general, from the induced interpretations on the elements of G.

So suppose that T = T (F ∪ X ), where FC 6= ∅, and [.] is a polynomial interpretation
for F ∪ X defining an order >poly on T . Suppose that S = TG,x is a one-parameter
family in T , and that >poly is total on restriction to S and [.] satisfies, for each F ∈ G,
deg([F (x)]) > 1 or deg([F (x)]) = 1 and [F (x)] = aFX + bF where aF > 1 or aF = 1 and
bF > 0. Since [s] is univariate for each s ∈ S we may also define >Dpoly on S.

Lemma 4.10. Given T, [.],G as above then:

(1) >poly|S = >Dpoly and
(2) >poly|S is a simplification order on S, stable under substitution.

Proof. It follows from the definitions that >poly|S ⊆ >Dpoly, as if for some c ∈ R we
have p =

∑m
i=1 aiX

i >
∑n
i=1 biX

i = q for all X > c, then p eventually dominates q. Thus
as >poly|S is total we have >poly|S = >Dpoly. Part 2 follows from Theorem 3.2 above. 2

Then we may use Cropper and Martin (2000) in the case |G| = 2 to extract the values
of τ and λ as in Theorem 2.13 to analyse the weight sequences for >poly in general.

Theorem 4.11. Let T , [.], >poly be as above and suppose that G = {F1, F2} where
F2(x)>poly F1(x)>poly x and

[F1(x)] = bnX
n + · · ·+ b1X + b0

[F2(x)] = amX
m + · · ·+ a1X + a0.
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Then >poly|S =≥τ ;> or >poly|S =≥0; �λ;>, and the weight sequence for >poly|S is
(1, τ), where exactly one of the following holds:

(1) m ≥ n > 1 and τ = logn
logm

(2) m > n = 1, b1 > 1, τ = 0 and λ = m
(3) m > n = 1, b1 = 1, b0 > 0 and τ = 0
(4) m = n = 1, a1 ≥ b1 > 1 and τ = log b1

log a1

(5) m = n = 1, a1 > b1 = 1, b0 > 0, τ = 0 and λ = a1

(6) m = n = 1, a1 = b1 = 1, a0 ≥ b0 > 0, and τ = b0
a0

.

Proof. From the above discussion >poly|S = >Dpoly, and this is just a translation of
the main theorem of Cropper and Martin (2000). 2

Now we consider the general case, using the values of τ we have just computed.

Theorem 4.12. Let T , [.], >poly, G be as above and suppose that G = {F1, . . . , Fn} has
the weight sequence 1 = µn ≥ µn−1 ≥ · · · ≥ µ1 ≥ 0, where

Fn(x)>Dpoly Fn−1(x)>Dpoly · · ·>Dpoly F1(x).

Suppose that [Fi(x)] = kiX
mi + (terms of lower degree) with ki > 0, mi ≥ 1 for each i,

and mn ≥ mn−1 ≥ · · · ≥ m1. Then exactly one of the following holds:

(1) m1 > 1, τs = logms
logms+1

and µs = logms
logmn

for s = 1, . . . , n− 1.
(2) there is an r, n > r ≥ 1, such that mn ≥ · · · ≥ mr+1 > mr = · · · = m1 = 1 and

τs = logms
logms+1

, µs = logms
logmn

for n > s ≥ r + 1, and µs = 0 for s = 1, . . . , r.
(3) mn = · · · = m1 = 1, kn ≥ · · · ≥ k1 > 1 and τs = log ks

log ks+1
and µs = log ks

log kn
> 0 for

s = 1, . . . , n− 1.
(4) mn = · · · = m1 = 1, there is an r, n > r ≥ 1, such that kn ≥ · · · kr+1 > kr = · · · =

k1 = 1 and τs = log ks
log ks+1

and µs = log ks
log kn

> 0 for n > s ≥ r + 1, and µs = 0 for
s = 1, . . . , r.

(5) [Fi(x)] = X + pi for each i, with pn ≥ · · · ≥ p1 > 0 and τs = ps
ps+1

, µs = ps
pn

for
s = 1, . . . , n− 1.

Proof. The five cases come from considering the possible degree sequences of [Fi(x)].
In each case we may compute τs for Fs+1(x), Fs(x) from the previous theorem, and then
read off the µs from the formula after Theorem 2.11. 2

While this result computes the weight sequences given the polynomials interpreting the
Fi(x), it does not link these to interpretations for the original function symbols, which
will impose further constraints on the [Fi(x)] which we do not consider here in general.

However, we note that if one of the [Fi(x)] is non-linear, then the weight sequence of S
is determined by the degrees of the [Fi(x)] alone. If [f ] is linear for every function symbol
of F occurring in G, then each [Fi(x)] for Fi ∈ G will be linear. Then an argument similar
to the one in Theorem 4.7 shows that every possible weight sequence can occur as the
weight sequence of a suitably chosen T (F ∪X ) and one-parameter family S = TG,x, with
[f ] linear for each f ∈ F .
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5. Ordering by Counting Patterns

In this section we investigate a general framework for ordering terms by counting
patterns. As a simple running example consider terms T = T (F) where f, g ∈ F are
distinct function symbols with arity at least one. We show that the order on T defined
by ordering first on the number of occurrences of g in a term, then on the number of
occurrences of an f with a g in the subterm below it, is a partial monotonic order on
T . Thus, for {a, b, c} constants this order orders f(a, g(b, c)) > g(f(a, b), f(a, c)) and
f(g(a, a), g(a, a)) > g(g(a, a), f(a, f(a, a))).

In Section 5.1 we describe our general framework for ordering fixed arity terms by
counting patterns. We first define the notion of a pattern class P which is the disjoint
union of certain subsets Pi of V (F), the set of varyadic terms over F : the definition
of P , the set of patterns we are counting, is a certain closure property. In our example
P = {g, fg}, P1 = {g} and P2 = {fg}.

We need to count the number of occurrences, that is, distinct embeddings, of patterns
in each Pi in an element s of T (F). We record the result ζi(s) as a formal sum over R
of elements of Pi, that is an element of R[Pi], the real vector space with basis Pi and we
define

ζ(s) =
∑
i∈N+

ζi(s) ∈ (⊕iR[Pi]) = R[P ].

Definition 5.9 establishes the ζi, ζ and relies on the definition of #(w, s) given in Subsec-
tion 2.1.2.

In our example ζ1(s), ζ2(s) count the number of embeddings of g, fg respectively in
the term s, so that

ζ1(f(a, g(b, c))) = 1 ∗ (g)
ζ2(f(a, g(b, c))) = 1 ∗ (fg)
ζ(f(a, g(b, c))) = 1 ∗ (g) + 1 ∗ (fg)

ζ(g(f(a, b), f(a, c))) = 1 ∗ (g) + 0 ∗ (fg).

To define an order on terms we define monotonic orders >i on each R[Pi] using the
orders on vector spaces we described in Subsection 2.2.4. We then lift their combination
(>1, >2, . . .) to an order > on T (F) by

s > t⇔ ∃j ζi(s) = ζi(t) for i < j, ζj(s) >j ζj(t).

Theorem 5.11 then establishes a key property of ζ which we use in Theorem 5.13 to show
that we obtain a simplification order.

Thus in our example if we define >1=>2=>l , where >l is the usual linear order on
R ∼= R[{g}] ∼= R[{fg}], we see that

f(a, g(b, c)) > g(f(a, b), f(a, c)).

In Section 5.2 we consider three extended examples: we show that even on two unary
function symbols our methods give uncountably many new orders, we explain how the
Knuth–Bendix order fits into our framework and we sketch the relationship with our
earlier zig-zag orders (Martin, 1993).
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5.1. the general framework

We begin by defining our notion of pattern class and giving some examples. A pattern
class consists of the set of patterns we are counting: it needs to satisfy certain extra
conditions to make our orders monotonic. Monotonicity is essentially a closure property,
and so the intuition behind our definition is that it captures the appropriate closure
property for pattern classes for monotonicity to hold.

Definition 5.1. Let V = V (F) be a variable arity term algebra. A pattern class consists
of a subset P of V together with a decomposition of P as the disjoint union of subsets
Pi, 1 ≤ i ≤ n or 1 ≤ i ≤ ∞ satisfying:

(1) P1 is closed under taking principal subterms
(2) if p ∈ Pj+1 for some j ≥ 1 and q is a principal subterm of p, then q ∈ Qj =
∪{Pi 1 ≤ i ≤ j}.

Thus, in our running example we would take P = {g, fg}, P1 = {g} and P2 = {fg}:
then P1, P2 and Q2 = P have the required properties.

Example 5.2. If P is any subset of V closed under taking principal subterms, then P
can be regarded as a pattern class if we take Pi as the elements of P of height i, so Qi
is the elements of height at most i.

Example 5.3. In particular if P and Q are closed under taking principal subterms, then
so are P ∩Q and P ∪Q, which may thus also be regarded as pattern classes.

Example 5.4. Thus, in particular if G ⊆ F , then P = V (G) or P = T (G) may be
regarded as pattern classes by taking Pi to be the elements of P of height i, so that Qi
is the elements of height at most i.

Example 5.5. Let P be a subset of V closed under homeomorphic embedding for vari-
able arity terms, so in particular P is closed under taking principal subterms, and suppose
that P is the disjoint union of subsets Pi for 1 ≤ i ≤ n or 1 ≤ i ≤ ∞ where each Pi
is an antichain (that is to say it contains no comparable pairs of elements) and each
Qj = ∪̇ji=1Pi is closed under varyadic embedding. Then P is a pattern class as each Qj
is closed under taking principal subterms and if p ∈ Pj+1 and q is a principal subterm of
p, then q embeds in p, so by the antichain property q ∈ Qj+1 \ Pj+1 = Qj .

Example 5.6. If P ⊆ V is closed under homeomorphic embedding for variable arity
terms �emb, then we may regard P as a pattern class if we take

P1 = min
�emb

(P )

Pi+1 = min
�emb

(P \ Pi) for i ≥ 1

Example 5.7. As an instance of Example 5.5 take X to be any subset of V = V (F)
and P the set of all terms in V (F) or T (F) with at most one occurrence of any element
of X as an embedded subterm. Thus, for example if X = {a, b}, then each term in P ,
contains no as or bs at all, or one a or one b.
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Example 5.8. As a further instance of Example 5.5 take X to be any finite subset of
V (F) and let

P = Forb(X) = {s ∈ V (F)|x ∈ X ⇒ ¬(x emb≺ s)}
(and likewise for T (F)). P is closed under embedding.

If H is a set, then the set of formal sums R[H] of H over R is defined as the vector
space over R with basis H. Thus we may define the usual vector space operations: for
example the direct sum R[P ]⊕ R[Q] may be identified with the formal sum R[P ∪Q].

Now let R[P ] = ⊕i=1R[Pi] be the set of formal sums over R of elements of P . We
define the map

ζ : T (F)→ R[P ]
as the direct sum of the component maps

ζi : T (F)→ R[Pi]

defined below. Informally, ζi(s) “counts how many times each element of Pi embeds in
s”.

Definition 5.9. Let P = ∪̇Pi be a pattern class and s ∈ T (F). We define ζi, for i ≥ 1
as

ζi(s) =

(∑
u∈Pi

#(u, s)u

)
∈ R[Pi].

We say that w occurs in s if w ∈ P and #(w, s) 6= 0

Our next task is to compute the ζi, by counting the occurrences of elements w of P
in a term s. In the following theorem, ζi(s) will be split into three components, which
correspond to the three structures of terms which w can take in the definition of #(w, s)
in Subsection 2.1.2. We therefore introduce the following notation.

Notation 5.10. Let P = ∪̇Pi be a pattern class, and let s = f(s1, . . . , sn) ∈ T (F).
Then let

Fi = {w ∈ Pi|w ∈ F}
αi,s = {w ∈ Pi|(hd(w) 6= f) ∨ ((hd(w) = f) ∧ (hdar(w) > n))}
βi,s = {w ∈ Pi|hd(w) = f ∧ n ≥ hdar(w)}.

The following result shows that ζ has the key property which will ensure that our
orders are monotonic.

Theorem 5.11. Let P = ∪̇Pi be a pattern class, and let

ζ = ⊕iζi : T (F)→ R[Pi]

be as above. Let s, t, u = f(s, s2, . . . , sn), and v = f(t, s2, . . . , sn) be elements of T (F),
and let k > 1. Suppose ∀h < k, ζh(s) = ζh(t). Then ∀r ≤ k

ζr(s)− ζr(t) = ζr(u)− ζr(v).
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Proof. First note that we can decompose ζd(u) for any d ≥ 1 in the following way:

ζd(u) =
∑
w∈Pd

#(w, u)w

=
∑
w∈Fd

Aw +
∑

w∈αd,u

Bw +
∑

w∈βd,u

Cw

where

A = #(w, f) + #(w, s) +
n∑
i=2

#(w, si)

B = #(w, s) +
n∑
i=2

#(w, si), and for w = f(w1, . . . , wm) ∈ βd,u(n ≥ m),

C = #(w, s) +
n∑
i=2

#(w, si) + #(w1, s)
∑

(jk)mk=2@[2,n]

m∏
i=2

#(wi, sji)

+
∑

(jk)mk=1@[2,n]

m∏
i=1

#(wi, sji).

Also note that hd(u) = f = hd(v) and hdar(u) = n = hdar(v). It follows that αd,u = αd,v
and βd,u = βd,v for each d ∈ N+.

Now consider the case r = 1. Then r = 1 < k so ζ1(s) = ζ1(t) and so∑
w∈P1

#(w, s)w =
∑
w∈P1

#(w, t)w.

In particular, as P1 is a basis for R[P1], for all w ∈ P1 we have #(w, s) = #(w, t). Hence

ζ1(u)− ζ1(v) =
∑

w∈β1,u

(#(w1, s)−#(w1, t))
∑

(jk)mk=2@[2,n]

m∏
i=2

#(wi, sji)w.

Now we have w1 ∈ P1 as P1 is closed under taking principal subterms. So #(w1, s) =
#(w1, t) and thus 0 = ζ1(u)− ζ1(v) = ζ1(s)− ζ1(t), as required.

Now consider the case r > 1. So, ∀h < k, ζh(s) = ζh(t); i.e.∑
w∈Ph

#(w, s)w =
∑
w∈Ph

#(w, t)w

and hence #(w, s) = #(w, t) for each w ∈ Ph. Now consider 1 < r ≤ k. It follows from
the decomposition of the formal sum given above that:

ζr(u)− ζr(v) = ζr(s)− ζr(t) +
∑

w∈βr,u

(#(w1, s)−#(w1, t))
∑

(jk)mk=2@[2,n]

m∏
i=2

#(wi, sji)w.

Now consider w1. Since Qr = ∪̇rj=1Pj is closed under taking principal subterms we have
w1 ∈ Qr. As w ∈ Pr, the second condition in the definition of pattern class states that
w1 is in Qr−1 = ∪̇r−1

j=1Pj . Hence w1 ∈ Ph for some h < r ≤ k; i.e. for h ≤ k − 1. Thus
#(w1, s) = #(w1, t) and so ζr(u)− ζr(v) = ζr(s)− ζr(t) as required. 2

Now we can construct the orders we seek.



Invariants, Patterns and Weights for Ordering Terms 947

Definition 5.12. Given F , P and ζ as above, a monotonic family for P consists of a
sequence (>i)i≥1, where each >i is a monotonic order on the real vector space R[Pi] (see
Subsection 2.2.4), and given s, t, u = f(. . . , si−1, s, si+1, . . .), v = f(. . . , si−1, t, si+1, . . .) ∈
T (F) we have that ζ1(s) >1 ζ1(t) implies ζ1(u) >1 ζ1(v).

A monotonic family (>i) for P defines a relation > on T (F) by

s > t⇔ ζ(s)(>1, >2, . . .)ζ(t)
⇔ ∃j ≥ 1 such that ζi(s) = ζi(t) for each i < j and ζj(s) >j ζj(t).

We say P, (>i) distinguish s, t in T (F) if either s > t or t > s.

In our running example, (>1, >2) is a monotonic family as each >i is monotonic on
R[Pi] and ζ1 satisfies the additional condition as it merely counts the number of occur-
rences of the letter g in a term.

Finally the next theorem shows that monotonic families over P define monotonic orders
on terms.

Theorem 5.13. Let P = ∪̇Pi be a pattern class in V (F), ζ be defined as above and
>= (>i) a monotonic family for P . Then > is a monotonic strict partial order on T (F).

Proof. We need to show that > is monotonic, that is, that if s > t then f(s1, . . . , sn) >
f(t1, . . . , tn) whenever there is a p (1 ≤ p ≤ n) with sp = s, tp = t and si = ti for
i 6= p. Without loss of generality it suffices to consider the case p = 1. Suppose that
s, t, u = f(s, s2, . . . , sn), v = f(t, s2, . . . , sn) ∈ T (F) and s > t. Then there is a k such
that ζk(s) >k ζk(t) and ζh(s) = ζh(t) for h < k.

If k = 1, then ζ1(s) >1 ζ1(t) implies that ζ1(u) >1 ζ1(v) by hypothesis. Hence u > v
by definition of >. If k > 1, then by Theorem 5.11, for all r ≤ k we have

ζr(u)− ζr(v) = ζr(s)− ζr(t).

Thus if r < k we have
ζr(u)− ζr(v) = 0

and for r = k we have
ζk(u)− ζk(s) = ζk(v)− ζk(t)

and hence as >k is monotonic

(ζk(u)− ζk(s)) + ζk(s) >k (ζk(v)− ζk(t)) + ζk(t)

and so ζk(u) >k ζk(v). Thus u > v as required. 2

The framework we have established allows very general classes of pattern classes P
and monotonic ordering families (>i): we are also interested in the case when they give
rise to simplification orders. We note that:

(1) The order we construct may fail to have the subterm property, or be total, either
because P is “too small” so ζ(s) = ζ(t) for s 6= t, or because P is “large enough”
but the orders (>i) do not order enough terms, so ζi(s) and ζi(t) are distinct and
incomparable for some s, t with ζr(s) = ζr(t) for r < i.

(2) Suppose that t is a subterm of a term s: then ζ(s)− ζ(t) will always be of the form∑
p∈P r p where each r ≥ 0. If we require that P be large enough so that for each
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such pair s, t, then at least one r 6= 0, and further that the (>i) be strong enough
that for each p ∈ Pi, p >i 0 ∈ R[Pi], then > will have the subterm property and
will thus be a simplification order and well-founded. To ensure the former condition
we would need to formalize some notion of a set of varyadic terms forming a basis
for terms. To ensure the latter it is sufficient (but not necessary) for each >i to be
total, so defined by orthogonal matrices as indicated in Subsection 2.2.4.

(3) To attempt to construct an order of this kind which proves a particular rewrite
system terminating we need to identify the occurrences of varyadic terms embedding
into each side of each of the rules, and then to construct a suitable pattern class
and order. Example 5.6 shows how we may take for P the closure under varyadic
embedding of all subterms of all of the rules. We then need to try to construct orders
on each R[Pi] which make each left-hand side greater than each right-hand side: by
the theory of orders on vector spaces indicated in Subsection 2.2.4 this reduces to
solving real linear inequalities. We have yet to carry out a practical investigation
of the technique: it would have many similarities with the technique for using the
simplex method to identify weights for the Knuth–Bendix ordering (Dick et al.,
1990).

In our running example the order we have given is not strong enough to distinguish
between terms and subterms, for example f(f(a, a), a) and f(a, a).

We return to the example of Section 1, and use the pattern class P = {g, g(g)},
P1 = {g}, P2 = {g(g)}, and the orders >1=>2=>l . This defines a partial monotonic
order on T (F) for any g in T (F). We have for example that

g(a, g(a, g(a, a))) > g(g(a, a), g(a, a))

as

ζ(g(a, g(a, g(a, a)))) = 3 ∗ (g) + 3 ∗ (g(g))
ζ(g(g(a, a), g(a, a))) = 3 ∗ (g) + 2 ∗ (g(g)).

If F = {g}∪FC , then this order always differentiates between terms and subterms, so it
is a partial simplification order.

If we take P = {g, g(g, g)} and >1=>2=>l , then we obtain

g(g(a, a), g(a, a)) > g(a, g(a, g(a, a)))

as

ζ(g(a, g(a, g(a, a)))) = 3 ∗ (g) + 0 ∗ (g(g, g))
ζ(g(g(a, a), g(a, a))) = 3 ∗ (g) + 1 ∗ (g(g, g)).

Applying the method indicated above in (3) we would attempt to build an order by
considering P = {g, g(g), g(g, g), . . .} (suppressing some elements of P for clarity) with
P1 = {g}, P2 = {g(g)}, P3 = {g(g, g)}, . . ., and on each Pi would have a choice of orders
>i to construct the order we need: in this case as each of P1, P2, P3 has dimension 1
the theory of Subsection 2.2.4 shows that we have a choice of three orders for each
>i, and suitable choices give us the two orders above and thus a choice for ordering
g(a, g(a, g(a, a))) and g(g(a, a), g(a, a)).
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5.2. examples

In this section we present some simple examples to indicate the power of these methods.
We then show how these orders subsume the weight part of the Knuth–Bendix order and
the zig-zag order of Martin (1993).

Example 5.14. We consider terms T = T ({f, g}∪ {a}) in two unary operators f, g and
a constant a. We let

P1 = {f(a), g(a), a}
P2 = {fg(a), gf(a)}

and P3 = {fgf(a), gfg(a)}

and it is easy to see that P = P1 ∪ P2 ∪ P3 is a pattern class. Let >1, >2 and >3 be
monotonic orders on R[P1], R[P2] and R[P3] respectively and > the order they induce on
T . We show that for >1 and >2 fixed, there are continuum many choices for >3, giving
continuum many distinct orders >. To see this consider

s = fNg2MfN (a) and t = gMf2NgM (a).

It is clear that

ζ1(s) = ζ1(t) = 2N f(a) + 2M g(a) and
ζ2(s) = ζ2(t) = 2NM (fg(a) + gf(a)).

We have

ζ3(s) = 2MN2 fgf(a) and
ζ3(t) = 2M2N gfg(a).

Now for any positive real λ define >3,λ by

α fgf(a) + β gfg(a) >3,λ α
′ fgf(a) + β′ gfg(a)⇐⇒ α+ β λ > α′ + β′ λ.

Then

ζ3(s) >3,λ ζ3(t)

if and only if

2MN2 > 2M2N λ

that is

N/M > λ

and

ζ3(s) 3,λ< ζ3(t)

if and only if

2MN2 < 2M2N λ that is N/M < λ.

Define >λ to be the lifting of (>1, >2, >3,λ) to T extended to a total order by comparing
lexicographically from the left with f � g. We have the following.

Theorem 5.15. Let >1, >2, >3,λ and >λ be as above. Then:
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(1) For any monotonic >1, >2, total >1 and real positive λ, >λ is a total simplification
order.

(2) For fixed >1, >2, λ1 6= λ2, then >λ1 6=>λ2 .

Proof. (1) Is just an application of the results from Section 5.1.
(2) Suppose without loss of generality that λ1 > λ2 > 0. Then there is a rational

number N/M such that λ1 > N/M > λ2. But then by the argument above we have

fNg2MfN (a) >λ2 g
Mf2NfM (a) and fNg2MfN (a) λ1< gMf2NfM (a)

and so >λ1 6=>λ2 . 2

Example 5.16. We show how the weight pre-order of the Knuth–Bendix order can be
obtained by a pattern order.

Let F be a set of function symbols. Then it is easy to check that P = P1 = F is
a pattern class. Therefore, for any t ∈ T (F), ζ(t) =

∑
f∈F #(f, t)f ; i.e. ζ counts the

multiplicities of the function symbols in t. It follows that R[P ] = R[P1] is an R vector
space with basis elements of F and dimension |F|, the cardinality of F . By the comments
in Subsection 2.2.4, we can assign a weight vector w ∈ R|F| and define, for u, v ∈ T (F),
u > v if and only if ζ(u).w > ζ(v).w, where . is the usual dot product of vectors. We
therefore obtain the pre-order by weight of the Knuth–Bendix order.

We may extend this order in continuum many distinct ways by counting additional
patterns as in Theorem 5.15.

Example 5.17. We briefly discuss the “zig-zag” orders of Martin (1993). Zig-zags are
annotated sequences of function symbols. Formally:

Definition 5.18. A zig-zag Z = (z, η) of length n on a set of function symbols F
consists of a non-empty sequence z = [f1, . . . , fn] of elements of F and a total function
η : [1, . . . , n− 1]→ N such that 1 ≤ η(i) ≤ α(fi) for each 1 ≤ i ≤ n− 1. For convenience
Z is represented as a labelled directed graph

f1
η(1)→ f2

η(2)→ · · · fn−1
η(n−1)→ fn.

We denote by ZF (n) or Z(n) the set of all zig-zags of length n on F .

Zig-zags represent paths in a term. For example, f 2→ g
1→ a and f

1→ g are zig-zags
on F = {f, g, a} where f and g have arity 2 and a has arity 0, and similarly we can
represent f(g(a, a), g(a, a)) contains one occurrence each of f 2→ g

1→ a and f
1→ g. In

Martin (1993) simplification orders are constructed on T (F) by mapping a term s to the
formal sum of the zig-zags it contains, by ζ : T (F) → ⊕R[ZF (n)], and then using ζ to
lift appropriate monotonic families >= (>i) of orders >i on each R[ZF (i)] to orders on
T (F).

Our objective is to define a pattern class on V (F ) which behaves like the set of zig-
zags ZF (n). However, if f, g ∈ F have arity greater than 1 there is no satisfactory way
for elements in V (F) to distinguish between f

1→ g and f
2→ g in ZF (n). Instead, we

introduce a constant symbol 2 and define a pattern class P on T (F∪{2}) which behaves
as required. Here 2 will represent a “redundant” subterm. For example, if f and g have
arity 2 we can represent f 1→ g by f(g(2,2),2); i.e. g occurs in the first subterm of f ,
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the second subterm of f is redundant and the subterms of g are redundant, and similarly
we can represent f 2→ g by f(2, g(2,2)). We now define P = ∪̇Ln in T = T (F ∪ {2}).

Definition 5.19. Let T = T (F∪{2}) be a term algebra. Then let T2, the zig-zag terms
of T , be defined by:

(1) FC ∪ {2} ⊆ T2 and
(2) f(s1, . . . , sn) ∈ T2 if and only if there is an sj , such that sj ∈ T2 and si = 2 for

i 6= j.

Let T i2 denote the set of terms of T2 of height i. Let U i2 denote the set of terms of T2 of
height i in which 2 is the only constant symbol, and let Ln denote the set (Tn2\Un2)∪Un+1

2 .

It is easy to check that P = ∪̇Ln is a pattern class. We can now define, for each n, a
mapping γn from Ln to Z(n).

Definition 5.20. Let F be a set of function symbols where each fi ∈ F has arity αi, 2

be a constant, T = T (F ∪ {2}) be a term algebra with T2 being a set of zig-zag terms
of T and Z be a set of zig-zags on F . For each n ≥ 1 we define the function

γn : Ln → Z(n)

as follows. For q ∈ L1 we have γ1(q) = f where f is the head of q. For q = f(2, . . . , qi, . . .,
2) in Ln where qi 6= 2 is the ith argument of f we have γn(q) = f

i→ γn−1(qi).

We then have the following theorem.

Theorem 5.21. Let Ln, Z(n), γn be defined as above. Then γn is a bijection for each
n ≥ 1.

Proof. Follows by induction on n. 2

To complete our construction of the zig-zag order via patterns we need to define a slight
variant of the ζ of Definition 5.9, since terms in T (F) do not contain any occurrence of
2. We do this by extending the base case of Definition 2.4 so that #(2, s) = 1 for any
term s, and hence #(u, s) ≥ 1 for each u in P . We can then define ζ in terms of this
extended definition of #, and obtain the following

Theorem 5.22. Let P = ∪̇Li, and

ζ = ⊕iζi : T (F)→ R[Li]

be as above. Let s, t, u = f(s, s2, . . . , sn), and v = f(t, s2, . . . , sn) be elements of T (F),
and let k > 1. Suppose ∀h < k, ζh(s) = ζh(t). Then ∀r ≤ k

ζr(s)− ζr(t) = ζr(u)− ζr(v).

Proof. Similar to Theorem 5.11. 2



952 U. Martin and D. Shand

It follows that ζ allows us to lift suitable orders on the Li to orders on T (F), and we
can use the bijection of Theorem 5.21 to show that these simulate the zig-zag orders of
Martin (1993).

6. Patterns for the Recursive Path Order

In this section we consider how our ideas of enumeration in the previous section may
be modified to deal with the recursive path order. We note first that we cannot extend
our previous results directly.

Example 6.1. We construct a term s with the property that for any p which strictly
embeds in s, there is a term t with s >rpo t but p occurring more often in t than in s.
This means that >rpo cannot be induced by a pattern order.

Let {f, a} ⊆ F , where f has arity 2 and a is a constant, and consider the terms

s = f(a, f(a, f(f(a, a), f(a, a))))
t = f(f(k, k), f(k, k)) where k = f(f(a, a), a).

If p embeds in s, then either p embeds in t, and occurs more times in t than in s, or p
embeds in t′ where t′ is got from t by replacing k by f(a, f(a, a) and again p occurs more
times in t′ than s. The proof is by exhaustion. We have s>rpo t and s>rpo t

′ as required.

However, under certain mild restrictions on the precedence we can characterize the
recursive path order by means of the skeleton of a term s. Suppose that F is a finite
set of function symbols and that FC ⊂ F is non-empty. Suppose that � is a partial
order on F , total on FC , and that F \ FC has a greatest element f . It follows that any
term s contains a maximal embedded subterm on G = {f} ∪ FC : we call this subterm
the skeleton of s, denoted skel(s). In Theorem 6.5 we show that the recursive path
order defined by � on T (F) induces the height pre-order on the skeletons, so that if
height(skel(s)) > height(skel(t)), then s >rpo t. Thus, for example, if s = f(f(a, a), a),
then s = skel(s) and height(skel(s)) = 2, so s is greater than any term t containing at
most one occurrence of f , since height(skel(t)) < 2.

It is tempting to conjecture a stronger result, that if skel(s) >rpo skel(t), then s >rpo

t. This is true for unary function symbols, but we may exhibit s, t with s >rpo t =
skel(t)>rpo = skel(s): take s = f(g(f(a, a), a)), so skel(s) = f(f(a, a), a), and t =
skel(t) = f(f(a, a), f(a, a)).

In particular, if F = {f} ∪ FC , then skeleton of s is just s itself. In Theorem 6.10 we
show that in this case the recursive path order is just an extension of an order by height
by a further order, which compares two terms of equal height p by comparing the largest
subterms of height q at depth p− q for some value of q.

If further FC contains just one element, then Corollary 6.11 shows how this result
may be simplified by comparing certain maximal subtrees of fixed height. Theorem 6.12
identifies a related phenomenon in the case of monadic terms.

6.1. skeletons

In this section we define the f -skeleton and prove Theorem 6.5.

Definition 6.2. Let F be a finite set of function symbols, and suppose that FC ⊂ F is
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non-empty. Suppose that � is a partial order on F , total on FC , and that F \ FC has
a greatest element f so that f � g for all f 6= g in F . Let G = {f} ∪ FC . Let s ∈ T (F)
and let

ŝ = {t ∈ T (G)|t emb≺ s}.
Note that ŝ will be non-empty as it will at contain at least one constant. It follows from
our hypotheses that � is total on G, so ≥rpo is total on ŝ, and so there is an element q
of ŝ such that q ≥rpo p for all p ∈ ŝ, and q is unique up to ≥rpo equivalence. We define
skel(s) to be some embedded subterm of s equivalent to q.

Example 6.3. Let F = {f = f1, . . . , fn, a} where each fi (1 ≤ i ≤ n) is unary, f is
the greatest element of F and a is a constant. For any s ∈ T (F), skel(s) = fn(a) where
n = #(f, s).

Example 6.4. Let F = {f, g, a} where a is a constant and f and g have arity 2, and let
f � g � a. Let

s = f(g(f(f(a, a), a), f(a, f(a, a))), g(a, a))
and

t = g(f(a, a), f(f(a, a), g(a, a)))
be elements of T (F). Then

skel(s) = f(f(f(a, a), a), a) ≈rpo f(f(a, f(a, a)), a)

as f(f(a, a), a) ≈rpo f(a, f(a, a)), and skel(t) = f(f(a, a), a).

We can now prove our main result.

Theorem 6.5. Let f,F and � be as above. Then, for s, t ∈ T (F),

(1) if height(skel(s)) > height(skel(t)), then s >rpo t
(2) if s ≥rpo t, then height(skel(s)) ≥ height(skel(t)).

Proof. (1) We proceed by induction on height(t).

Case height(t) = 1. Then t ∈ FC , i.e. t is a constant. Then height(t) =
height(skel(t)) = 1 < height(skel(s)). So s contains an f , and by the definition
of the precedence � on F , f � t, and hence s >rpo t.
Case height(t) > 1. Let s = h(s1, . . . , sm) and t = g(t1, . . . , tn). Without loss
of generality, we may assume that h = f by replacing s with the smallest sub-
term of s containing skel(s): skel(s) must contain at least one occurrence of f as
height(skel(s)) > height(skel(t)). We now have two cases to consider:

Case g 6=f . It follows that skel(t)= skel(ti) for some i, and so height(skel(s)) >
height(skel(t)) = height(skel(ti)) ≥ height(skel(tj)) for j 6= i. So for 1 ≤ j ≤ n,
s >rpo tj by induction and f � g by hypothesis. Hence s >rpo t.
Case g = f . It follows that

height(skel(s)) = 1 + max{height(skel(si))}
> height(skel(t))
= 1 + max{height(skel(tj))}.
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Therefore, there is an i such that for all j height(skel(si)) > height(skel(tj))
and hence si >rpo tj for 1 ≤ j ≤ n by induction. Thus s >rpo t.

(2) Suppose that s >rpo t and height(skel(s)) < height(skel(t)). Then by part 1, t >rpo s
which is a contradiction, and part 2 follows immediately. 2

Example 6.3 gives an immediate corollary in the case of monadic terms, confirming
what we already know from Martin and Scott (1997). We have the following.

Corollary 6.6. Let F = {f1, . . . , fn, a} where each fi (1 ≤ i ≤ n) is unary, a is a
constant, � is total and f1 � fj for 2 ≤ j ≤ n. Then:

(1) if #(f1, s) > #(f1, t), then s >rpo t

(2) if s >rpo t, then #(f1, s) ≥ #(f1, t).

Further consideration of this example shows that an obvious generalization of Theo-
rem 6.5 is false. Suppose f1 � f2 � f3 and we define the {f1, f2}-skeleton denoted by
skel{f1,f2}(s) in the obvious way. Then it is not true that

height(skel{f1,f2}(s)) > height(skel{f1,f2}(s))⇒ s >rpo t.

For consider s = f1f2f3(a), t = f2
2 f1f3f2(a). Then s >rpo t but skel{f1,f2}(s) = f1f2(a),

skel{f1,f2}(t) = f2
2 f1f2(a) and height(skel{f1,f2}(s)) = 3 < height(skel{f1,f2}(t)) = 5.

For further corollaries, we will need to consider the recursive path order on T ({f}∪FC)
in more detail.

6.2. the case of one non-constant function symbol

In this section we let F , f and � be as before and consider the recursive path order
on T (G) for G = {f} ∪ FC in more detail. Since the case f is unary is not interesting as
(f i(b) >rpo f

j(c) if and only if i > j or i = j and b � c) we assume that f has arity at
least 2.

We define the set of subterms at depth k of height j, Dj
k(s), for a term s over an

arbitrary set of symbols as follows.

Definition 6.7. Let F be a set of function symbols and s ∈ T (F)
if s ∈ FC , then

D1
0(s) = {s}

Dj
i (s) = ∅ otherwise

if s = g(s1, . . . , sn), then
Dj

0(s) = {s} if j = height(s)
Dj

0(s) = ∅ if j 6= height(s)
Dj
k(s) = ∪ni=1D

j
k−1(si) otherwise.

Note that if Dj
k(s) 6= ∅, then 0 ≤ k ≤ height(s) − 1, 1 ≤ j ≤ height(s) − k and

j + k ≤ height(s).
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Example 6.8. Let s = g(g(a, a), a), then

D2
1(s) = D2

0(g(a, a)) ∪D2
0(a)

= {g(a, a)}
D1

1(s) = D1
0(g(a, a)) ∪D1

0(a)
= {a}

and if t = g(g(a, a), g(a, a)), then D1
1(t) = D1

0(g(a, a)) = ∅.

Now we show that the recursive path order on T (G) is an extension of an order obtained
by first ordering by height and then comparing the terms of height p by comparing the
largest subterms of height q at depth p− q for some q.

Example 6.9. We will investigate the terms s, t from Example 6.1. We note that
height(s) = height(t). It is easy to check that D2

3(s) = {f(a, a)} = D2
3(t), D3

2(s) =
{f(f(a, a), f(a, a))} and D3

2(t) = {f(f(a, a), a)}. It follows from the definition of the
recursive path order that f(f(a, a), f(a, a))>rpo f(f(a, a), a). Thus, there is an element
of D3

2(s) which dominates every element of D3
2(t). It then follows from the next theorem

that s >rpo t.

Theorem 6.10. Let s, t ∈ T (F).

(1) If height(s) > height(t), then s >rpo t.
(2) Suppose height(s) = height(t) = p and there is a q, p ≥ q ≥ 1 and an s′ ∈ Dq

p−q(s)
such that s′ >rpo t

′ for each t′ ∈ Dq
p−q(t). Then s >rpo t.

Proof. (1) Is an instance of part 1 of Theorem 6.5, in which s = skel(s) and t = skel(t).
(2) The proof is by induction on p− q

Case p − q = 0. s′ ∈ Dp
0(s) = Dq

0(s) = {s} and t′ ∈ Dp
0(t) = Dq

0(t) = {t} so
s = s′ >rpo t

′ = t as required.
Case p > q. Suppose s = f(s1, . . . , sn) and t = f(t1, . . . , tn). By hypothesis we
have s′ ∈ Dq

p−q(s) = ∪iDq
p−q−1(si), so there is a j such that s′ ∈ Dq

p−q−1(sj) 6=
∅. It follows that q+ (p− q− 1) ≤ height(sj) ≤ p− 1 and so height(sj) = p− 1.
We now show that sj >rpo ti for i = 1, . . . , n. There are two cases:

Case p − 1 = height(sj) > height(ti). Then sj >rpo ti by part 1. of this
theorem.

Case p − 1 = height(sj) = height(ti). Now p > q, so p − 1 ≥ q ≥ 1 and
s′ ∈ Dq

p−q−1(sj), and if t′ ∈ Dq
p−q−1(ti), then t′ ∈ Dq

p−q(t). It follows by
the hypothesis of the theorem that s′ >rpo t

′. Now (p− 1)− q < p− q and
so it follows from the induction hypothesis that sj >rpo ti.

Thus sj >rpo ti for all i.

It follows that s >rpo t. 2

We now give a simplified version of this in the case where FC has one element, a. The
unique maximal tree in f, a of height q is Tq defined by T1 = a, Tr+1 = f(Tr, Tr). Any
other tree of height q embeds in Tq and so if height(s) = height(t) = p and for some
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value of q with p ≥ q ≥ 1 we find that Dq
p−q(s) contains Tq and Dq

p−q(t) does not, then
s >rpo t. More formally:

Corollary 6.11. Let s ∈ T (F), with height(s) = p and let

TD(s) = max{q|Tq ∈ Dq
p−q(s)}.

Suppose that either height(s) > height(t), or height(s) = height(t) and either TD(s) >
TD(t). Then s >rpo t.

We note a phenomenon related to this work in the case of two unary function symbols,
F = {f, g, a} with f � g. As we have seen in this case height(skel(s)) = #(f, s) + 1. So
for any s, t, s >rpo t implies that #(f, s) ≥ #(f, t), and #(f, s) > #(f, t) implies that
s >rpo t, confirming what we already know, see Theorem 2.14.

If #(f, s) = #(f, t) = i we may count occurrences of {uj = f jgf i−j |j = 0, . . . , i} in
s, t to obtain the following by a routine induction.

Theorem 6.12. Let T = T ({f, g, a}) be a set of monadic terms and >rpo be the recursive
path order on T with f � g. Then s >rpo t if and only if:

(1) #(f, s) > #(f, t) or
(2) #(f, s) = #(f, t) = i and (#(u0, s), . . . ,#(ui, s))>rpo

LexR (#(u0, t), . . . ,#(ui, t)).

7. Conclusions

We have extended our classification of simplification orders on monadic terms to orders
on arbitrary terms T which induce a total simplification ordering on the spine of T . We
associate to each such order � on T numeric invariants which establish Pn as a classifying
space for these orders, and hence associate to any rewrite system over T a subset of Pn
corresponding to the orders which prove R terminating. The invariants induce a map
µ̄ : T → R, and hence give rise to a pre-order ≥µ̄ on T which extends �. Note that our
results do not require � to be a simplification order: we have yet to explore how far our
work is useful in analysing non-simplification orderings used in termination proofs, such
as those of Zantema (1994).

One further step would be to refine the classification following the analysis of Martin
and Scott (1997) and Prohle and Perlo-Freeman (1997) in the two letter case: another
to incorporate our work on counting patterns in Section 5, so that we can calculate >µ̄
directly from the orders >i on the patterns Pi. It seems apparent that our work on
the recursive path order in Section 6 extends to other syntactic orders of this nature,
and could provide a link with our main classification result. One might also consider
matters such as order-types (Cichon and Weiermann, 1997) or decidability (Middeldorp
and Gramlich, 1995) in our framework.

The eventual motivation for such work is an understanding of termination problems,
and the establishment for terms of notions corresponding to the Gröbner walk and
Gröbner fan of an ideal in a polynomial ring (Faugere et al., 1993). This would en-
able us to understand in a uniform framework termination proofs for a rewrite system
amenable to these methods.
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