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Abstract Twomodified layered double hydroxides (HT) have been synthesized by intercalating both

sodium dodecylsulfate (SDS) and sodium dodecylbenzenesulfonate (SDBS) surfactants into Mg-Al

layered double hydroxides using the calcination–rehydratation method. The prepared materials

HT-SDS and HT-SDBS were characterized by X-ray diffraction, FTIR, thermal analysis and BET.

The obtained materials were used for Brilliant Blue R (BBR) dye removal from aqueous solution.

Batch studies were carried out to address various experimental parameters such as kinetic, pH, sorp-

tion isotherm and temperature. Sorption experiments of acid dye BBR from aqueous solution by

HT-SDS and HT-SDBS were investigated in the batch system. Kinetic studies indicate that the sorp-

tion of BBR follows the pseudo-second-order model. Sorption capacities of HT-SDS (357.1 mg/g) for

BBR dye were much higher than those of HT-SDBS (204.1 mg/g). The intercalated Mg-Al layered

double hydroxides with SDS and SDBS could possibly be used to remove anionic dyes of relatively

high concentrations,whereasHT-CO3mayonly beused to remove anionic dyes of low concentrations.
ª 2012 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays, the industrial sectors of textile, pigment, leather,
paper and plastic generate enormous quantities of colored
wastewater that contain various types of synthetic dyestuffs
(Gulnaz et al., 2004). Dyed wastewater from these industries

pose certain hazards and constitute serious environmental
problems as the color and the non-biodegradable nature of
the residual dye may interfere with light penetration, and

thereby affect aquatic ecosystems (Tsai et al., 2001).
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The removal of textile dyes from wastewater is currently a
major environmental issue that has to be solved. Most of the
dyes used in textile industry are in fact particularly difficult

to remove by conventional waste treatment methods since they
are primarily designed to be resistant to degradation or fading
by oxidizing agents and light. They must also be resilient to

both high temperatures and enzyme degradation resulting
from detergent washing (Gulnaz et al., 2004). Most studies
have focussed on the development of a technique and a meth-

od for the treatment of dye wastewater. In general, there are
several methods of reducing color in textile effluent streams:
coagulation–flocculation, biological treatment, oxidation–
ozonation, adsorption and membrane processes. The advanta-

ges and disadvantages of each technique have been extensively
reviewed. Of these methods, adsorption has been found to be
an efficient and economic process to remove dyes, pigments

and other colorants (Özacar and Sengil, 2004). Dyes are gener-
ally removed from aqueous solutions by a sorption process
using activated carbon (Ozacar and Sengil, 2002; Faria et al.,

2004). In recent years, many cheap and widely-available mate-
rials have been identified as suitable adsorbents for the re-
moval of color from wastewaters. The sorption of various

dyes onto sludge(Otero et al., 2003), alunite (Ozacar and
Sengil, 2002), rice husk (Malik, 2003), treated spent-bleaching
earth (Mana et al., 2007), kudzu (Allen et al., 2005), bentonite
(Ozcan and Ozcan, 2004), organophilic bentonites (Rawajfih

and Nsour, 2006) and layered double hydroxides has been
extensively investigated (Lazaridis et al., 2003; Bouraada
et al., 2007; Mao-Xu Zhu et al., 2005).

Layered double hydroxides, frequently called hydrotalcite-
like compounds, are a class of anionic clays. Its structure
can be seen as derived from that of brucite, in which the octa-

hedral sites of metal hydroxides are sharing edges to form two-
dimensional sheets. These sheets are positively charged due to
the isomorphous substitution of a part of the divalent metal

ions with trivalent ones. Thus, the HT composition can be
expressed by the general formula ½M2þ

1�xM
3þ
x ðOHÞ2�ðA

n�Þx=n
mH2O, where M2+ and M3+ are di- and trivalent metal ions,
and An- is the charge-compensating anion and water molecules

which are placed into the interlayer space (Cavani et al., 1991).
A wide variety of inorganic or organic anions can be inter-

calated into the interlayer space either by direct synthesis or by

ion exchange. As to the latter technique, the strategies that
have been considered include direct anion exchange reaction
from a suspension of the layered double hydroxides in a

solution containing the new anion; or a reconstitution from
the amorphous oxides obtained after a moderate thermal treat-
ment, using the so-called ‘‘memory effect’’.

Layered double hydroxides have received considerable

attention in recent years because of their potential applications
in a wide range of applications such as catalysts (Dula et al.,
2002), anion exchangers (Terry, 2004), sorbents and antacids

(Meira et al., 2006; Del Arco et al., 2004; Carpani et al., 2004).
The intrinsic hydrophilic surface property of HT can be

modified through exchanging the interlayer anions with anio-

nic surfactants (so-called organo-HT) (Wang et al., 2005;
Pavan et al., 2000). When large surfactant anions are incorpo-
rated into HT, the interlayer spacing of HT increases and

yields modified HT with hydrophobic surface properties. The
hydrophobic nature and accessibility of the interlayer region
of organo-HT make these materials promising candidates for
the adsorption of other organic molecules (You et al.,
2002a,b Celis et al., 2000). It should be noted that organo-
HT have potential applications as functional adsorbents of
hydrophobic organic compounds (HOCs). More recently,

(Zhao and Nagy, 2004; Costa et al., 2005) reported the synthe-
ses of a series of organic–inorganic nanocomposite of dodecyl-
sulfate-HT and investigated their sorption capability of

trichloroethylene. The authors believed that sorption occurred
on edge/external surface areas (Bin Wang et al., 2005). Other
reports (You et al., 2002a,b) however, suggest that the adsorp-

tion mechanism involves dissolution of HOCs into a three–
dimensional hydrophobic phase rather than adsorption onto
the layered double hydroxides surface.

The objectives of the present study were (1) to synthesize

two intercalated hydrotalcites with dodecylsulfate and dode-
cylbenzenesulfonate surfactants from calcined Mg–Al hydro-
talcite precursors by calcination–rehydratation method, (2)

to evaluate the sorption performance of the prepared materials
HT-SDS and HT-SDBS for their capacity to remove acid dye
Brilliant Blue R (BBR) from water, and (3) to compare the

sorption capacity of the two synthesized materials HT-SDS
and HT-SDBS with the sorption capacity of the -hydrotalcite
HT-CO3 which is reported in the literature (Mao-Xu Zhu

et al., 2005).

2. Experimental

2.1. Materials

2.1.1. Synthesis of MgAl–CO3 HT and calcined hydrotalcite
HTC500

HT containing carbonate as interlayer anion was prepared by

co-precipitation method at room temperature at constant
pH�10 (Reichle, 1986). A solution containing MgCl2Æ6H2O
(100 mmol) and Al(NO3)3Æ9H2O (50 mmol) in deionized water

(80 mL) was added dropwise under vigorous stirring to
100 mL of an aqueous solution containing NaOH (350 mmol)
and Na2CO3 (90 mmol). During the co-precipitation process,

the pH was maintained at a constant value equal to10 by
the addition of 1 N HNO3 solution. The suspension was stirred
during 20 h at 65 �C for maturation. The obtained solid was
separated from the solution by centrifugation, washed

thoroughly with distilled water several times until obtaining
a Cl� free HT (AgNO3 test).The collected material was
dried at 105 �C during 18 h, ground and then passed through

a 250 lm sieve. The obtained material was designated as
HT-CO3. Part of the resulting material was calcined in a muffle
furnace at 500 �C for 4 h. The solid obtained is denoted

HTC500.

2.1.2. Synthesis of modified HT with surfactants

Intercalation of sodium dodecylsulfate and sodium dodecylben-

zenesulfonate surfactants was accomplished by rehydratation of
the calcined hydrotalcite, according to the described procedures
in the literature for insertion of several types of organic mole-

cules (Yan-Jun et al., 2005; Zhao and Nagy, 2004; Liang
et al., 2008; Costa et al., 2008; Bouraada et al., 2007). An aque-
ous solution of 1.44 g of sodium dodecylsulfate (SDS) or 5 g of
sodium dodecylbenzenesulfonate in 100 ml of distilled water

was refluxed for 1 h and then cooled under nitrogen atmo-
sphere. Then 1 g of HTC500 was added to the solutions of sur-
factants and the reaction mixtures were vigorously stirred for
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24 h under nitrogen atmosphere. The solids were collected by
centrifugation, washed repeatedly with hot distilled water, dried
in the oven at 65 �C for 24 h, then crushed and finally passed

through a 250 lm sieve. The obtained materials were referred
to as HT-SDS and HT-SDBS for dodecylsulfate- and dodecyl-
benzenesulfonate–hydrotalcite, respectively.

2.1.3. Sorbate

Acid Brilliant Blue R (BBR), (purity >99%) was provided by
Ciba Society (Zurich, Switzerland) and used as received. The

chemical structure of BBR is shown in Fig. 1. A stock solution
of BBR in deionized water at a concentration of 1 g/L was pre-
pared and dilutions were thereafter made to prepare solutions

with the required concentrations.

2.1.4. Characterization of the materials

The powder X-ray diffraction (XRD) patterns were recorded

on a Phillips X’Pert MPD diffractometer with monochromatic
CuKa = 1.5418 Å radiation (40 kV, 30 mA). FTIR spectra
were obtained in the transmission mode on a Nicolet Avatar
330 Fourier transform IR spectrometer. Samples were mixed

with KBr in a mortar and finely powdered to prepare KBr pel-
lets. The spectra were recorded with 2 cm�1 resolution in the
range of 4000–400 cm�1. Thermal analysis curves of the sam-

ples were recorded with a NETZSCH STA 409 PC/PG simul-
taneous thermal analyzer. BET analysis was performed on a
Micromeritics ASAP 2010 apparatus.

2.2. Study of Brilliant Blue R removal by HT-SDS and HT-
SDBS

2.2.1. Kinetic study

The kinetic study was carried out in batch mode on HT-SDS
and HT-SDBS. In this study, initial Brilliant Blue R (BBR)

concentration was set to 50 mg/L and the adsorbent dose
was 0.5 g/L. The suspensions were stirred at room temperature
for different time intervals (5 to 240 min) and then centrifuged.

The dye concentration in the supernatants was determined by
visible spectrophotometer on (HACH DR/4000U) UV–vis
spectrophotometer at 554 nm.

2.2.2. Sorption isotherms

The sorption isotherms were established using HT-SDS and
HT-SDBS suspensions in Brilliant Blue R (BBR) solutions (so-
lid/solution ratio = 0.5 g/L) ranging from 50 to 250 mg/L. The

suspensions were stirred at room temperature, and then centri-
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CH3CH2O NH

CH2CH3
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Figure1 Chemical structure of Brilliant Blue R (BBR) dye.
fuged. The dye concentration in the supernatants was deter-
mined as above.

2.2.3. Effect of initial pH on dye removal

Experiments were conducted on suspensions of 25 mg of
HT-SDS or HT-SDBS in 50 mL of Brilliant Blue R (BBR)
solutions with an initial concentration of 50 mg/L. The pH

of each suspension was adjusted to values from 5 to 10 with
1 N HCl or 1 N NaOH solutions. The suspensions were stirred
at room temperature, and then centrifuged. The dye concentra-

tion in the supernatants was determined as above.

2.2.4. Effect of the temperature

This effect was studied on suspensions of HT-SDS and HT-

SDBS in a solid/solution ratio equal to 0.5 gL�1 in 100 mgL�1

of dye solution with HT-SDS and HT-SDBS, respectively. The
suspensions were stirred at three constant temperatures (298,

308 and 318 K) during equilibrium time. The supernatants
were separated by centrifugation and the equilibrium concen-
trations were determined as above.

3. Results and discussion

3.1. Characterization of materials

X-ray diffraction patterns of the samples are illustrated in

Fig. 2. HT-CO3 shows peaks at 7.59 Å (d003), 3.84 Å (d006),
2.58 Å (d012), 2.32 Å (d015), 1.97 Å (d018), 1.52 Å (d110),
1.49 Å (d113) and 1.41 Å (d116), which are similar to those pre-
viously reported (Zhao and Nagy, 2004 Barbosa et al., 2005).

However, the HT-SDS and HT-SDBS diffraction patterns
show a peak shift to 26.24 Å and 29.47 Å, thus indicating
the intercalation of the surfactant ions in the hydrotalcite

interlayer. The same order of magnitude for these d003 values
has been reported in the literature (You et al., 2002a,b Liang
et al., 2008; Barbosa et al., 2005).

The FTIR spectra of HT (Fig. 3) show the characteristic
absorption bands of the hydrotalcite. The broad band at
3421 cm�1 is due to the O–H stretching vibration of the metal
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Figure 2 X-ray powder diffraction patterns of Mg–Al hydrotal-

cite (HT-CO3), dodecylsulfate-intercalated hydrotalcite (HT-SDS)

and dodecyl benzene sulfonate-intercalated hydrotalcite (HT-

SDBS).
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hydroxide layer and interlayer water molecules. A shoulder
near 3200 cm�1 is caused by the interaction between the

CO2�
3 and H2O present in the interlayer region, which involves

mostly hydrogen bonds (Dula et al., 2002; Kloprogge et al.,
2002). The bending vibration of the interlayer H2O is also re-
flected in the broad bands at 1637 cm�1. The strong absorption

peak at 1359 cm�1 can be assigned to the vibration of the car-
bonate species. The band characteristic of metal–oxygen bond
stretching appears below 700 cm�1. The sharp bands in the

500–700 cm�1 range are caused by various lattice vibrations
associated with metal hydroxide sheets (Barbosa et al., 2005).
The modification of HT by intercalation of SDS and SDBS

surfactants in the hydrotalcite interlayer is confirmed by the
IR spectra (Fig. 3). The presence of dodecylsulfate ion in the
interlayer is evidenced by the C–H stretching vibration bands

2955, 2919 and 2821 cm�1 and a C–H bending vibration band
at 1467 cm�1. The sulfate S‚O stretching vibration bands at
1215 cm�1 (ms = o symmetric) and 1065 cm�1 (ms = o asymmet-
ric) are also noticeable (Barbosa et al., 2005). HT-SDBS spec-

trum shows the stretching vibrations of the sulfonate group
(1183–1200 cm�1), C‚C stretching (1450 cm�1), and the
C–H bending vibrations (1130, 1011–1039, 832 cm�1) of the

benzene ring (Barbosa et al., 2005). The three spectra of
Fig. 3 are similar to those reported in the literature for the same
materials (Barbosa et al., 2005; Celis et al., 2000; Pavan et al.,

2000). For surfactant-modified HT, bands attributed to surfac-
tant anions including C–H, aromatic C–H and sulfonate or sul-
fate groups were evident in the spectra, demonstrating the
occurrence of surfactant anions intercalation into HT interlayer.

Based on BET analysis, the specific surface area of synthe-
sized HT-CO3 was 69 m2/g. The intercalation of anionic sur-
factants in HT leads to a drastic decrease in surface area,

resulting in 5 m2/g for HT-SDS and 8 m2/g for HT-SDBS.
The decrease in surface areas can be explained by interlayer
aggregation of surfactant-modified HT. The intercalated

organic surfactants easily form compact structures with their
long alkyl tails through hydrophobic interactions in limited
space, which result in lowering the surface areas more

efficiently than the inorganic anion. Similar results were re-
ported in the literature (Pavan et al., 2000; Reichle, 1986) for
adsorption of anion surfactants on Mg–Al layered double
hydroxides.
The thermal properties of the three materials can be
summarized as follows: TGA and DSC plots of HT-CO3

(Fig. 4.) show the most reported two-stage decomposition pro-
cess: The first endothermic process occurring at low tempera-
tures in the 50–200 �C interval can be attributed to the

removal of surface adsorbed water and interlayer water
molecules. The second weak endothermic weight loss at tem-
peratures ranging from 300 to 500 �C is the result of the

carbonate intercalation and dehydroxylation of the brucite-
like layers. The TGA and DSC plots of HT-SDS and HT-
SDBS present the same two endothermic peaks as those of

HT-CO3, with two additional exothermic peaks in the range
of 200–600 �C, which correspond to the very likely decomposi-
tion and combustion of the dodecylsulfate and dodecylben-
zenesulfonate ions.
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3.2. Study of BBR removal by HT-SDS and HT-SDBS

3.2.1. Effect of contact time

The effect of contact time on BBR removal by HT-SDS and
HT-SDBS is shown in Fig. 5. For both materials, the amounts
of sorbed BBR increased rapidly within the initial 60 min and
remained almost unchanged after 90 min of contact time.

Moreover, the percentage removal of BBR on HT-SDS and
HT-SDBS were 96 and 93%, respectively.

The percentage removal (R) of dye was calculated accord-

ing the following equation:

R% ¼ ðCi � CtÞ
Ci

� 100 ð1Þ
Table 1 Kinetic parameters of Brilliant Blue R sorption by dodecy

Material Experimental Pseudo-first-order model

qe(exp) qe(cal) K1

mg g�1 mg g�1 min�1

HT-SDS 96.9 30.6 0.037

HT-SDBS 94.1 65.6 0.036
where Ci (mg/L) is the initial concentration of the dye solution,

Ct (mg/L) is the concentration of the dye solution at the
adsorption equilibrium at time t.

3.2.2. Kinetic modeling

Several models must be checked for suitability and consistency
over a broad range of system parameters. The key features of
the two different kinetic models used to fit the experimental

data can be summarized as follows:
The pseudo-first-order kinetic adsorption model was sug-

gested by Lagergren for the sorption of solid–liquid systems
(Lagergren and Svenska Vetenskapsad, 1898). It has been

widely used (Namasivayam and Kadirvelu, 1999; Cheung
et al., 2000; Chiron et al., 2003) and can be expressed in its
integrated form as follows:

logðqe � qtÞ ¼ log qe �
k1

2:303
� t ð2Þ

where k1 is the rate constant of adsorption (min�1) and qe and
qt are the adsorption capacity of BBR (mg/g) at equilibrium

and at time t (min), respectively.
By plotting ln(qe–qt) against t, straight lines (Fig. 6) are ob-

tained. The equilibrium sorption capacity (qe) and the rate

constant (k1) were calculated from the linear plots and are
reported in Table 1. The calculated values from the first-order
kinetic model show that the experimental results fit this model

with correlation coefficient values of 0.928 and 0.954 for
HT-SDS and HT-SDBS, respectively. However, large differ-
ences between experimental and calculated values of the equi-
librium sorption capacities are observed (Table 1) which led us

to consider that the first-order kinetic model does not describe
adequately the sorption process.

The pseudo-second-order kinetic model (Costa et al., 2008;

Ho and Mckay, 1998; Namasivayam and Sumithra, 2004) is
expressed by the equation:

t

qt

¼ 1

qe

� tþ 1

k2q2
e

ð3Þ

where k2 (g mg�1 min�1) is the rate constant of pseudo-second-
order adsorption.

Straight lines were obtained when plotting t/qt versus t

(Fig. 7). The equilibrium sorption capacity (qe), the rate con-
stant (k2), and the linear regression correlation coefficients
(R2) values were calculated from the linear plots and are re-

ported in Table 1. Perfect correlation is observed between exper-
imental data and the pseudo-second-order kinetic model, with
values of correlation coefficients higher than 0.99. The values

of the rate constant k2 are of the same order of magnitude as
those reported in the literature (Rawajfih and Nsour, 2006).
Furthermore, for both materials the differences between the
experimental and calculated values of the equilibrium removal

capacity were lower than 5%. Thus, the pseudo-second-order
lsulfate (HT-SDS) and dodecylbenzenesulfonate (HT-SDBS).

Pseudo-second-order model

R2 qe(cal) K2 R2

mg g�1 g mg�1 min�1

0.928 101 0.001 0.994

0.954 99 0.0007 0.997
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is the most satisfactory model for describing the kinetic data of
BBR sorption by both HT-SDS and HT-SDBS materials.

3.2.3. Effect of pH on dye removal

The pH value of the solution is an important parameter for
controlling the sorption process (Gulnaz et al., 2004). The ef-

fect of pH on dye removal was studied with dye concentration
of 50 mg/L at room temperature and at pH values ranging be-
tween 5 and 10 (Fig. 8). The adsorption of BBR increased with

pH and reaches its maximum at pH 6 for HT-SDBS and pH 7
for HT-SDS. Similar results were reported in the literature
(Gulnaz et al., 2004). Maximum dye removal (94.7 mg/g)

was attained for HT-SDBS at pH 6 and (98.3 mg/g) for
HT-SDS at pH 7.
Table 2 Constant values of Langmuir and Freundlich isotherms fo

R= 0.5 g/L.

Material Langmuir constants

Qmax (mg/g) KL (L/mg) R2

HT-SDS 357.1 0.167 0.999

HT-SDBS 204.1 0.803 0.999
3.2.4. Sorption isotherm

For solid–liquid system, the Langmuir and Freundlich iso-

therm equations are usually employed. The well-known Lang-
muir equation, which is obtained by combining the adsorption
and desorption rate equations can be described as follows:

qe ¼
QmaxKLCe

1þKLCe

ð4Þ

where KL is the Langmuir constant related to the loading and
energy of adsorption; Qmax, the maximum loading capacity; qe,
the adsorption loading at equilibrium (mg/g); and Ce is the
equilibrium concentration of the dye in the solution (mg/L).

The Langmuir equation can be rearranged as follows:

Ce

qe
¼ Ce

Qmax

þ 1

KLQmax

ð5Þ

The values of Qmax and KL can be calculated from the slope

and the intercept of the linear plots Ce/qe versus Ce.
The essential features of the Langmuir isotherm can be ex-

pressed in terms of dimensionless constant separation factor

RL which is expressed by the following equation (Bulut and
Aydin, 2006):

RL ¼
1

1þKLCi

ð6Þ

where KL is the Langmuir isotherm constant and Ci is the ini-

tial dye concentration (mg/L). The value of RL indicates the
shape of the isotherms to be either unfavorable (RL > 1), lin-
ear (RL = 1), favorable (0 < RL < 1) or irreversible (RL = 0).

Our results, reported in Table 2, were found to be between zero
and one for BBR and for each material.

The Freundlich isotherm is purely empirical and is com-
monly presented as Eq.(7):
r dye sorption on HT-SDS and HT-SDBS at solid/solution ratio

Freundlich constants

RL kF n R2

0.023–0.107 93.00 3.15 0.922

0.006–0.024 112.50 6.86 0.964



Table 3 Thermodynamic parameters for the sorption of BBR on HT-SDS and HT-SDBS.

Material DS� (J mol�1K�1) DH� (kJ mol�1) D G�(kJ mol�1)

298 K 308 K 318 K

HT-SDS 319.23 72,43 �22,70 �25,89 �29,09
HT-SDBS 339.20 83,04 �18,04 �21,43 �24,82
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Figure 10 Langmuir isotherms of dye removal from aqueous

solutions with HT-SDS (m) and HT-SDBS (¤) (solid solution

ratio = 0.5 g/L).
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Figure 11 Plots of lnKd vs. 1000/T for Brilliant Blue R removal

with HT-SDS (m) and HT-SDBS (¤).
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qe ¼ kF � C1=n
e ð7Þ

Eq.(7) can be linearized by taking logarithms to determine the

parameters kF and n.

Logqe ¼
1

n
� LogCe þ LogkF ð8Þ

where kF is the Freundlich constant; n, the Freundlich expo-

nent; qe, the amount of adsorbed dye at equilibrium (mg/g);
and Ce is the equilibrium concentration of dye in solution after
adsorption (mg/L).

Figs. 9 and 10 show Freundlich and Langmuir isotherms
for BBR sorption on HT-SDS and HT-SDBS. Our experimen-
tal results are well described by both models, although the
Langmuir model provides the best fit. The calculated Lang-
muir and Freundlich isotherm constants are given in Table 2.
The experimental data of BBR sorption by HT-SDS and
HT-SDBS were fitted better by the Langmuir equation than

by the Freundlich equation based on the correlation coefficient
R2. Furthermore, the maximal sorption capacity of HT-SDS
was found to be approximately 2 times higher (357.1 mg/g)
than that of HT-SDBS (204.1 mg/g). Mao-Xu Zhu et al. have

obtained 54.6 mg/g of BBR adsorbed per gram of HT-CO3

(Mao-Xu Zhu et al., 2005). These results suggest that both
HT-SDS and HT-SDBS materials could represent excellent

sorbents for removing relatively high concentrations of anionic
dyes from aqueous solutions.

3.2.5. Determination of the thermodynamic parameters

The thermodynamic parameters, such as the enthalpy (DH)
and the entropy (DS) for the sorption of BBR with HT-SDS
and HT-SDBS, are calculated by using the following equation:

LnKd ¼
DS0

R

DH0

RT
ð9Þ

where T is the absolute temperature (K), R is the gas constant
(J mol�1 K�1), and Kd (cm3 g�1) is the distribution coefficient

which is calculated with the following expression:

Kd ¼
Ci � Ce

Ce

� V

m
ð10Þ

The standard free energy change (DG) is calculated from the
following equation:

DG0 ¼ DH0 � TDSo ð11Þ

The plots of lnKd versus 1000/T for both HT-SDS and HT-
SDBS are shown in the (Fig. 11), gives a straight line, the slope

and the intercept correspond to D H/R and D S/R, respec-
tively. The thermodynamic parameters calculated from the val-
ues of the slopes and intercepts are reported in Table 3.
Generally, the change in adsorption enthalpy for physisorption

is in the range of �20–40 kJ/mol, but for chemisorption is be-
tween �400 and �80 kJ/mol (Benselka et al., 2011). The posi-
tive values of the enthalpy D H suggest that adsorption of BBR

on both HT-SDS and HT-SDBS is an endothermic process
and is physical in nature. The positive values of entropy
change D S show the decreased randomness at the solid-solu-

tion interface during the adsorption process. The negative
values of the free energy change D G of the process decrease
with the increase in temperature, which indicates the feasibility

of the process and the spontaneity on both materials of the
adsorption phenomenon of BBR.

4. Conclusion

In this work, HT-SDS and HT-SDBS layered double hydrox-
ides were prepared by intercalating hydrotalcite with both
sodium dodecylsulfate and sodium dodecylbenzenesulfonate
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surfactants and show excellent structural characteristics such
as large basal spacing and low surface area. The surfactant
modified-HT has been employed for an acid dye Brilliant

Blue R (BBR) removal from aqueous solutions. The sorption
experimental data showed that surfactant modified-layered
double hydroxides (HT-SDS and HT-SDBS) had considerable

potential for the removal of BBR dye from aqueous solutions
and the dye solution pH exerts influence on adsorption capac-
ity. The kinetic results fit the pseudo-second-order model with

correlation coefficient values of nearly unity for the two mate-
rials. The Brilliant Blue R sorption follows the Langmuir mod-
el with correlation coefficient higher than 0.99 for the two
materials. The values of the thermodynamic parameters ob-

tained indicated that the BBR sorption was spontaneous and
endothermic in nature.

Consequently, the efficiency of the HT-SDS and HT-SDBS

layered double hydroxides on Brilliant Blue R adsorption has
been demonstrated, for this reason those two materials could
be used to remove anionic dyes as BBR from wastewater

and might be used as sorbents to treat contaminated water
containing relatively higher concentrations of textile dyes.
Therefore, the work is in progress to determine the mechanism

of BBR adsorption on HT-SDS and HT-SDBS and also to im-
prove the dye removal rate.
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