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Let S = k�x1; : : : ; xn� be the polynomial ring in n variables over a field
k, let M be a graded S-module, and let

F•x 0 −→ Fr −→ · · · −→ F1 −→ F0 −→M −→ 0

be a minimal free resolution of M over S. As usual, we define the associated
(graded) Betti numbers βi; j = βi; j�M� by the formula

Fi = ⊕jS�−j�βi; j :
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Recall that the (Mumford–Castelnuovo) regularity of M is the least integer
ρ such that for each i all free generators of Fi lie in degree ≤ i+ ρ, that is
βi; j = 0, for j > i+ ρ. In terms of Macaulay [Mac] regularity is the number
of rows in the diagram produced by the “betti” command.

A Betti number βi; j 6= 0 will be called extremal if βl; r = 0 for all l ≥ i,
r ≥ j + 1, and r − l ≥ j − i, that is if βi; j is the nonzero top left “corner” in
a block of zeroes in the Macaulay “betti” diagram. In other words, extremal
Betti numbers account for “notches” in the shape of the minimal free res-
olution and one of them computes the regularity. In this sense, extremal
Betti numbers can be seen as a refinement of the notion of Mumford–
Castelnuovo regularity.

In the first part of this note we connect the extremal Betti numbers of
an arbitrary submodule of a free S-module with those of its generic initial
module. In the second part, which can be read independently of the first, we
relate extremal multigraded Betti numbers in the minimal resolution of a
square free monomial ideal with those of the monomial ideal corresponding
to the Alexander dual simplicial complex.

Our techniques give also a simple geometric proof of a more precise ver-
sion of a recent result of Terai [Te97] (see also [FT97] for a homological
reformulation and related results), generalizing Eagon and Reiner’s the-
orem [ER96] that a Stanley–Reisner ring is Cohen–Macaulay if and only
if the homogeneous ideal corresponding to the Alexander dual simplicial
complex has a linear resolution.

We are grateful to David Eisenbud for useful discussions.

1. GINS AND EXTREMAL BETTI NUMBERS

A theorem of Bayer and Stillman ([BaSt87], [Ei95]) asserts that if M
is a graded submodule of a free S = k�x1; : : : ; xn�-module F , and one
considers the degree reverse lexicographic monomial order, then after a
generic change of coordinates, the modules F/M and F/ In�M� have the
same regularity and the same depth (in this situation the module In�M� is
known as Gin�M�).

We generalize this result to show that corners in the minimal resolu-
tion of F/M correspond to corners in the minimal resolution of F/Gin�M�
and that moreover the extremal Betti numbers of F/M and of F/Gin�M�
match. The proof, inspired by the approach in [Ei95], shows that each ex-
tremal Betti number of F/M or respectively F/Gin�M� is computed by the
unique extremal Betti number of a finite length submodule.

We use the same notation as in the introduction. Let M be a graded
S-module, and let

F•x 0 −→ Fr −→ · · · −→ F1 −→ F0 −→M −→ 0
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be a minimal free resolution of M. As usual, we define Syzl�M� x=
Ker�Fl −→ Fl−1� to be the lth syzygy module of M.

We say that M is �m; l�-regular iff Syzl�M� is �m + l�-regular (in the
classical sense); that is to say that all generators of Fj for l ≤ j ≤ r have
degrees ≤ j +m.

We also define the l-regularity of M, denoted in the sequel as l-reg�M�,
to be the regularity of the module Syzl�M�; it is the least integer m such
that M is �m; l�-regular.

It is easy to see that reg�M� = 0-reg�M� and l-reg�M� ≤ �l− 1�-reg�M�.
Strict inequality occurs only at extremal Betti numbers, which thus pinpoint
“jumps” in the regularity of the successive syzygy modules. In this case, if
m = l-reg�M�, we say that �l;m� is a corner of M and that βl;m+l�M� is an
extremal Betti number of M.

Proposition 1.1. M is �m; l�-regular iff

Extj�M;S�k = 0 for all j ≥ l and all k ≤ −m− j − 1:

If moreover �l;m� is a corner of M, then βl;m+l�M� is equal to the number
of minimal generators of Extl�M;S� in degree �−m− l�.

Proof. The first part follows from [Ei95, Proposition 20.16] since M
is �m; l�-regular iff Syzl�M� is m-regular. For the second part notice that
by degree considerations the nonzero generators of Fl in degree m + l
correspond to nontrivial cycles of Extl�M;S�−m−l.

Finite length modules have exactly one extremal Betti number:

Theorem 1.2. If M is a finite length module, and βl;m+l is an extremal
Betti number of M, then l = n and βn;m+n is the last nonzero value in the
Hilbert function of M.

Proof. Since M has finite length it follows that Extj�M;S� = 0 for
all j < n. On the other hand Extn�M;S�−n−t = Extn�M;S�−n��−t ∼=
Homk�M;k�−t = Homk�Mt; k�, from which the claim follows easily.

Corollary 1.3. Let F be a graded free S-module with basis, and let M
a graded submodule of F such that F/M has finite length. Then the extremal
Betti number of F/M is equal to the extremal Betti number of F/Gin�M�
(with respect to the graded reverse lexicographic order).

Proof. F/M and F/Gin�M� have the same Hilbert function.

Proposition 1.4. If 0 −→ A −→ B −→ C −→ 0 is a short exact se-
quence of graded finitely generated S-modules, then

(a) l-reg�A� ≤ max�l-reg�B�; �l + 1�-reg�C� + 1�.
(b) l-reg�B� ≤ max�l-reg�A�; l-reg�C��.
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(c) l-reg�C� ≤ max��l − 1�-reg�A� − 1; l-reg�B��.
(d) If A has finite length, then l-reg�B� = max�l-reg�A�; l-reg�C��.

Proof. The proof follows by examining the appropriate lth graded pieces
of the long exact sequence in Ext�·; S�. See the analogue statement for
regularity in [Ei95, Corollary 20.19].

Lemma 1.5. If F is a finitely generated graded free S-module, M a graded
submodule of F , and x a linear form of S such that the module �M x x�/M
has finite length, then

l-reg�F/M� = max�l-reg��M x x�/M�; l-reg�F/�M x x���:
Proof. The claim follows from the short exact sequence

0 −→ �M x x�/M −→ F/M −→ F/�M x x� −→ 0

and Proposition 1.4.

We may now state and prove the analogue of Bayer and Stillman’s
([BaSt87, Ei95]) result on regularity:

Theorem 1.6. Let F be a finitely generated graded free S-module with
basis, let M be a graded submodule of F , and let βi; j denote the ith graded
Betti number of F/M, and βgin

i; j the ith graded Betti number of F/Gin�M�.
Then

l-reg�F/M� = l-reg�F/Gin�M��:
If moreover �l;m� is a corner of F/M, then

βl;m+l = βgin
l;m+l:

Proof. We can assume that In�M� = Gin�M�. If xn is a nonzero divisor
of F/M the claims follow by induction on the number of variables: the Betti
numbers of F/M over S are equal to the Betti numbers of F/�xnF;M� over
S/xn and the initial module of M over S is the same as the initial module
of M/xnM over S/xn. Therefore we will assume in the sequel that xn is a
zero divisor of F/M.

We prove the first part of the theorem. Since �M x xn�/M is a finite
length module, n-reg��M x xn�/M� = reg��M x xn�/M� = reg��In�M� x
xn�/ In�M�� = n-reg��In�M� x xn�/ In�M�� and the first part of the theorem
follows by Lemma 1.5 and induction on the sum of degrees of the elements
in a reduced Gröbner basis of M. (Recall that with F and M as above, using
the reverse lexicographic order, if �g1; : : : ; gt� is a (reduced) Gröbner basis
for M and g′i x= gi/GCD�xn; gi�, then �g′1; : : : ; g′t� is a (reduced) Gröbner
basis for the module �M x xn�.)



extremal betti numbers 501

Assume first that �m;n� is a corner of F/M, so in particular
Extn�F/M; S� 6= 0. Let N = H0

m�F/M� be the set of all elements in
F/M that are annihilated by some power of the ideal m ⊂ S generated by
the variables, and let L x= �F/M�/N. From the short exact sequence

0 −→ H0
m�F/M� −→ F/M −→ L −→ 0;

we conclude that Extn�F/M; S� ∼= Extn�H0
m�F/M�; S�, since L has no

torsion and thus Extn�L; S� = 0. By the first part and Theorem 1.2 the
last nonzero value, say w, of the Hilbert function of �M x xn�/M (or
�In�M� x xn�/ In�M�) occurs in degree m. But this is also the last nonzero
value of the Hilbert function of H0

m�F/M�. By Corollary 1.3 it follows that
βn; �m+n� = w = βgin

n; �m+n�.
Finally consider a corner say �m; l�, with l < n, in the resolution of F/M.

From the short exact sequence in the proof of Lemma 1.5, it follows that
Extl�F/M; S� ∼= Extl�F/�M x xn�; S� so we are done again by induction on
the sum of degrees of the elements in a reduced Gröbner basis of M.

Given an S-module P define red�P� to be P/�H0
m�P� + xP�, where x is

a generic linear form. Let P0 = P and define Pi+1 = red�Pi�, for all i ≥ 1.

Corollary 1.7. Let L be a module over a polynomial ring S with free
presentation L = F/M, and let N = F/Gin�M�. Then for all i ≥ 0:

(a) The Hilbert functions of H0
m�Li� and H0

m�Ni� coincide.
(b) The depths of Li and Ni coincide.
(c) The extremal Betti numbers of L correspond to jumps in the highest

socle degrees of the Lis.

Proof. If depth�L� ≥ 1, then taking generic initial modules commutes
with factoring out a generic linear form, up to semicontinuous numerical
data such as depth and Hilbert function. The same thing is true if we factor
out an element of highest degree of the socle of L since it corresponds to
a corner by Theorem 1.6. Induction now proves (a) and (b).

2. ALEXANDER DUALITY AND SQUARE-
FREE MONOMIAL IDEALS

The minimal free resolution of a multigraded ideal in S = k�x1; : : : ; xn�,
the polynomial ring in n variables over a field k, is obviously multigraded,
and so it is natural to introduce and study in this context a multigraded
analogue for “extremal Betti numbers.”

We use the same notation as above. Let S = k�x1; : : : ; xn� be the polyno-
mial ring let �n� = �1; : : : ; n�, and let 1 denote the set of all subsets of �n�.
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Given a simplicial complex X ⊆ 1, define the Stanley–Reisner ideal IX ⊆ S
to be the ideal generated by the monomials corresponding to the nonfaces
of X:

IX = �xF �F 6∈ X�:
IX is a square-free monomial ideal, and every square-free monomial ideal
arises in this way.

Define the Alexander dual simplicial complex X∨ ⊆ 1 to be the complex
obtained by successively complementing the faces of X and X itself, in
either order. In other words, define

X∨ = �F �F c 6∈ X� = 1 \ �F �F c ∈ X�;
where F c denotes the complement �n� \ F . Defining also the Alexander dual
ideal IX∨ , note the following pattern:

X IX

IX∨ X∨

The sets of faces which define X, X∨, IX , and IX∨ are related horizontally
by complementing with respect to 1, and vertically by complementing with
respect to �n�.

The following is a simplicial version of Alexander duality:

Theorem 2.1. Let X ⊂ 1 be a simplicial complex. For any abelian group
G, there are isomorphisms

H̃i�XyG� ∼= H̃n−i−3�X∨yG� and H̃i�XyG� ∼= H̃n−i−3�X∨yG�;
where H̃ denotes reduced simplicial (co)homology.

Proof. First, suppose that X is a nonempty, proper subcomplex of the
sphere Sn−2 = 1 \ �n�. Working with geometric realizations, Alexander du-
ality asserts (compare [Mun84, Theorem 71.1]) that

H̃i�XyG� ∼= H̃n−i−3�Sn−2 \XyG� and H̃i�XyG� ∼= H̃n−i−3�Sn−2 \XyG�:
The claim follows because X∨ is homotopy-equivalent to Sn−2 \X: Let X ′

denote the first barycentric subdivision of X. Complementing the faces of
X∨ embeds �X∨�′ as a simplicial subcomplex of �Sn−2 \X�′. The straight-
line homotopy defined by collapsing each face of �Sn−2 \X�′ onto its ver-
tices not belonging to X ′ is a strong deformation retract of �Sn−2 \X�′ onto
�X∨�′.

The remaining cases X = Z, �Z�, 1 \ �n�, and 1 are easily checked by
hand.



extremal betti numbers 503

Theorem 2.1 is also easily proved directly, modulo a subtle sign change.
Define a pairing on faces F;G ∈ 1 by

�F;G� =
{ �−1���F �/2�σ�F;G�; if G = F c

0; otherwise,

where σ�F;G� is the sign of the permutation that sorts the concatenated
sequence F;G into order. This pairing allows us to reinterpret any i-chain
as an �n− i− 2�-cochain, identifying relative homology with relative coho-
mology. We compute

H̃i�XyG� ∼= H̃i+1�1;XyG� ∼= H̃n−i−3�X∨;ZyG� ∼= H̃n−i−3�X∨yG�y
the second isomorphism is similar. See [Bay96] for details. This formulation
can also be understood as the self-duality of the Koszul complex; see [BH93,
1.6.10].

Given an arbitrary monomial ideal I ⊆ S, let

L•x 0 −→ Lm −→ · · · −→ L1 −→ L0 −→ I −→ 0

be a minimal free resolution of I; we have m ≤ n− 1. The multigraded Betti
numbers of I are the ranks βi; b = dim�Li�b of the bth graded summands
�Li�b of Li.

For each degree b ∈ �n, define the following subcomplex of 1:

Kb�I� = �F ∈ 1 � xb−F ∈ I�:
Here, we identify each face F ∈ 1 with its characteristic vector F ∈ �0; 1�n.
The following is a characterization of the Betti numbers of I in terms of
Kb�I� x

Theorem 2.2. The Betti numbers of a monomial ideal I ⊆ S are given by

βi; b = dim H̃i−1�Kb�I�yk�:
Proof. The groups Tori�I; k� can be computed either by tensoring a

resolution of I by k, or by tensoring a resolution of k by I. Using the
minimal resolution L• of I, one sees that βi;b = dim Tori�I; k�b. Using the
Koszul complex K• of k, Tori�I; k� is also the ith homology of the complex

I ⊗K•x 0 −→ I ⊗∧nV −→ · · · −→ I ⊗∧1V −→ I ⊗∧0V −→ 0;

where V is the subspace of degree one forms of S. Now, �I ⊗∧iV �b has a
basis consisting of all expressions of the form

xb/xj1 · · ·xji ⊗ xj1 ∧ · · · ∧ xji ;
where xb/xj1 · · ·xji ∈ I. These expressions correspond 1 x 1 to the �i − 1�-
faces F = �j1; : : : ; ji� of Kb�I�. Thus, one recognizes �I ⊗ K•�b as the
augmented oriented chain complex used to compute H̃i−1�Kb�I�yk�.
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A striking reformulation of Theorem 2.2 for square-free monomial ideals
is due to Hochster [Ho77], based on ideas of Reisner [Rei76]. For each
b ∈ �0; 1�n, let Xb denote the full subcomplex of X on the vertices in the
support of b.

Theorem 2.3. Let IX ⊆ S be the square-free monomial ideal determined
by the simplicial complex X ⊆ 1. We have βi;b = 0 unless b ∈ �0; 1�n, in
which case

βi; b = dim H̃|b|−i−2�Xbyk�:

Proof. If bj > 1 for some j then Kb�I� is a cone over the vertex j, so
βi; b = 0 by Theorem 2.2. Otherwise, Xb is the dual of Kb�I� with respect
to the support of b: F ∈ Kb�I� ⇔ xb−F ∈ I ⇔ b− F 6∈ X. By Theorem 2.1,

H̃i−1�Kb�I�yk� ∼= H̃ |b|−i−2�Xbyk�:

Homology and cohomology groups with coefficients in k are (non-
canonically) isomorphic, so the result follows by Theorem 2.2.

This is essentially Hochster’s original argument; he implicitly proves
Alexander duality in order to interpret Tori�I; k�b as computing the
homology of Xb.

Recall that the link of a face F ∈ X is the set

lk�F;X� = �G �F ∪G ∈ X and F ∩G = Z�:

Together with the restrictions Xb, the links lk�F;X� are the other key ingre-
dient in the study of square-free monomial ideals, dating to [Rei76]. They
too have a duality interpretation, first made explicit in [ER96]: The Betti
numbers β∨i;b of IX∨ can be computed using links in X.

For each b ∈ �0; 1�n, let bc denote the complement �1; : : : ; 1� − b.

Theorem 2.4. Let IX∨ ⊆ S be the square-free monomial ideal determined
by the dual X∨ of the simplicial complex X ⊆ 1. We have β∨i;b = 0 unless
b ∈ �0; 1�n and bc ∈ X, in which case

β∨i; b = dim H̃i−1�lk�bc;X�yk�:

Proof. We have

F ∈ Kb�IX∨� ⇔ xb−F ∈ IX∨ ⇔ �b− F�c ∈ X ⇔ F ∈ lk�bc;X�:
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In other words, looking at Betti diagrams (as Macaulay outputs) we have
the picture

βi; b�IX�:
degree

0 1 h−1�X d � h−1�X d d � h−1�X d
dd � : : :

1 – h0�X d d � h0�X d
dd � h0�X dd

dd � : : :

2 – h1�X d
dd � h1�X dd

dd � h1�X d d
d d d� : : :

:::

where, for example, X d d stands for all full subcomplexes of X supported
on two vertices, and

βi; bc�IX∨�:
degree

0 1 h−1�lk�d
c�� h0�lk�d d

c�� h1�lk� d
dd

c�� : : :
1 – h−1�lk�d d

c�� h0�lk� d
dd

c�� h1�lk� dd
dd

c�� : : :
2 – h−1�lk� d

dd

c�� h0�lk� d d
dd

c�� h1�lk� d d
d d d

c�� : : :
:::

where c stands for complementation, and again the number of dots stands
for the number of vertices in the corresponding faces.

The main observation of this paper is that a simple homological relation-
ship between restrictions and links has as a consequence the known duality
results involving square-free monomial ideals. We apply it to give a sharper
description of the relationship between the Betti numbers of the dual ideals
IX and IX∨ .

Theorem 2.5. For each b ∈ �0; 1�n and any vertex v not in the support
of b, there is a long exact sequence

· · · → H̃i�Xbyk� → H̃i�Xb+vyk� → H̃i−1�lk�v;Xb+v�yk�
→ H̃i−1�Xbyk� → · · · :

Proof. This is the long exact homology sequence of the pair �Xb+v;Xb�,
in disguise; it is immediate that

· · · → H̃i�Xbyk� → H̃i�Xb+vyk� → Hi�Xb+v;Xbyk�
→ H̃i−1�Xbyk� → · · · :

Now, recall that star�F;X� = �G �F ∪G ∈ X�; which is the acyclic subcom-
plex of X generated by all faces of X which contain F . It is also immediate
that for all i,

Hi�Xb+v;Xbyk� ∼= Hi�star�v;Xb+v�; lk�v;Xb+v�yk�:
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Because star�v;Xb+v� is acyclic, the long exact sequence of the second pair
breaks up into isomorphisms

Hi�star�v;Xb+v�; lk�v;Xb+v�yk� ∼= H̃i−1�lk�v;Xb+v�yk�
for all i. Composing these isomorphisms yields the desired sequence.

Theorem 2.5 can also be interpreted as the Mayer–Vietoris sequence of
the two subcomplexes Xb and star�v;Xb+v� of Xb+v, whose intersection is
lk�v;Xb+v�.

We shall exploit the exactness of this sequence at H̃i�Xb�. It is easy to
observe this exactness at the level of cycles: Let α be an i-cycle supported
on Xb, representing a homology class in H̃i�Xbyk�. If α maps to zero in
H̃i�Xb+vyk�, then there exists an �i+ 1�-cycle β supported on Xb+v, whose
boundary ∂β = α. Express β as a sum β1 + β2, where β1 is supported on
Xb and every face of β2 contains the vertex v. Define α′ = ∂β2 = α− ∂β1.
The cycle α′ is supported on lk�v;Xb+v�, and represents the same homology
class as α in H̃i�Xbyk�.

Corollary 2.6. The Betti numbers of IX and of IX∨ satisfy the inequality

βi; b ≤
∑

b�c��n�
β∨|b|−i−1; c

for each 0 ≤ i ≤ n− 1 and each b ∈ �0; 1�n.
Proof. The exactness at H̃i�Xbyk� of the sequence of Theorem 2.5 yields

the inequality

dim H̃i�Xbyk� ≤ dim H̃i�lk�v;Xb+v�yk� + dim H̃i�Xb+vyk�:
Note that for any face F disjoint from b, and any vertex v not in the support
of b+ F ,

lk�v; lk�F;X�b+F+v� = lk�F + v;Xb+F+v�:
Applying Theorem 2.5 to lk�F;X�b+F in place of Xb yields the exact se-
quence

H̃i�lk�F + v;Xb+F+v�yk� −→ H̃i�lk�F;Xb+F�yk� −→ H̃i�lk�F;Xb+F+v�yk�:
Combining the resulting inequalities while iteratively adding vertices yields

dim H̃i�Xbyk� ≤
∑

F∩b=Z
dim H̃i�lk�F;X�yk�:

By Theorems 2.3 and 2.4 these dimensions can be interpreted as Betti
numbers of IX and IX∨ , respectively.
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In particular, summing up and collecting all terms of the same total de-
gree we obtain:

Corollary 2.7. The single graded Betti numbers of IX and of IX∨ satisfy
the inequality

βi;m ≤
n−m∑
k=0

(
m+ k
k

)
β∨m−i−1;m+k

for each 0 ≤ i ≤ n− 1 and each m ≥ i + 1.

The following consequence of Theorem 2.5 and Corollary 2.6 extends
Terai’s characterization of dual Stanley–Reisner ideals. Define a Betti num-
ber βi; b to be i-extremal if βi; c = 0 for all c � b, that is all multigraded
entries below b on the ith column vanish in the Betti diagram as a Macaulay
output [Mac]. Define βi; b to be extremal if βj; c = 0 for all j ≥ i, and c � b
so |c| − |b| ≥ j − i. In other words, βi; b corresponds to the “top left cor-
ner” of a box of zeroes in the multigraded Betti diagram, thus our definition
agrees with the single graded one we have introduced in Section 1. Note
that we have not assumed this time that βi; b 6= 0.

Theorem 2.8. If β∨i; b is i-extremal, then the inclusion lk�bc;X� ⊆ Xb
induces an exact sequence

H̃i�Xb; lk�bc;X�yk� −→ H̃i−1�lk�bc;X�yk� −→ H̃i−1�Xbyk� −→ 0

showing that

β∨i;b ≥ β|b|−i−1;b:

If β∨i; b is extremal, then the above surjection is in fact an isomorphism, showing
that β∨i; b = β|b|−i−1;b.

Proof. The condition that β∨i; b is i-extremal, means that the right hand
sum in Corollary 2.6, applied for |b| − i − 1 instead of i, has exactly one
summand, which gives the first part of the theorem. If moreover β∨i;b is
extremal, then β|b|−i−1;b is in fact �|b| − i− 1�-extremal so the second claim
follows from the first part applied for X∨ instead of X.

Looking at a Betti diagram as output by Macaulay, this result asserts in
particular that any lower right corner flips via duality. Thus we can speak of
“d-regularity in homological dimensions ≥ i” and interpret it as a statement
generalizing Terai’s theorem [Te97] (compare [FT97, Corollary 3.2]):

Corollary 2.9. The regularity of IX equals the projective dimension of
S/IX∨ , the Stanley-Reisner ring of its Alexander dual.
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Proof. The regularity of IX is computed by the largest |b| − i such that
βi; b 6= 0, while the projective dimension of S/IX∨ , is 1 + max �j� such
that β∨j; c 6= 0 for some c ∈ �0; 1�n. Thus the claim follows from Theo-
rem 2.8, because of the equality of the corresponding pairs of extremal
Betti numbers.

Moreover, Theorem 2.8 provides also easy proofs of classical criteria due
to Reisner [Re76] and Stanley [Sta77], respectively:

Theorem 2.10. The following conditions are equivalent:

(a) S/IX is a Cohen–Macaulay ring.

(b) H̃i�lk�F;X�yk� = 0, for all F ∈ X and i < dim�lk�F;X��.
Proof. By Theorem 2.8 or Corollary 2.9, if S/IX is Cohen–Macaulay,

then IX∨ is generated in degree n − dim�X� − 1 and has a linear resolu-
tion. In other words β∨i; b = 0, for all b with |b| > n − dim�X� − 1+ i. By
Theorem 2.4, this means that for all F = bc ∈ X, dim H̃i�lk�F;X�yk� = 0
for i < dim�X� + |b| − n = dim�X� − |F | = dim�lk�F;X��. To prove the
implication (b) ⇒ (a) it is enough to show that X is pure, and then the
above argument reverses. Since lk�G; lk�F;X�� = lk�F ∪G;X�, whenever
F ∪G ∈ X and F ∩G = Z, we observe that the same cohomological van-
ishing holds for all proper links of X, hence by induction we may assume
that they are pure. Now if dim�X� ≥ 1, then (b) also gives H̃0�Xyk� =
H̃0�lk�Z;X�yk� = 0, so X is connected and this, together with the purity
of the links, shows the purity of X.

Since S/IX = S/Icore�X��Xi � vi ∈ X \ core�X�� (see for instance [BH93,
p. 232]), we have that S/IX is Gorenstein iff S/Icore�X� is Gorenstein, thus
it is enough to show the following

Theorem 2.11. If X = core�X� (that is X is not a cone), then the fol-
lowing are equivalent:

(a) S/IX is a Gorenstein ring (over k).

(b) For all F ∈ X, H̃i�lk�F;X�yk� =
{
k if i = dim�lk�F;X��;
0 otherwise.

Proof. To prove the implication (a)⇒ (b), we argue by induction on |F |:
for any vertex v ∈ F , one has S/Ilk�v;X� = S/�IX x �xv��, on the other hand
S/IX Gorenstein implies that S/�IX x �xv�� = xvS/IX is also Gorenstein,
whereas lk�G; lk�v;X�� = lk�v+G;X�, for all �v� ∪G ∈ X with v 6∈ G.

If condition (b) holds, then S/IX is a Cohen–Macaulay ring by Theorem
2.10, and so X is pure. Moreover X is a pseudomanifold, that is every
�dim�X� − 1�-face of X lies in exactly two facets, and X is orientable, that
is H̃dim�X��Xyk� = k since X = lk�Z;X�. In fact the same holds for every
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proper link of X. We observe next that Xvc is also Cohen–Macaulay of the
same dimension, for any vertex v of X. By Theorem 2.10, all we have to
check is that H̃i�lk�F;Xvc�yk� = 0, for all F ∈ Xvc and i < dim�lk�F;Xvc��.
If v is not a vertex of lk�F;X�, or i < dim�lk�F;Xvc�� − 1 this is immediate
from condition (b). If v is a vertex of lk�F;X� and i = dim�lk�F;Xvc�� − 1,
this follows from the long exact sequence in Theorem 2.5;

→ H̃i+1�lk�F;X�yk� → H̃i�lk�F ∪ �v�;X�yk�
→ H̃i�lk�F;Xvc�yk� → H̃i�lk�F;X�yk�;

where the leftmost arrow is nonzero being induced by the restriction of an
orientation class. To prove that S/IX is Gorenstein, it is enough to show
that the canonical module of S/IX is invertible, or equivalently that all gen-
erators of the canonical module lie in a single degree and S/IX has a unique
extremal Betti number whose value is one. The first condition follows now
from the fact that Xvc is also Cohen–Macaulay of the same dimension, for
any vertex v of X, and thus βn−dim�X�−2; b = 0, for all b 6= �1; 1; : : : ; 1�. For
the second condition observe that, by Corollary 2.9, IX∨ has a linear reso-
lution and thus by Theorem 2.8 the unique extremal Betti number of IX∨ ,
which is one by our hypothesis, coincides with the corresponding extremal
Betti number of IX .

Remark 2.12. Recall that a simplicial complex X is called doubly
Cohen–Macaulay if X is a Cohen-Macaulay complex and Xvc is also
Cohen–Macaulay of the same dimension, for any vertex v of X. The
formula in Theorem 2.4 and the proof of Theorem 2.11 show that if
X is doubly Cohen-Macaulay, then IX∨ has a linear resolution and
β∨dim�X�+1;�1;1;:::;1� is the unique extremal Betti number.

3. EXAMPLES

We end with three examples illustrating the above described behavior of
the extremal multigraded Betti numbers:

Example 3.1. Let X be a length five cycle, that is IX = �xixi+2�i∈�5
⊂

k�x0; : : : ; x4�. Then X∨ is the triangulation of a Möbius band shown in
Figure 1, and IX∨ = �xixi+1xi+2�i∈�5

.

degree 1 5 5 1

0 1 – – –
1 – 5 5 –
2 – – – 1

βi; j�IX�

degree 1 5 5 1

0 1 – – –
1 – – – –
2 – 5 5 1

βi; j�IX∨�
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FIGURE 1

Example 3.2. It is easily seen that a triangulation of the torus T1 has at
least seven vertices, and in case the triangulation has exactly seven vertices,
that the graph of its 1-skeleton is necessarily K7, the complete graph on
seven vertices. Such a triangulation X (first constructed in 1949 by Császár)
is shown in Figure 2; it is unique up to isomorphism and has an auto-
morphism group of order 42. The dual graph of its 1-skeleton divides the
torus in the well-known 7-colourable map (see [Wh] for more details). Thus
up to a permutation, IX = �xixi+1xi+2; xixi+1xi+4; xixi+2xi+4�i∈�7

. Then
IX∨ = �xixi+1xi+2xi+4; xixi+1xi+2xi+5�i∈�7

.

degree 1 21 49 42 15 2

0 1 – – – – –
1 – – – – – –
2 – 21 49 42 14 2
3 – – – – 1 –

βi; j�IX�

degree 1 14 21 9 1

0 1 – – – –
1 – – – – –
2 – – – – –
3 – 14 21 7 1
4 – – – 2 –

βi; j�IX∨�

Example 3.3. In fact, one can construct examples of homogeneous
modules with prescribed extremal graded Betti numbers, for example, by
considering appropriate direct sums where each direct summand features
exactly one extremal Betti number. Moreover, a classical result of Bruns
[Br76] (see also [EG85, Corollary 3.13, p. 56]) implies that all such possi-
ble extremal “shapes” and values of extremal Betti numbers in resolutions
of modules may be realized also in minimal free resolutions of homo-
geneous ideals (generated by three elements). By passing to the generic
initial ideal and then polarizing we may also construct examples of square
free monomial ideals with the desired extremal Betti numbers.

FIGURE 2
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FIGURE 3

Example 3.4. Extremal multigraded numbers need not be also ex-
tremal in the total degree sense. For example, if X is the simplicial
complex shown in Figure 3, then IX = �x0x2; x0x3; x0x4; x1x4�, and
IX∨ = �x0x4; x0x1; x2x3x4�, while the corresponding Betti diagrams are

degree 1 4 4 1

0 1 – – –
1 – 4 4 1

βi; j�IX�

degree 1 3 2

0 1 – –
1 – 2 1
2 – 1 1

βi; j�IX∨�
Both second order syzygies of IX∨ are extremal (in the multigraded

sense), but β1; �0; 1; 4� = β∨1; �0; 1; 4�, which is also extremal, is not extremal in
the single graded sense.
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