
Discrete Applied Mathematics 9 (198-t) 197-207

North-Holland

197

AN OPTIMAL PARALLEL CONNECTIVITY ALGORITHM

Uzi VISHKIN*
Cowan! Institute of Mathematical Sciences, New York University, 251 Mercer Street,

New York, NY 10012, USA

Received 20 September 1982

Revised 9 August 1983

A synchronized parallel algorithm of depth 0(n2/p) for p (sn’/log’n) processors is given for

the problem of computing connected components of an undirected graph. The speed-up of this

algorithm is optimal in the sense that the depth of the algorithm is of the order of the running

time of the fastest known sequential algorithm over the number of processors used.

1. Introduction

This paper presents a synchronized parallel algorithm for computing connected
components of an undirected graph. The algorithm presented has the following
favorable property: its depth (running time) is of the order of the fastest known
sequential algorithm over the number of processors used. Later in the paper when
we say that a parallel algorithm is ‘optimal’ or has ‘optimal speed-up’, we refer to
this property. A model of computation is used in which all the processors have
access to a common memory. Simultaneous reading of several processors from the
same memory location is allowed; simultaneous writing in the same memory loca-
tion is also allowed, provided all processors seek to write the same value. For a
detailed description of this model and its basic definitions, see [lo].

One can say that models of computation, in which simultaneous writing by
several processors in the same memory location is allowed, are fairly acceptable.
The papers [l], [6], [9], [l l] and [14] allow several processors to seek simultaneous
writing in the same location, even of different values (which is an obvious extension
of our assumption). In such a case, some of them assume that one of the processors
succeeds to write in one time unit, but we do not know in advance which, and others
assume that the processor which has the smallest serial number succeeds in one time
unit. This family of models of parallel computation is sometimes called concurrent-
read concurrent-write parallel random access machines (CRCW PRAM in short).
Moreover, [S] and [15] present algorithms for implementing every algorithm in these
CRCW PRAM models into models with no simultaneous access conflicts (some-

*Present address: Dept. of Comput. Sci., School of Math. Sci., Tel Aviv Univ., Tel Aviv 69978, Israel.

The author visited IBM T.J. Watson Res. Center from Sept. 1981 to Aug. 1982. Part of this research

was performed during this visit.

0166-218X/84/S3.00 0 1981, Elsevier Science Publishers B.V. (North-Holland)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81989412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

198 CJ. Vishkin

times called exclusive-read exclusive-write (EREW) PRAM) in a way which is not
less efficient than any known algorithm for implementing algorithms in models that
allow simultaneous access of several processors to the same common memory loca-
tion for read, but not write, purposes (CREW PRAM) into EREW PRAXI. This
phenomenon was proven in (161 to hold for a large family of such implementation
algorithms provided that they satisfy a few reasonable assumptions. We only sketch
the spirit of this proof avoiding its lengthy details. Suppose a simulation of the
CREW PRAM by the EREW PRAhl is given. Given a time unit of the CREW
PRAM we have to simulate it by the EREW PRAM. Instead, a corresponding
(legal) time unit of the CREW PRAM is simulated and all the intermediate com-
putations and, in particular, all copying operations of data during the simulation
are recorded. These intermediate computations are then used to form a simulation
of the original time unit of the CRCW PRAlM into the EREW PRAM. In particular,
‘fan-outs’ of information (which correspond to dissemation of a common memory
address to processors that seek to read it) are transferred into ‘fan-ins’ of informa-
tion (which correspond to several processors seeking to write into a common
memory address). This suggests some justification for comparing results in our
model with the results of Chin et al., Hirschberg et al., and Wyllie, although their
results were achieved in the slightly weaker CREW PRAM. For a proof that the
CREW PRAM is weaker than the CRCW PRAM see [3]. Recently, [13] supported
the CRCW PRAM models by establishing a relationship between them and com-
binational logic circuits that contain AND’s, OR’s and NOT’s, with no bounds on
the fan-in of AND-gates and OR-gates. Parallel time and the number of processors
for the parallel computation model correspond respectively to depth and size of cir-
cuits, where the time-depth correspondence is to within a constant factor and the
processor-size correspondence is within a polynomial.

The problem of obtaining parallel algorithms for computing connected com-
ponents of an undirected graph received considerable attention in literature. An
algorithm of depth O(log* n) for n* processors was suggested in [8]. (Note that this
is the same as saying, depth of O((n* log* n)/p) for p (<n*) processors.) An im-
proved version of the same algorithm is given in [7], with the same depth achieved
by only n’/log n processors. Still another version of this algorithm is suggested in
[17] with depth O(log*n), this time by n+m processors; n being the number of
vertices and m that of edges. It remained to be asked whether optimization of the
‘speed up’ is feasible. In [4], this question is answered in the affirmative for dense
graphs with m = n*. The algorithm which is another version of the above algorithm
is of depth O(log*n) for n*/log*n processors. These results were achieved in the
CREW PRAM.

[l l] introduces a new algorithm that achieves a depth of O(log n) by n + m proces-
sors. The model of computation allows simultaneous writing by several processors
in the same memory location; in such a case one of these processors succeeds, but
we do not know which.

All the works mentioned so far assume models of computation that take all the

An optimal parallel connectivity algorithm 199

overheads into account, including allocation of processors to their jobs. Actually,
the main contribution of [I] in the merging algorithm, [4] in the connectivity
algorithm and [lo] in the algorithm for finding the maximum among n elements is
in solving the problem of allocating processors to their jobs in previously known
algorithms.

The algorithm presented here is of depth O(log’n) for n2/log2 n processors as in

[41.
The algorithm takes advantage of the stronger model of computation due to con-

siderable changes in the algorithm of [7]. The changes are: Closer adherence to the
basic notion of the algorithm of shrinking the original graph with gradual reduction
of the number of vertices, a more careful assignment of processors to their jobs,
and data-structure that may be useful in other parallel algorithms.

The genera1 outlook at the algorithm as repeatedly shrinking the original graph
and collecting the relevant information after the shrinking was finished (that is
known in the theory of designing sequential algorithms), together with the technique
of assigning processors to their jobs in the shrinking graphs (that enables smooth
shrinking), seems a promising method in the theory of designing efficient parallel
algorithms.

Our solution for the important tasks of assigning processors to their jobs is
simpler than in [4]. This is due to two things.

(1) It uses a technique that makes the life of the algorithm designer much easier.
This technique was already shown to be useful for several other parallel algorithms.
Specifically, see [2] and [12] for parallel algorithms where the algorithm is given first
without taking care of the full assignment of processors to their jobs. This problem
is later resolved by applying Brent’s [2] theorem. This simple technique seems to be
basic for design of parallel algorithms.

(2) The advantage of allowing concurrent write (in Step 9 of the algorithm below)
frees us from the apparent need to apply sorting in each application of the loop of
Steps 2 through 9, as in [4]. Besides the simplicity point this repeated application
of sorting increases the constant multiplicatives in the time complexity estimates of
their algorithm. For more on the application of sorting in their algorithm see the
last paragraph of this paper.

On the other hand, one may favor the [4] algorithm as it does not use concurrent
write. My answer to that is to refer the reader to the arguments presented above in
favor of the most permissive model of computation that does not increase the fine
for implementation into restrictive models of computation.

2. The algorithm

In Subsection 2.1, a useful data-structure is presented. Subsection 2.2 is devoted
to a detailed description of the algorithm. The efficient implementation of the
algorithm is described in Section 3.

200 U. Vishkin

2.1. Data-structure

The following simple data-structure, which enables efficient assignment of pro-
cessors to their jobs, is reminiscent to some extent of the one given in [12]. It is used
here, however, more effectively.

Given n numbers ala2,..., a,, we associate with them a complete binary tree
T(a,,q, a,,), a so-called partial star tree, or P*-tree for short, the asterisk
standing for any associative binary operation. T(a,, a2, . . . , a,,) contains 2 bg 4
leaves (all logarithms in this paper are to the base of 2). Every node in the tree is
represented by a combination [h,j], h being its height in the tree and j its serial
number among the other nodes at the same height (Fig. 1).

Fig. I.

A neutral element of the * operation is denoted by 0: for example, the neutral
element for the + operation is the number zero; any number greater than the
possible values of ai may serve as a neutral element for the Min operation (the
minimum between two numbers).

Every node [h, j] in the tree is associated with two numbers, A(h, j) and B(h, j).
The A numbers satisfy

(1) A(O,j) =
i

aj for j I n,

0 forj>n.

(2) A(h,j)=A(h-1,2j-l)*A(h-1,2j) for O<hrrlognl.

Another way to put the second equation is: each internal node (h, j) is the root of
a complete subtree; A(h, j) is the ‘sum’ of the aj,, aj, + t, . . . , aj2 attached to its leaves
(we refer to the * operation as summation). Therefore, having (p=) 2r10gn1 proces-
sors numbered from 1 to 2f’“s”l, the following straightforward procedure com-
putes the A’s:

An optimal parallel connectivity algorithm

Procedure A

Processor i:

201

1.

2.

3.

if iln
then A(0, i) + ai
else A(O,i)+O

h+l
while h I rlog n1 and 2hi I 2r’Ognl do

A(h,i)+A(h-1,2i-l)*A(h-1,2i)
h+h+l

od

We would like the B numbers to satisfy:

B(O,j) =A(O, l)*A(O,2)*-*- *A(O,j) = (fOrjIf?) c71 *al*--.*aj.

For this purpose, let us define B(rlog nl, 1) = 0 and

B(h”) =

B(h+ l,+j)*A(h,j-1) ifj is even,

B(h + 1, r+jl) else.

On a more intuitive level, we may say that the B of a left-hand son is identical to
the B of its father and the B of a right-hand son is (the B of its father) * (the A of
its left brother). Obviously this recursive definition implies:

B(O,j) =A(O, 1)*,4(0,2)*...*A(O,j-1).

So, by the instruction

B(O,A+-B(O,_i)*A(O,j)

we are finished.
With the A’s known, the procedure for computing the B’s is as follows (assume

,=2rb4):

Procedure B

1. B(rlognl,l)+O
2. h+rlognl

3. Processor i:
wait until i S 2rlOgnl -h

while h 2 0 do

if 2r+il =i
then B(h,i)+B(h+l, +i)*A(h,i-1)
else B(h, i) + B(h + 1, r+il)
h+h-1

od

B(O,i)+B(O,i)*A(O,i)

202 I;. Vishkin

Note that the depth (computation time) of both procedures is proportional to the
height of the tree, i.e., O(rlogn)).

2.2, Computing connected components

We asume here that nz processors are available. The more efficient implementa-
tion is discussed in Section 3. It is recommended that the verbal description of the
algorithm given below should be read in conjunction with the more formal one in
Fig. 2.

A is the adjacency matrix of an undirected graph. V= { 1,2, . . . , n}. Each operation

Input: A = Ao, the n x n adjacency matrix for an undirected graph.
Output: F(u) (for all u E V), the smallest serial number vertex in the connected component of vertex “.

1. k+O, L(O)+n

for all “E K

No(“) +- u

while L.(k)>0 do (Steps 2 through 9)
2. k+-k+l

3. for all “lL(k- I) do (Steps 3 through 8)

4.

5.

6.
7.

8.

od

Ck(u)+.Min{u: Ac_,iu,“)= I and ufu and u=L(k-1)}
if none then u

D&(U) + C&(U)

for [log L(k- I)] iterations do

C,(u) + Ck(Ck(“))

od

C,(o) + Min{Ck(“), Dk(Ckb))}

if CL(“) = 0 and &(“) # ”

then Sk(“) + ‘the serial number of u among the vertices of the kth graph’
else Sk(“) + QUIT
L(k) + the number of vertices of the kth graph
if Ck(“) = ” and &(“) f U
then Nk(&(“)) + Nk_ t(U)

9. for all u,u<L(k- 1) such that Dk(“)#u and &(“)#” do

Ak(Sk(Ck(U)).Sk(Ck(“))) ‘-Ak-,(U. “)

od

od

10. I(“) + 1) P(u) +- 0
for all ucVdo

while S/c,,(C,,,,P(u))) #QUIT do

P(u) +-- SI,,,(P(“)))
I(“) + I(“) + 1

od

od

F(u) + N,(“,(P(“))!

Fig. 2. Algorithm for computing connected components.

An optimal parallel connectivity algorifhm 203

of the loop of Steps 2 through 9 shrinks the undirected graph represented by A,
(i = 0, 1, . ..) (hereinafter the large graph) into one represented by Ai+t (shrunken
graph). Whenever a set of vertices is shrunk into a single vertex, it can be shown
that all these vertices belong to the same connected component. Assume that a con-
nected component was shrunk into a single vertex following several performances

of the loop. The next performance of the loop would cause the disappearance of
this vertex. The graph that is represented by A, is called the kth graph. Let u be
a vertex of the kth graph. Nk(u) denotes the vertex of the original graph that was
shrunk during the k performances of the loop into o. The definition and the techni-
que for attaching vertices of the large graph to vertices of the shrunken graph will
become clear later.

In order to proceed with the description of the algorithm we need to define rooted
trees and rooted stars:

(1) A rooted tree is a directed graph satisfying:
(a) its underlying undirected graph is a tree;
(b) it has a vertex rcalled root such that there exists a directed path from each

vertex to r.
(2) A rooted star is a rooted tree in which each vertex is connected directly to the

root.
Let us follow the rules of the kth performance of the shrinking process. The large

graph has L(k- 1) vertices { 1,2, . . . ,L(k- I)}, and its adjacency matrix is Ak_,. In
Step 3, vertex u is set to point (by the value assigned to Ck(v)), to the smallest
vertex adjacent to it; if there is no such vertex, o points to itself. The implementation
of this step is discussed later. in Step 4, we record C,(i) in Dk(i) for later use. The
directed graph, currently represented by the vector C, has the following properties:

(1) the out-degree of each vertex is exactly one, and moreover;
(2) its edges can be partitioned info a forest of rooted trees and a set of edges such

that each of which emanates from a root of the forest, and is anti-parallel to an edge
in the forest.

Showing that the first property holds is trivial and left to the reader. For the
second property take any vertex LJ E { 1,2, . . . , L(k - 1)). Claim: u 2 C,(C,(u)). This
is because u is adjacent to C,(u) and C,(C,(u)) is the smallest vertex adjacent to
Ck(u). Thus, the sequence obtained by applying C, even number of times with u as
its first element is non-increasing. A closer look would show that it first decreases
and then the same element, say U, is repeated, implying that the edge (u, Ck(u)) is
anti-parallel to (C,(C,(u)), C,(U)) = (u, C,(u)). The length of a directed simple path
u + Ck(U) + Ck(Ck(U)) * a.0 does not exceed the number of vertices which is
L(k- 1). Applying the loop of Step 5 i times, in a synchronous fashion for all ver-
tices, implies that C,(u) is assigned with a value which equals 2’ applications of Dk
(C, before Step 5). So the [log L(k- I>] iterations of Step 5 sets each vertex, x, to
point either to its root, r (the root of its tree), or to Dk(x) in the digraph. After
Step 6, C, forms a digraph consisting of rooted stars plus self-loops in the roots
(note that the serial number of each root is minimal among the vertices in its star).

204 U. Vishkin

The implementation of Step 7 is given later. Its outcome, however, is that for each
root u of the rooted stars graph that is not a single vertex in that graph, it assigns
a number Sk(o). Sk(o) is the serial number of u among these roots. It is going to be
the vertex in the kth graph that u (or its star or any other vertex in its star as we
may say), shrinks into it. Sk(o) is set to QUIT for the other vertices. The reason for
computing L(k) here (the number of vertices of the kth graph), will be clear after
reading the implementation of this step.

Step 8. Nk_ t(u) is the vertex in the original graph that is associated with u in the
(k- 1)th graph (note that Nk(o) has the minimal serial number among the vertices
shrunken into u). u is therefore assigned to Nk(Sk(u)), implying that this vertex of
the original graph is associated in return with the vertex Sk(u) of the kth graph.
The rule for forming the adjacency matrix of the shrunken graph from the large
graph (Step 9) is: a pair of vertices u, u in the shrunken graph are connected by an
edge if and only if a connected pair u,, u1 exists in the large graph such that the
roots of u1 u, were shrunk into u, u respectively. Here is where simultaneous writing
of the same value in the same memory location may occur. Obviously, the shrunken
graph possesses no more than half the number of vertices than the large graph
(2f,(k)1L(k-1)). Hence, after at most flog nl performances of the loop we should
arrive at Step 10.

l(u) is an auxiliary counter that is attached to vertex u of the original graph. At
the beginning of each performance of the loop of Step 10, the variable P(u) contains
the name of the vertex of the (I(u) - I)th graph (for the present f(u)) that u had
shrunk into. The value of I(u) on exiting the loop equals:

Max
I

the kth graph contains vertices that are associated with
k vertices in the connected component of the vertex u.

The connected component was shrunken into exactly one vertex P(u) in the I(u)th
graph. P(u) is associated with vertex N,u,,(P(u)) in the original graph. N,(,)(P(u)) is
the smallest serial number vertex in the connected component of u. This is exactly
what we need to assign to F(u) according to the definition of the output in Fig. 2.
The loop of Step 10 is performed no more than flognl times.

Implementation remarks

(1) The computation of Ck(u) for each UI L(k- 1) in Step 3 is done as follows:
Attach L(k- 1) processors to u and compute the A numbers as per Subsection 2.1
for the Min operation. A(flog L(k- l)l, 1) yields the anticipated result that is
assigned to Ck(u).

(2) The practice of attaching serial numbers to the vertices that ‘survive’ the
shrinking (roots of ‘non-degenerate’ components) in Step 7 can be done readily,
using our data structure. The a, numbers would satisfy (u = 1,L.(k- 1)):

(‘1, if Cb(u)=u and D(u)#u,
a, =

t 0, else.

An optimal paraliel connectivity algorithm 205

Thus, for every u such that CZ, = 1, B(0, o) is the serial number of u among these sur-
viving vertices, and is assigned to S,(u). Sk(u) of the vertices o such that a, = 0 is
assigned by QUIT. L(k) is set to the value of A(flog L(k- l)l, 1).

(3) It can be shown that all the initializations of the required variables affect
neither the depth analysis nor the number of required processors. This comment
applies to the next section as well.

Depth evaluation

Step 1: O(l), Step 6: O(logn),
Step 2: O(logn), Step 7: O(log’n),
Step 3: O(log’n), Step 8: O(logn),
Step 4: O(log n), Step 9: O(logn),
Step 5: O(log’n), Step 10: O(logn).

Hence, the total depth of the algorithm is O(log’n).
Proof of the correctness of the algorithm is dispensed with as it is a modified

version of [7]. The modifications that lead to better depth in the next section are
in Steps 7 and 10, in the presentation of the Ak matrices (which become smaller as
the shrinking process goes on), and in the introduction and efficient use of the data
structure (see Section 3 below).

3. Optimal implementation

The scheme of optimal implementation is based on the following theorem and its
proof.

Theorem 3.1. (Brent [2]). Any synchronized parallel algorithm of depth d, that
consists of x elementary operations, can be implemented by p processors with a
depth of Tx/pl + d.

Proof. Let xi denote the number of operations performed by the algorithm in time
i, (Cp’ xi =x). We now use the p processors to ‘simulate’ the algorithm. Since all
operations in time i can be executed simultaneously, they can be computed by the
p processors in fx;/pl units of time. Thus, the whole algorithm can be im-
plemented by p processors in time

5 rx;/p15 i (x;/p+l)5 rx/p1 +d. 0
1 I

The proof of Brent’s theorem entails two implementation problems: how to
evaluate xi at the beginning of time i in the algorithm, and how to assign the pro-
cessors to their jobs without increasing the depth that is yielded by Brent’s theorem
by an order of magnitude. The reader is invited to verify for himself that the prob-

lems can be solved easily in each of the steps of the algorithm. After Lemma 3.2,
however, there is a hint that may help to do it in Step 10.

Having shown earlier that d is O(log*n), we now claim that x (of Brent’s
theorem) equals O(n*). The following two lemmas will help us to prove this claim.

Lemma 3.1. The total number of operations that is required for Step 3 is O(n’).

Proof. Whenever the data structure of Subsection 2.1 is used, the number of opera-
tions involved is proportional to that of nodes of the P*-tree.

In the first performance of the ‘main loop’ (Steps 2 through 9), we have a tree
of 2.2r’Og”l nodes (since there are 2 rlogn] leaves) for each vertex o, u = l,t, . . . , n.
2.2r’og”1 <4n, implying that the total number of nodes is bounded by 4n’. ZL(k)<
L(k - 1) implies that the 1st graph that is the input to the second performance of
the main loop contains no more than +n vertices, i.e., the total number of nodes
is bounded by n2. In the next performance, the number is again reduced by a factor
of at least 4. Hence, the total number of elementary operations needed for Step 3
is O(2). cl

A similar reasoning shows that the total number of operations required for Step
7 is O(n).

Lemma 3.2. The total number of operations required for Step 9 is O(n’).

Proof. The first performance of Step 9 takes n2 operations; the second ,5’(l)
(ctn*) operations and so on. The subsequent reasoning is as in the preceding
proof. cl

In order to both calculate smoothly the number of elementary operations of Step
10 and the assignment of processors to their jobs during that step, we attach a pro-
cessor to each of the vertices during Step 10. A few processors may exit the loop
of Step 10 before others and, in that case, they will carry out the instruction: ‘remain
idle’ until the algorithm is over. Namely, Step 10 elapses O(log n) time units, in-
dependently of the input and requires no more than O(n log n) operations. The
number of operations needed for all the other steps is also easy to calculate, there-
fore, the following corollary can be stated.

Corollary 3.3. The total number of elementary operations in the algorithm is
O(n’). We conclude by reminding the reader that we actually proved, with the aid
of Brent’s theorem, that the depth of the algorithm is O(n*/p) for ps n’/log2 n.

At last we would like to go back and defend one of our claims that our algorithm
is simpler than [4]. We do it by pointing out where sorting is used in their algorithm.
Due to the concurrent-write assumption Step 9 is performed instantaneously regard-

An optimal parallel connecrrvity algorithm 207

less of the number of processors attempting to write into the same memory location

or whether this number is known. On the other hand it seems impossible to compute

this OR function in a CREW PRAM simultaneously for all entries of the matrix into

which concurrent-write should be performed without powerful and time consuming

techniques like sorting. They show that this can be done without multiplying the

total running time by more than a constant by giving a lengthy and time consuming

solution for this problem.

Acknowledgement

I would like to thank Y. Shiloach for stimulating discussions.

References

[I] A. Borodin and J.E. Hopcroft, ‘Routing, merging and sorting on parallel models of computation,

Proc. 14th ACM Symp. Theory of Computing (1982) 338-344.

[2] R.P. Brent, The parallel evaluation of general arithmetic expressions, J. ACM 21 (1974) 201-206.

[3] S. Cook and C. Dwork, Bounds on the time for the parallel RAM’s to compute simple functions,

Proc. 14th ACM Symp. Theory of Computing (1982) 231-233.

[4] F.Y., Chin, J. Lam and I. Chen, Optimal parallel algorithms for the connected component

problem, Proc. 1981 Internat. Conf. Parallel Processing (1981) 170-175.

[5] D.M. Eckstein, Simultaneous memory access, TR-79-6, Computer Science Dept., Iowa State Uni-

versity, Ames, IA (1979).

[6] L.M. Goldschlager, A unified approach to models of synchronous parallel computation, Proc. 10

ACM Symp. Theory of Computing (1978) 89-94.

[7] D.S. Hirschberg. A.K. Chandra and D.V., Sarwate. Computing connected components on parallel

computers, Comm. AGM 22 (8) (August 1979) 461-464.

[8] D.S. Hirschberg, Parallel algorithms for the transitive closure and the connected component

problem, Proc. 8th ACIM Symp. Theory of Computing, Hershey, PA (1976) 55-57.

[9] J.T. Schwartz, Ultracomputers, ACM Trans. Programming Languages and Systems 2 (1980)

848-521.

[IO] Y. Shiloach and U. Vishkin. Finding the maximum, merging and sorting in a parallel computation

model, J. Algorithms 2 (1981) 88-102.

[II] Y. Shiloach and U. Vishkin, An O(logn) parallel connectivity algorithm, J. Algorithms 3 (1982)

57-67.

[12] Y. Shiloach and U. Vishkin, An O(t? logn) parallel max-flow algorithm, J. Algorithms 3 (1982)

128-146.

1131 L.J. Stockmeyer and U. Vishkin, Simulation of parallel random access machines by circuits, SIAM

J. Comput. 13 (2) (1984) 409-422.

[I41 R.E Tarjan and U. Vishkin, An efficient parallel biconnectivity algorithm, TR-69. Dept. of Com-

puter Science, Courant Institute, NYU (1983). SIAM J. Comput., to appear.

[15] U. Vishkin, Implementing simultaneous memory address access in models that forbid it, J.

Algorithms 4 (1983) 45-50.

[16] U. Vishkin, On choice of a model of parallel computation, TR-61, Dept. of Computer Science,

Courant Institute, NYU (1983). J. Comput. System Sci., to appear.

[I71 J.C. Wyllie, The complexity of parallel computation, Ph.D. Thesis, Dept. of Computer Science,

Cornell University, Ithaca, NY (1979).

