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Campylobacter jejuni is a spiral-shaped Gram-negative pathogen and major agent of gastrointestinal foodborne
illness in humans worldwide. This pathogen encodes numerous described pathogenicity-associated factors
involved in important processes including bacterial adhesion to, transmigration across, invasion into and
intracellular survival within intestinal epithelial cells. This review article highlights various molecular
techniques applied in the studies of each of these individual steps of C. jejuni host cell interactions in vitro
including gentamicin protection assay, chemotaxis and motility assays, transwell and intracellular survival
assays, G-Lisa, siRNA knockdown, immunohistochemistry, immunofluorescence, electron microscopy and
luciferase reporter assays. We discuss the strengths and limitations of the methods as well as the different
cell model systems applied. Future work should employ new technologies including modern microscopic,
proteomics-based and cell signaling approaches to identify and characterise novel virulence mechanisms,
which are crucial to provide fresh insights into the diversity of strategies employed by this important
pathogen to cause disease.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-SA license.
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1. Introduction

Zoonoses are a major health problem. An important example
is the spiral-shaped flagellated bacterium Campylobacter jejuni
which lives as a commensal in the gut of many birds and domestic
animals, and thus can enter the food chain of humans in various
ways. Infections with C. jejuni by fecal contaminated food products
represent the major cause of bacterial gastroenteritis, and may be
responsible for as many as 400–500 million cases in the human
world population every year (Nachamkin et al., 2008; Dasti et al.,
2010; Oyarzabal and Backert, 2011). Our knowledge about the
interplay between C. jejuni and its hosts is still limited (Young
et al., 2007), but several infection studies using different animal
models elucidated the roles of motility and chemotaxis as crucial
factors for a successful C. jejuni infection (Hendrixson and DiRita,
2004; Morooka et al., 1985; Nachamkin et al., 1993; Yao et al.,
1997). The high motility of C. jejuni (Karim et al., 1998), which is
even enhanced in medium with increased viscosity (Ferrero and
Lee, 1988; Szymanski et al., 1995), allows this pathogen to
efficiently reach its favoured colonisation site, the inner mucus
layer of the intestine.

During the infection process C. jejuni interacts with non-phagocytic
intestinal epithelial cells and encounters phagocytic immune cells
(Babakhani et al., 1993; Black et al., 1988). Electron microscopic
examinations of biopsies from patients with Campylobacter colitis
showed C. jejuni closely associated with the colonic epithelial cells
as well as inside intestinal cells (van Spreeuwel et al., 1985). Similar
observationsweremade uponC. jejuni infections of infantMacacamulatta
monkeys (Russell et al., 1993) and newborn piglets (Babakhani et al.,
1993). Interestingly, in other infection experiments C. jejuni was not
seen attached to or inside intestinal epithelial cells of mice (Lee et al.,
1986) and chicken (Beery et al., 1988), although C. jejuni was present in
high numbers in the mucus within the intestinal crypts. These studies
imply that adhesion to and invasion into intestinal epithelial cells are
not necessarily essential steps for C. jejuni colonisation of the gut.

An essential objective of ongoing C. jejuni research is to clarify the
precise role of bacterial adhesion to and invasion into enterocytes for
the pathogenesis of these infections in different hosts. In general it is
believed that the diverse clinical manifestations of campylobacteriosis
in humans, ranging from a mild, watery to a severe inflammatory and
bloody diarrhea, correlatewith the variable virulencepotential of differ-
ent C. jejuni isolates and the immune predisposition of the patients
(Allos, 2001; Janssen et al., 2008; van Putten et al., 2009; Dasti et al.,
2010). Some studies suggest that C. jejuni strains isolated from patients
with diarrhoea and fever adhere to and invade cultured cells in vitro
more than C. jejuni isolates from patients with less obvious clinical
manifestations or asymptomatic infections (Fauchere et al., 1986). In
contrast, other studies have demonstrated that certain C. jejuni isolates
from patients with non-inflammatory diarrhoea can exhibit similar
invasion capacities in vitro as isolates causing severe colitis (Everest
et al., 1992). These studies and other reports demonstrate convincingly
that various C. jejuni isolates have significantly different capacities to
interact with cultured epithelial cells in vitro.

The establishment of a functional interface with cultured epithelial
cells by C. jejuni can be divided into three distinct processes: (i) adherence
to the enterocytes, (ii) invasion into the intestinal epithelium cells and
(iii) survival inside a defined intracellular compartment (called
Campylobacter-containing vacuole; CCV) (Fig. 1). In addition, the
translocation of C. jejuni across the intestinal epithelium into the
subepithelial space of the lamina propria has been described
during infection experiments (Humphrey et al., 1986) and in vitro
experiments using polarised cultured epithelial cells were used
with the aim to investigate if this process occurs via the transcellular
or paracellular route (Fig. 1). During the last decades a main focus in
the field of C. jejuni research has been to identify the bacterial factors
mediating the efficient interaction with cultured epithelial cells. The
methodology that has been used to characterise the interaction of
C. jejuni with host cells in vitro will be presented and discussed in this
review.

2. General aspects of experimental design

The efficiency by which C. jejuni interacts with cultured host cells
depends on the specific properties of C. jejuni strains and the cultured
epithelial cell lines. Consequently, the outcomes of in vitro assays being
used to characterise the adherence, invasion, translocation or survival
capacities of C. jejuni vary considerably in different studies. In addition,
variable experimental settings as listed belowmake direct comparisons
of published studies often difficult.

2.1. Selection of C. jejuni strains

Studies using C. jejuni isolates from various host origins for in vitro
infection experiments with cultured epithelial cell lines suggest that no
obvious host tropism occurs: C. jejuni isolates from humans, chicken or
pigs are capable to adhere to and invade human, avian and porcine cell
lines (Biswas et al., 2000; Gripp et al., 2011). However, C. jejuni isolates
adhere to and invade cultured cell lines of certain host or tissue origins
with different efficiencies (Larson et al., 2008; Poly et al., 2007; Wine
et al., 2008), and the adherence and/or invasion capabilities between
strains vary significantly (Biswas et al., 2000; Fauchere et al., 1986;
Fearnley et al., 2008; Newell et al., 1985b; Zheng et al., 2008). While a
positive correlation between adherence and invasion properties of
C. jejuni isolates seems to exist (Biswas et al., 2000), it was shown that
efficient adhesion is not sufficient for an effective invasion process
(Song et al., 2004; Konkel et al., 1992a; Kim et al., 2008; Javed et al.,
2012; Christensen et al., 2009). To perform in vitro infection experiments
with C. jejuni, the strain of choice should exhibit efficient adherence and
invasion characteristics but also robustly infect animal models (Ahmed
et al., 2002; Hiett et al., 2008; Seal et al., 2007). Such strains allow the
critical evaluation of in vitro characterised pathogen–host interactions in
more complex infection models (Hermans et al., 2011; Bereswill et al.,
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2011). Furthermore, the selected C. jejuni isolate should be suitable for
geneticmodification to enable the generation of isogenicmutants, consid-
ering that not all C. jejuni strains are equally manageable for genetic
transformation (Gaasbeek et al., 2009, 2010; Javed et al., 2010).

The availability of complete genome sequences of C. jejuni strains
including NCTC 11168 (Gundogdu et al., 2007; Parkhill et al., 2000),
RM1221 (Fouts et al., 2005), 81-176 (Hofreuter et al., 2006) have facili-
tated targeted mutagenesis and enabled microarray based transcription
analysis studies during in vitro experiments (Gaynor et al., 2005). In
addition, comparative genome analysis of C. jejuni strains has helped
to identify potential virulence traits and revealed that regions encoding
for lipooligosaccharides (LOS), capsule and a flagellin modifying
O-glycosylation system, are highly variable between C. jejuni iso-
lates (Gilbert et al., 2002; Guerry et al., 2006; Karlyshev et al.,
2005; Parkhill et al., 2000). It has been suggested that the variable
LOS and capsule structures in different C. jejuni isolates influence
the outcome of infections because these structures participate in
the adherence and invasion processes of C. jejuni (Tables 1 and 3).
Experiments with C. jejuni isolates expressing LOS structures that
mimic human gangliosides require special safety rules as these
strains are associated with the development of the Guillain–Barré
syndrome (GBS) (Nachamkin et al., 1998).

The C. jejuni strains NCTC 11168, 81-176, 81116 and F38011 are the
most commonly used isolates in laboratories for in vitro infection studies.
In addition these isolates have been successfully used for in vivo infection
experiments to characterise the pathogenicity potential of putative
virulence factors identified previously by in vitro assays. Especially
C. jejuni 81-176 has been widely used in the Campylobacter research
community during recent years as it is highly invasive in vitro and can
robustly colonise. Consequently, C. jejuni 81-176 is one of the few isolates
that has been used for infection experiments in chicken (Hendrixson and
DiRita, 2004), ferrets (Bacon et al., 2000; Yao et al., 1997), wild-typemice
(Newell et al., 1985a; Pei et al., 1998;Naito et al., 2010), immune-deficient
mice (Watson et al., 2007; Haag et al., 2012) and piglets (Naikare et al.,
2006). In addition it is documented thatC. jejuni 81-176 causes inflamma-
tory colitis during challenge studies with human volunteers (Black et al.,
1988; Prendergast et al., 2004; Tribble et al., 2010).

Interestingly, not every C. jejuni strain is suitable for in vitro infection
experimentswith any given cultured cell line, even if this strain is isolated
fromapatientwith inflammatorydiarrhoea. For exampleC. jejuniCG8486
is about 1000-fold less invasive in comparison to C. jejuni 81-176 in
Fig. 1. Hypotheticalmodel for C. jejunimechanisms of infection. The pathogen can interactw
as shown. For more details, see text.
infection experiments using INT-407 cells, but both isolates show compa-
rable invasion phenotypes with Caco-2 cells (Poly et al., 2007).
2.2. Cell line choice and cell confluency

The permissiveness by which C. jejuni interacts with a wide range of
different eukaryotic cell types is striking.While C. jejuni adheres to differ-
ent cell lines to similar extend (Konkel et al., 1992a), its internalisation
efficiency varies dependent on the cell lines. It was suggested that
C. jejuni invades epithelial cell lines of human origin more efficient than
cell lines of non-human origin (Konkel et al., 1992a). Thus C. jejuni infec-
tion experiments have been most commonly studied with the human
intestinal cell lines Caco-2, T84 and INT-407 (Tables 1–4). In vitro
invasion of porcine IPEC-1 and IPEC-J2 small intestinal epithelial cells
by C. jejuni has been described as well (Gripp et al., 2011; Naikare et al.,
2006). Furthermore, C. jejuni is able to interact in vitro with cell lines of
non-intestinal origin from various organisms like human HeLa cells,
liver-derived HepG2 cells, LMH chicken hepatocellular carcinoma
epithelial cells, and the African green monkey kidney derived COS-1
and Vero cell lines (Biswas et al., 2006; Flanagan et al., 2009; Konkel et
al., 2007; Larson et al., 2008; Novik et al., 2010; Watson and Galan,
2008; Coote et al., 2007). Only few studies have worked with primary
intestinal epithelial cell preparations from chicken (Byrne et al., 2007;
Van Deun et al., 2008) or human biopsy material (Byrne et al., 2007).

The choice of cell line depends on the specific experimental
question. Many studies have examined the adherence, invasion and
survival capacity of C. jejuni during infection of non-differentiated
INT-407, T84 or Caco-2 cells. The used cell confluency also influences
the outcome of infection experiments. The term confluency refers to
the coverage of cells on the given petri dish surface. For example,
100% confluencymeans the petri dish is completely covered by amono-
layer of cells (confluent),whereas 50% confluencymeans that half of the
dish is covered by cells (semi-confluent). Interestingly, C. jejuni invades
cells of a semi-confluent cell monolayer more efficiently than cells of a
confluent cell monolayer (Hu et al., 2008). Furthermore, C. jejuni infects
Caco-2 less and T84 cells more efficiently than INT-407 cells (Poly et al.,
2008; Wine et al., 2008). The use of INT-407 cells is preferred
when investigating the detailed intracellular localisation and trafficking
of C. jejuni: Co-localisation studies with transfected GFP-tagged
phagolysosomal marker proteins have been used to investigate this
ith, invade into, transmigrate across and survivewithin polarised intestinal epithelial cells



Table 1
Methods applied to study C. jejuni adherence to cultured epithelial cellsa.

Applied method Cell model used Bacterial factors involved Host factors involved C.jejuni strains used Referencesb

ALA INT-407, Caco-2 ND ND HC, 81-176 McSweegan and Walker (1986);
Russell and Blake (1994)

LM HeLa ND ND Human isolates Fauchere et al. (1986)
MLA Caco-2 ND ND Human isolates Everest et al. (1992)
CBA INT-407 FlaA ND 81116 Grant et al. (1993)
CBA INT-407 PflA, FlaA, CheY ND 81-176 Yao et al. (1994, 1997)
CBA INT-407 GalE ND 81116 Fry et al. (2000)
CBA INT-407 KpsM ND 81-176 Bacon et al. (2001)
CBA Hep-2 JlpAc Hsp90alpha TGH9011 Jin et al. (2001, 2003)
CBA INT-407 PglB, PglE ND 81-176 Szymanski et al. (2002)
CBA T84, INT-407 CadF Fibronectin F38011, 81-176 Monteville and Konkel (2002); Monteville

et al. (2003); Konkel et al. (2005)
CBA INT-407 PseA ND 81-176 Guerry et al. (2006)
CBA INT-407 KpsE ND 81116 Bachtiar et al. (2007)
IFM hPIC, chPIC ND ND 81-176, chicken and

human isolates
Byrne et al. (2007)

CBA Caco-2, LMH CapA ND 11168, F38011 Ashgar et al. (2007);
Flanagan et al. (2009)

CBA INT-407 CsrA ND 81-176 Fields and Thompson (2008)
CBA INT-407 Cj1461 ND 81-176 Kim et al. (2008)
CBA LMH, INT-407 FlpA Fibronectin F38011 Flanagan et al. (2009);

Konkel et al. (2010)
CBA INT-407 Cj0497 ND 01/51 Javed et al. (2010)
CBA, IOS T84 SodB ND 81-176 Novik et al. (2010)
CBA INT-407 HtrA ND 11168, 81-176 Brøndsted et al. (2005);

Bæk et al. (2011); Hoy et al. (2012)
IFM Caco-2 Cst-II ND 81-176, GB11 Louwen et al. (2012)

a Abbreviations: ALA (3H-acetic acid labelling assay), CBA (CFU-based adherence assay); IFM (immunofluorescence microscopy); IOS (inside/outside staining); LM
(light microscopy); MLA (35S-methionine labeling assay); hPIC (human primary intestinal cells), chPIC (chicken primary intestinal cells).

b Due to space limitations only a few key references are provided.
c Identified as an adhesin in C. jejuni strain TGH9011, but no effect observed with jlpAmutants in other isolates such as 11168 or 81-176 (van Alphen et al., 2008; Novik et

al., 2010). Another report showed that JlpA is not required for adhesion of strain F38011 to chicken LMH cells (Flanagan et al., 2009).
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process (Watson and Galan, 2008) and cultured INT-407 or COS-1 cell
lines can be transfected more easily than T84 or Caco-2 cells.

Studies of the translocation properties of C. jejuni isolates across an
intestinal epithelium layer in vitro require polarizing cell lines like T84
(Chen et al., 2006; Monteville and Konkel, 2002; Wine et al., 2008;
Zheng et al., 2008), Caco-2 (Everest et al., 1992; Grant et al., 1993;
Harvey et al., 1999; Hu et al., 2008; Konkel et al., 1992a), MDCK-I
(Wine et al., 2008) orMKN-28 cells (Boehm et al., 2012), which express
tight and adherens junctions thus properly connecting neighboring
cells (Fig. 1). For this purpose, these cell lines are commonly grown as
tight monolayers on transwell filter chambers before infection.

Mucus colonisation has been seen as a critical step in the infection
process of C. jejuni (Beery et al., 1988; Lee et al., 1986). Until recently
appropriate in vitromodels have beenmissing to investigate the interac-
tion of Campylobacter with mucus as most cultured cell lines generally
do not synthesise and secrete mucin (Alemka et al., 2012). Lately it has
been shown that the HT29-derivative E12 cell line produces a mucus
layer when grown and differentiated on transwell filters increasing the
binding efficiency of C. jejuni to E12 cells and subsequently its
internalisation (Alemka et al., 2010; Behrens et al., 2001).

For immunological studies the significant variation in the dynamics of
immune responses in cultured epithelial cells upon infectionwith C. jejuni
should be considered. For example, it has been demonstrated that stimu-
lation of INT-407 cells with C. jejuni leads to significant faster and more
pronounced IL-8 secretion compared to stimulation of HeLa cells
(MacCallum et al., 2006). The host cell type also seems to play an impor-
tant role because the cytolethal distending toxin (CDT) has been reported
to trigger IL-8 secretion in infected T84 (Zheng et al., 2008) and INT-407
(Hickey et al., 2000) but not in Colo-205 cells (Li et al., 2011).

2.3. Multiplicity of infection (MOI)

Differences in the ratio of bacteria to cultured epithelial cells, also
referred to as multiplicity of infection (MOI), profoundly influence
infection efficiency. Infection studies of INT-407 and Caco-2 cells using
MOIs ranging from 0.02 to 20,000 demonstrated that the invasion effi-
ciencies (the percentage of added bacteria that successfully invade
cells) of C. jejuni 81-176 are highest at low MOIs of about 0.2 to 20 and
decreasewhen higherMOIs are used (Hu and Kopecko, 1999). However,
while the infection is less efficient, the use ofMOIs of 100 and higher lead
to the highest numbers of intracellular bacteria (Hu and Kopecko, 1999).
It is possible that the reduced infection efficiencies with very high MOIs
are the consequences of increased cytotoxic effects of C. jejuni on cul-
tured epithelial cells (Kalischuk et al., 2007; Elmi et al., 2012). Therefore,
MOIs between 10 and 500 are used for most in vitro infection studies,
especially to compare the invasion capabilities of different C. jejuni
strains or to investigate the intracellular fate of C. jejuni by microscopy.
Using these MOIs up to 11 bacteria have been found inside infected
cultured cells using fluorescence microscopy. COS-1 cells grown in
15 cm cell culture dishes were infected with C. jejuni in a ration 1:1000
to reach the critical number of intracellular bacteria for the intracellular
proteome analysis of C. jejuni (Liu et al., 2012).

2.4. Motility and growth phase of bacteria

Many studies haveundoubtedly proven thatflagellum-drivenmotility
of C. jejuni is a crucial requirement for the infection process in vivo and to
make contact with host cells (Young et al., 2007; Guerry, 2007). Interest-
ingly, recent studies have shown that motility is necessary but not suffi-
cient for the efficient invasion process in vitro as the clinical isolates
C. jejuni BH-01-0142, CG8421 and CG8486 are fully motile when
compared to strain C. jejuni 81-176 but show significantly reduced inva-
sion capability (Poly et al., 2007, 2008). Nevertheless, up to now many
identified C. jejuni mutants severely (3 magnitudes or more) impaired
in their capability to invade cultured epithelial cells, are negatively affect-
ed in their motility. Consequently, comparing the capability of different
C. jejuni isolates to interact with host cells (Biswas et al., 2000; Ó Cróinín
and Backert, 2012), or investigating specific mutants for invasion defects



Table 2
Methods applied to study C. jejuni invasion of human cells in vitro.a

Applied methods Cell models used Bacterial factors involved Host factors involved C. jejuni strains used Referencesb

IHC, TEM Human biopsies ND ND 22 clinical isolates Van Spreeuwel et al. (1985)
GPA, PIS INT-407 ND Microtubules 81-176 Oelschlaeger et al. (1993)
GPA, ABB, PIS, IFM INT-407 CadF FN, Paxillin, F-actin F38011 Monteville et al. (2003)
SEM, GAA, PIS INT-407, mouse KO cells CadF, FlpA, CiaC Rac1 and Cdc42GTPases 81-176, 11168, F38011 Krause-Gruszczynska et al.

(2007a, 2011);
Boehm et al. (2011);
Eucker and Konkel (2012)

GPA, ASPAB INT-407, KO cell lines CadF, FlpA Paxillin, FAK,EGFR, PDGFR 81-176, 11168, F38011 Monteville et al. (2003);
Krause-Gruszczynska et al. (2011);
Boehm et al. (2011);
Eucker and Konkel (2012)

IFM INT-407, Caco-2, T84 CadF, LOS FN, ND 81-176, 11168, F38011,
clinical isolates

Krause-Gruszczynska et al. (2007a);
Louwen et al. (2012)

T3SS assays, MLA INT-407 Flagellum, CiaB, CiaC ND 81-176, 11168 Konkel et al. (1999);
Christensen et al. (2009)

siRNA KD INT-407 CadF, Flagellum, CiaC Rac1 and Cdc42GTPases,
GEFs (Vav2,DOCK180, Tiam1)

81-176, 11168, F38011 Krause-Gruszczynska et al. (2011);
Boehm et al. (2011);
Eucker and Konkel (2012)

KO cell lines Mouse fibroblasts Flagellum, CadF FN, integrin β1, FAK,
Src kinases, Vav

81-176, 11168, F38011 Krause-Gruszczynska et al. (2011);
Boehm et al. (2011)

DN/CA constructs INT-407,T84, Cos-1 CadF, ND Rac1, RhoA, Cdc42,
Vav2, EGFR, PDGFR, Caveolin

81-176, 11168, F38011 Krause-Gruszczynska et al. (2007);
Boehm et al. (2011);
Watson and Galan (2008)

Signaling constructs INT-407, KO cell lines Flagellum, CadF Integrin β1, FAK, Vav2 81-176, 11168, F38011 Krause-Gruszczynska et al. (2011);
Boehm et al. (2011)

GPA, MA, CTA, AAA Caco-2 Cj0952c, Cj0951c, SOR ND B2, 81-176, 11168 Tareen et al. (2010, 2011)

a Abbreviations: AAA (autoagglutination assay); ABB (antibody blocking); ASPAB (activation specific phospho antibodies); CTA (chemotaxis assay); DN/CA (dominant-negative/constitutive
active); TEM (transmission electron microscopy); FN (fibronectin); GAA (GTPase activation assays including CRIB pulldown and G-lisa); GEF (guanine exchange factor); GPA (gentamycin
protection assay); IFM (immunofluorescence microscopy); IHC (immunhistochemistry); KD (knockdown); KO (knockout); LOS (Lipooligosaccharide); MA (motility assay); PIS
(pharmacologoical inhibitor studies); MLA (35S-methionine labelling assay); ND (not determined); SEM (scanning electron microscopy); siRNA (small interfering RNA); SOR (sulphite:
cytochrome c oxidoreductase); T3SS assays (transolaction assay using the Yersinia flagellar type III secretion apparatus).

b Due to space limitations only a few key references are provided.
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require the thorough pre-testing of their motility properties. Only if the
tested strains exhibit a similarly highmotility both on semi-solid motility
agar plates and in liquid cultures, observed differences in adherence or
invasion properties are potentially mediated by motility-independent
virulence factors. Motility pre-tests with semi-solid motility agar plates
are not always sufficient as C. jejunimutants can lose motility upon culti-
vation in liquid medium and behave like the wild-type strain on
semi-solid motility agar plates (Goon et al., 2006; Novik et al., 2010).

Motility is an important phase variable property of C. jejuni
(Hendrixson, 2006, 2008; Karlyshev et al., 2002). C. jejuni motility is
preferentially lost during in vitro cultivation (Gaynor et al., 2004), but
can be regained throughout infection experiments (Jones et al., 2004;
Caldwell et al., 1985). Especially during the process of generating iso-
genic C. jejuni mutants the resulting strains have to be screened for al-
tered motility in comparison to the wild-type strain. To compensate
the negative effect of slight motility alterations on the adherence
efficiency of C. jejuni strains, many in vitro infection studies take advan-
tage of an additional centrifugation step. For this purpose, C. jejuni can
be enforced to interact with the epithelial cell monolayer using a centri-
fugation step for 5 min at 1000 ×g. This represents a suitablemethod to
synchronise the infection process in order to overcome variations in the
interaction of C. jejuni strains with cultured epithelial cells that are due
to variablemotility properties rather than altered adherence or invasion
characteristics.

Themotility of C. jejuni is not only phase variable as discussed above,
but also growth-phase dependent. It peaks during the late logarithmic
growth phase and diminishes during the stationary phase (Wösten et
al., 2004). These findings imply that the growth phase of C. jejuni
plays an additional role for the in vitro infection process (Konkel et al.,
1992a) and it was shown that C. jejuni from mid-logarithmic growth
cultures showed higher invasion efficiency than bacteria from early
stationary phase (Hu and Kopecko, 1999). An important disadvantage
of using agar plate grown C. jejuni for infection experiments is that the
bacteria vary significantly in shape, flagellation, motility and viability
(Ng et al., 1985a). Thus, before infection, the subcultivation of C. jejuni
in liquid culture is highly recommended (Ng et al., 1985a). It has been
shown that C. jejuni growth in liquid broth medium led to a higher
percentage of highly motile C. jejuni cells with similar shape.

3. Host cell adhesion by C. jejuni

Though the precise molecular mechanisms involved in the
attachment of C. jejuni to eukaryotic cells are still unknown, several
studies have provided evidence in recent years that the adhesion
process of C. jejuni is a multifactorial event (Young et al., 2007;
Ó Cróinín and Backert, 2012). This is reflected by the circumstances
that most of the described adherence-defective mutants exhibit
only reduced rather than severely abolished interactions with the
eukaryotic cells wherein the mutants reach adherence level of
about 20% to 50% of the wild-type strain. These observations imply
that redundancy may exist in the adhesion process and suggest
that the co-operative action of several factors of C. jejuni is required
to mediate optimal adherence to host cells.

3.1. Recovery of cell-associated bacteria

Traditionally, the adherence of C. jejuni to eukaryotic cells has been
investigated by cell association experiments (Everest et al., 1992;
Fauchere et al., 1986; Russell and Blake, 1994). These approaches
enumerate all bacteria that adhere to and invade eukaryotic cells but
fail to distinguish between these two populations and therefore provide
no direct information about the number of bacteria solely attached to
the surface of the host cell at a given time point of infection. Determina-
tion of colony forming units (CFU)has generally been used to characterise



Table 3
Methods applied to study C. jejuni migration across polarized human cells in vitro.a

Applied methods Cell models used Bacterial factors involved Host factors involved C. jejuni strains used Referencesb

TWA, PIS, SEM, TEM Caco-2 ND ND 78-27, 81116, M129, F38011 Konkel et al. (1992c)
CPT, TER Caco-2 ND ND 6 clinical isolates Brás and Ketley (1999)
TWA Caco-2, T84 ND ND 81-176, F38011 Monteville and Konkel (2002)
IFM, TER Caco-2 ND Occludin 11168 MacCallum et al. (2005)
TWA, TEM Caco-2, T84, HCA-7 ND ND 81-176, 11168, 12189, 2801055 Hu et al. (2008); Beltinger et al. (2008)
TWA, IHS, IFM T84 FlaA/B Lipid rafts, caveolin 81-176, CHR213 Kalischuk et al. (2009)
ECA, TWA, TER, CA MKN28 HtrA E-cadherin 81-176, 11168 Boehm et al. (2012); Hoy et al. (2012)
IFM, ISA Caco-2, T84 LOS Late endosomal markers 81-176, 11168, 34 clinical isolates Louwen et al. (2012)

a Abbreviations: CA (Casein assays); CPT (cell permeability test using 14C-Inulin labelling); ECA (E-cadherin cleavage assays), TEM (transmission electron microscopy);
IFM (immunofluorescence microscopy); ISA (intracellular survival assay); LOS (Lipooligosaccharide); PIS (pharmacological inhibitor studies); ND (not determined); SEM
(scanning electron microscopy); TER (transepithlial electrical resistance); TWA (transwell assay).

b Due to space limitations only a few key references are provided.
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the attachment or association of C. jejuni to cultured eukaryotic cells and
to identify bacterial factors involved in the adherence process (Table 1).
The outcome of these assays depends on the plating efficiency of C. jejuni,
which varies for different culture media (Ng et al., 1985b). Therefore,
culture variations have also to be considered when comparing different
studies.

For the standard CFU-based adherence (CBA) assay C. jejuni strains
are added with a defined MOI to cultured epithelial cells in 24 well
tissue plates. Non-adherent C. jejuni cells are removed by a repeated
washing procedure before epithelial cells are lysed with 0.1% Triton
X-100, 0.1% sodium deoxycholate (DOC) solutions or physical rup-
ture. With this approach all cell-associated bacteria, either attached
to the membranes or released from the intracellular compartments
of infected cells, are spread in serial dilutions on appropriate agar plates
to determine the bacterial counts. The cell association efficiency of
C. jejuni is then calculated by dividing the number of bacteria deter-
mined by plate counting (CFU) after lysing the cultured epithelial cells
by the total number of bacteria in the infection inoculum. This assay
does not allow the direct quantification of extracellular attached bacte-
ria as all cell-associated bacteria including intracellular bacteria are
recovered after cell lysis. The accurate number of adherent bacteria
can only be calculatedwhen cell association experiments are performed
in combination with a gentamicin protection assay (see below) that
allows the determination of intracellular bacteria (see Section 6.1).

The CBA assay does not require expensive laboratory equipment, is
easy to handle and enables the fast and economical test of C. jejuni
mutants for their adherence properties. As such the assay has been
successfully used to screen C. jejuni transposon mutant libraries for
mutants with reduced capability to interact with cultured epithelial
cells (Golden and Acheson, 2002; Javed et al., 2010; Novik et al., 2010).
Since the experimental procedure usually involves the use of 0.1% DOC
or 0.1% Triton X-100 to lyse the epithelial cell monolayer, potential
adherence- or invasion-defective mutants have to be additionally tested
for the susceptibility against these detergents. It is known that in
particular inactivation of the cme-Gene cluster leads to hypersensitivity
C. jejuni mutants against DOC (Lin et al., 2003; Raphael et al., 2005) and
such mutants are overrepresented in CBA transposon mutant screens
as false positive hits (Novik et al., 2010). Therefore it is recommended
to retest potential mutants with a CBA assay that involves physical
rupture of the cultured cells (Gaynor et al., 2005; Novik et al., 2010)
instead of 0.1% DOC or 0.1% Triton X-100.

As an alternative to the CBA assay, experiments with radioactively-
labelled C. jejuni have also been used. For this approach C. jejuni is radio-
actively marked prior to the infection of cultured epithelial cells by
culturing the bacteria in medium with tritium-labeled acetic acid
(McSweegan and Walker, 1986; Russell and Blake, 1994) or with [35S]-
methionine (Newell et al., 1985a). At the end of the infection experiment
the cell monolayer is washed and lysed to release C. jejuni. The number of
cell-associated C. jejuni is quantified bymeasuring the radioactivitywith a
liquid scintillation counter. Similar to the CBA assay described above, this
approach does not allow the direct quantification of extracellular attached
bacteria, which have to be determined in combination with a gentamicin
protection assay.

To date, most C. jejuni mutants defective for efficient interac-
tion (adhesion/invasion) with cultured epithelial cells have been
characterised by the CBA/invasion assay (Table 1). This approach identi-
fied motility and chemotaxis (Yao et al., 1994, 1997; Tareen et al., 2010,
2011) as critical factors mediating the interaction of C. jejuni with host
cells, but revealed also the important role of glycan surface structures
for the adherence/invasion process of C. jejuni. In particular, inactivation
of the capsule biosynthesis genes kpsM (Bacon et al., 2001) and kpsE
(Bachtiar et al., 2007), the LOS biosynthesis gene galE (Fry et al., 2000)
and the genes pglB and pglE (Szymanski et al., 2002) involved in the
N-glycosylation of C. jejuni proteins resulted in a adherence defective
phenotype. The C. jejuni 81-176 pseA mutant, unable to modify flagellin
with the acetamidino form of pseudaminic acid, shows a decreased
adherence to INT-407 cells (Guerry et al., 2006). Furthermore the in-
volvement of the fibronectin-binding protein CadF (Monteville et al.,
2003), the fibronectin-like protein A FlpA (Flanagan et al., 2009), the
autotransporter protein CapA (Ashgar et al., 2007) and theHtrA protease
(Brøndsted et al., 2005; Bæk et al., 2011; Hoy et al., 2012) in the adher-
ence process have been identified by CBA assays. The surface-exposed li-
poprotein JlpA has been described to facilitate the binding of C. jejuni
TGH9011 to HEp-2 cells (Jin et al., 2001) but is surprisingly dispensable
for the adherence of C. jejuni F38011 to chicken LMH hepatocellular car-
cinoma epithelial cells (Flanagan et al., 2009). Interestingly, although the
jlpAmutant shows a reduced adherence phenotype by 20% of wild-type
level (Jin et al., 2001), it is not defective for invasion (Flanagan et al.,
2009; Novik et al., 2010; van Alphen et al., 2008). Another putative
lipoprotein, the hypothetical protein Cj0497 of the hyper-invasive strain
C. jejuni 01/51, has been identified as adherence factor by screening a
transposon mutagenesis library for invasion defective mutants (Javed
et al., 2010).

Though the antigenic protein Peb1A was originally identified as
potential pathogenicity factor of C. jejuni 81-176 mediating adhesion to
HeLa cells and invasion into INT-407 cells (Pei et al., 1998), it has been
recently characterised as a periplasmic aspartate/glutamate-binding
protein (Leon-Kempis Mdel et al., 2006; Muller et al., 2007) required for
the utilisation of certain amino acids as growth substrates in vitro
(Hofreuter et al., 2008; Leon-Kempis Mdel et al., 2006). These findings
question the primary function of Peb1A as adhesin/invasin, especially
since peb1A mutants exhibited no significant invasion defects in recent
infection studies (Flanagan et al., 2009; Novik et al., 2010; van Alphen et
al., 2008). It is feasible that the overnight-culture of the C. jejuni 81-176
peb1A mutant used for the in vitro infection experiment by Pei et al.
(1998) lost the metabolic fitness required for the efficient invasion
process as consequence for its inability to catabolise growth-supporting
glucogenic amino acids. A similar phenotype has been described for the



Table 4
Methods applied to study C. jejuni intracellular survival in cultured epithelial cellsa.

Applied method Cell model used Bacterial factors involved Host factors involvedb C.jejuni strains used Referencesc

ISA HEp-2 ND ND Human isolates De Melo et al. (1989)
ISA, IFM INT-407, Caco-2 ND Microtubules, Dynein 81-176 Hu and Kopecko (1999)
ISA INT-407 SpoT ND 81-176 Gaynor et al. (2005)
ISA INT-407, IPEC-1 FeoB ND 81-176 Naikare et al. (2006)
ISA INT-407 Ppk1 ND 81-176 Candon et al. (2007)
ISA, LDS, IFM T84, Cos-1 ND EEA-1, PX-GFP, Rab4,

Rab5, Lamp-1, GM130
81-176 Watson and Galan (2008)

ISA INT-407 CprS ND 81-176 Svensson et al. (2009)
ISA T84, Cos-1 VirK ND 81-176 Novik et al. (2009)
ISA Caco-2 WaaF ND 81-176 Naito et al. (2010)
ISA, LDS T84 SodB ND 81-176 Novik et al. (2010)
ISA INT-407 Ppk2 ND 81-176 Gangaiah et al. (2010)
ISA INT-407, Hela CiaI Lamp-1 F38011 Buelow et al. (2011)
ISA INT-407 TatC ND 81-176 Drozd et al. (2011)
ISA T84 AspA ND 81-176 Liu et al. (2012)
ISA T84 FrdA ND 81-176 Liu et al. (2012)
ISA Caco-2 Cst-II EEA-1, Rab5, Lamp-1 81-176, GB11, GB19 Louwen et al. (2012)
ISA, IFM, LRA Caco-2 ND Lamp-1, CD63 81-176, 108 Bouwman et al. (2013)

a Abbreviations: IFM (immunofluorescence microscopy); ISA (intracellular survival assay); LDS (live/dead staining), LRA (luciferase reporter assay).
b Co-localisation of the indicated marker proteins occurs in a certain temporal fashion during the CCV maturation and represents merely an indirect indication for the host factors

being involved in CCV development.
c Due to space limitations only a few key references are provided.
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aspA and aspBmutants, defective in the catabolismof aspartate and gluta-
mate, respectively (Guccione et al., 2008). Both mutants are recovered
with reducedCFU in invasion assays,which canbe compensatedby fuma-
rate supplementation in the culture medium (Novik et al., 2010). Though
Peb1A plays probably no role in the direct interaction with host cells in
vitro, it has a crucial role for the proliferation and persistence of C. jejuni
in vivo as demonstrated in various animal infection studies (Flanagan
et al., 2009; Hofreuter et al., 2012; Pei et al., 1998).
3.2. Immunofluorescence microscopy (IFM)

The above described CBA assay alone is not suitable to characterise
the interaction of C. jejuni with individual cultured host cells. In order
to gain more detailed information about the adherence process of
C. jejuni, IFM studies have gained increased importance in recent
years. The availability of C. jejuni strains expressing fluorescence pro-
teins like GFP, its derivates or mCherry (Miller et al., 2000; Mixter et
al., 2003; Krause-Gruszczynska et al., 2007a; van Alphen et al., 2008;
Guerry et al., 2006) has facilitated studies imaging the interaction of
C. jejuniwith cultured host cells. Alternatively, immunostaining experi-
mentswith antibodies raised against C. jejuni (Apel et al., 2012; Byrne et
al., 2007; Hu and Kopecko, 1999; Konkel et al., 2007; Louwen et al.,
2012; Monteville et al., 2003; Novik et al., 2009, 2010; Watson and
Galan, 2008) or direct labelling of C. jejuni cells by using a fluorescent
dyes like FITC (Song et al., 2004), Texas-Red (Buelow et al., 2011) or
TAMRA (Alemka et al., 2010; Byrne et al., 2007) have been successfully
employed to investigate the infection process in vitro. Especially the
inside outside staining approach overcomes the restriction of the
above-described CFU-based assay and allows a precise quantification
of the C. jejuni subpopulations which are extracellularly attached to
the cultured cells or residing intracellularly (Apel et al., 2012; Byrne
et al., 2007; Pryjma et al., 2012; Watson and Galan, 2008). IFM
experiments have been also used to complement the results gained
from CBA assay (Table 1). Recently, IFM-based infection experiments
have demonstrated that efficient adherence of C. jejuniwild-type strains
to Caco-2 cells occurs within 15 minutes and that ganglioside-like LOS
enhances this interaction (Louwen et al., 2012). Consequently mutants
with an inactivated sialyltransferase cst-II gene, which are unable to
produce a ganglioside-like LOS, exhibit a significant adhesion defect
(Louwen et al., 2012).
4. Cellular invasion of C. jejuni

4.1. Gentamicin protection assay (GPA) and microscopic methods

Early reports investigated intestinal biopsies from human patients
using immunohistochemistry and transmission electron microscopy
(TEM) and have shown that C. jejuni can be found in compartments
within gut tissue cells in vivo (van Spreeuwel et al., 1985). Later, a multi-
tude of studies have demonstrated that C. jejuni can invade and survive
within a number of cultured cell lines in vitro, notably studies using
non-polarised INT-407, Hep-2 or HeLa and polarised T84, MKN-28 or
Caco-2 cells (Table 2). Mutagenesis of numerous C. jejuni genes involved
in adhesion, glycosylation, capsular formation, bacterial motility and
host adaptation or survival have been implicated to play a role during
invasion (Grant et al., 1993; Szymanski et al., 2002; Yao et al., 1994; Pei
et al., 1998; Bacon et al., 2001; Konkel et al., 2001; Hendrixson and
DiRita, 2004; Kakuda and DiRita, 2006; Krause-Gruszczynska et al.,
2007b; Watson and Galan, 2008; Novik et al., 2010). A widely-used but
indirect laboratory method to monitor adherence and invasion is the
gentamicin protection assay (GPA). This method uses the antibiotic
substance gentamicin to kill all extracellular bacteria after infection, but
is unable to penetrate host cells. Thus, intracellular bacteria stay alive
and can be quantified as CFU on agar plates. However, this method is
indirect and also bears some discussed limitations (Ó Cróinín and
Backert, 2012). Direct visualisation of entering or intracellular C. jejuni
in in vitro infected cells was performed by IFM, live cell imaging (LCI)
and higher resolution approaches such as TEM or scanning electron
microscopy (SEM), which were applied in some but not all studies
(Table 2). For example, IFM was used to investigate the association of
internalised C. jejuniwithmicrotubules and themolecular motor protein
dynein (Hu and Kopecko, 1999), filamentous actin (Konkel et al., 1992a;
Rivera-Amill et al., 2001; Krause-Gruszczynska et al., 2007a), the
Golgi protein GM130 (Watson and Galan, 2008) and the small Rho
GTPases Rac1 and Cdc42 (Krause-Gruszczynska et al., 2007a; Eucker
and Konkel, 2012).

In addition, Louwen et al. (2008, 2012) investigated whether
sialylation of C. jejuni LOS structures, generating human nerve ganglio-
side mimetics, is important for intestinal epithelial invasion. They
showed that C. jejuni isolates expressing ganglioside-like LOS bound to
and invaded Caco-2 cells in larger numbers than ΔcstII mutants or
natural isolates lacking such structures as determined by GPA and
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quantitative IFM. Various TEM and SEM studies were then applied to
visualise tightly bound C. jejuni to various host cell types or intracellular
bacteria (Oelschlaeger et al., 1993; Hu et al., 2008; Watson and Galan,
2008; Eucker and Konkel, 2012). Investigation of infected INT-407 and
other cells indicated that C. jejuni can induce membrane ruffling in a
contact-dependent fashion (Krause-Gruszczynska et al., 2007a; Eucker
and Konkel, 2012) and is associatedwith a specific host cell penetration
mechanism, first entering with its flagellar tip followed by the opposite
flagellar end (Krause-Gruszczynska et al., 2007a, 2011; Boehm et al.,
2011).

4.2. Combination with inhibitor studies

To study themode of C. jejuni host cell internalisation, commonly one
(or two) of the above quantification and visualisation methods can be
combined with certain functional assays. For example, GPA combined
with pharmacological inhibitor studies indicated that mitogen-activated
protein (MAP) kinases, protein kinase C (PKC) and phosphatidylinositol
3-kinase (PI3-kinase) are involved in signalling cascades permitting
C. jejuni host cell entry (Wooldridge et al., 1996; Biswas et al., 2000; Hu
et al., 2006). GPA in the presence of the lipid raft-disrupting substances
methyl-beta cyclodextrin or filipin-III as well as specific protein toxins
also reduced the numbers of intracellular CFU, suggesting that host
caveolae structures and heterotrimeric G proteins may play a role in
epithelial cell invasion by C. jejuni (Wooldridge et al., 1996; Hu et al.,
2006; Watson and Galan, 2008). Further inhibitor-based studies have
indicated that Ca2+ release from intracellular stores (Hu et al., 2005),
the activities of MAP kinase members ERK1/2 and p38 (Hu et al., 2006)
as well as the activities of the tyrosine kinases EGF receptor, PDGF recep-
tor, Src and focal adhesion kinase, FAK (Krause-Gruszczynska et al., 2011;
Eucker and Konkel, 2012) are crucial for the recovery of internalised
bacteria by GPA. In addition, host cell microfilaments (MFs, composed of
actin subunits) and microtubules (MTs, composed of tubulin subunits)
are known to play an important role in the invasion of certain bacterial
and viral pathogens. To study their importance for C. jejuni invasion,
GPAwas done in the presence of inhibitors against MFs (e.g. cytochalasin
B and latrunculin A) or MTs (e.g. nocodazole and colchicine), but the
results of various groups provide a rather confusing picture. In numerous
reports, C. jejuni uptake has been described to require MTs (Oelschlaeger
et al., 1993;Hu andKopecko, 2008),MFs (deMelo et al., 1989; Konkel and
Joens, 1989), both MTs and MFs (Biswas et al., 2003; Monteville et al.,
2003; Oelschlaeger et al., 1993), or neither MTs or MFs (Russell and
Blake, 1994). The reason for these discrepancies is unknown. In addition,
it should be noted that it is not yet clear whether the above signalling
components are directly involved in the bacterial entry step or other
events linked to intracellular survival of C. jejuni. Thus, inhibitor studies
have clearly validity limitations. They can only serve as accompanying
experiments and must be corroborated by other studies.

4.3. Use of activation-specific phospho antibodies to study invasion-related
signal transduction

In agreement with some of the inhibitor studies described above,
recent data using activation-specific phospho antibodies and Western
blotting showed that infection with wild-type C. jejuni stimulated the
phosphorylation of ERK1/2 and p38 MAP kinases during the first two
hours (Hu et al., 2006; Watson and Galán, 2005). In addition, the
autophosphorylation of EGF receptor at tyrosine residues Y-845 and
Y-1068 (Krause-Gruszczynska et al., 2011; Eucker and Konkel, 2012),
PDGF receptor at Y-754 and FAK at Y-397 (Krause-Gruszczynska et al.,
2011) is also triggered by wild-type C. jejuni infection in a
time-dependent fashion, and correlating with the time points of
bacterial uptake. Moreover, FAK was shown to be phosphorylated at
another tyrosine residue, Y-925, which has a proposed role in FAK
downstream signalling to ERK1/2 and GTPases (Boehm et al., 2011).
Parallel experiments using an isogenic ΔcadF deletion mutant in a
time course showed that phosphorylation of FAK, EGF receptor and
PDGF receptor was widely impaired (Krause-Gruszczynska et al.,
2011; Boehm et al., 2011). Another signalling molecule, paxillin, also
exhibited increased levels of tyrosine phosphorylation upon C. jejuni
infection, which was not seen during infection with mutants of CadF
(Monteville et al., 2003). These data support the view that the
CadF → fibronectin interaction is upstream of various tyrosine kinases
and other signalling molecules involved in C. jejuni-triggered host cell
invasion.

4.4. Application of GTPase activation assays

The GTPases Rac1, Cdc42 and RhoA are the best-characterised
members of the small Rho family of GTP-binding proteins. They act as
guanine nucleotide regulated switches, transmitting extracellular
signals to regulate normal intracellular functions as well as invasion of
various microbial pathogens (Boquet and Lemichez, 2003; Tegtmeyer
et al., 2011). With the help of specific inhibitors (e.g. compactin) and
GTPase-regulating toxins (e.g. CNFs, Toxin B) it was further shown by
IFM, GPA and other methods that Rac1 and Cdc42 (but not RhoA) play
a role in the cellular entry process of C. jejuni (Krause-Gruszczynska
et al., 2007a). The uptake of C. jejuni into INT-407 cells is accompanied
by a time-dependent accumulation of both increased Rac1-GTP and
Cdc42-GTP levels as determined by classical CRIB-domain pulldown
and G-LISA approaches (Krause-Gruszczynska et al., 2007a, 2011;
Eucker and Konkel, 2012; Boehmet al., 2011). The induction ofmaximal
GTPase activities by C. jejuni appears to require the fibronectin-binding
proteins CadF and FlpA, the flagellum and the Campylobacter invasion
antigen CiaC as well as the activities of FAK, Src, EGF receptor, PDGF
receptor and PI3-kinase, as confirmed by inhibitor experiments
(Krause-Gruszczynska et al., 2007a, 2011; Eucker and Konkel, 2012).
IFM studies with wild-type and mutant C. jejuni also indicated that
CiaC is required for re-localising Rac1 to the site of bacterial attachment
(Eucker and Konkel, 2012).

4.5. Reporter assay to monitor injection of Cia proteins into host cells

Onepressing question in the C. jejunifield iswhether Cia and probably
other pathogenicity-associated proteins can be delivered from the bacte-
rium into the host cell cytoplasm in order to function as invasion-
triggering molecules. To address this question, Neal-McKinney and
Konkel (2012) utilised a reporter assay approach based on the adenylate
cyclase domain of the Bordetella pertussis CyaA toxin expressed as a fusion
construct with Cia proteins. The adenylate cyclase enzyme is inactive in
the bacterium and activated in the presence of the eukaryotic factor
calmodulin. Delivered adenylate cyclase then catalyses the production
of cAMP from isotope-labelled ATP given to infected cells, which can be
easily monitored in the assays. Expression of a CiaC-adenylate cyclase
fusion protein exhibited significantly increased cAMP levels during
infection with wild-type C. jejuni as compared to mutants of FlgE, FlgK
and FlgL flagellar hook proteins (Neal-McKinney and Konkel, 2012).
Similar results were obtained for another Cia protein, CiaI, suggesting
that the flagellum is necessary for the delivery process (Neal-McKinney
and Konkel, 2012). However, more functional studies are necessary to
investigate this fascinating hypothesis in greater detail.

4.6. siRNA knockdown and useful mouse knockout cell lines

To investigate if a given host factor plays a role in C. jejuni inva-
sion, the small interfering RNA (siRNA) approach can be employed
to downregulate the expression of any gene of interest. This meth-
od was exemplarily used to confirm the importance of Cdc42
(Krause-Gruszczynska et al., 2011) and Rac1 (Boehm et al., 2011)
for C. jejuni host cell entry. In addition, the siRNA method was
applied to identify guanine exchange factors (GEFs), signalling
compounds that can interact with GTPases and promote the active,
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GTP-bound state by facilitating the exchange of GDP for GTP. In this
way, two host cell GEFs (Tiam-1 and DOCK180) were downregulated
and shown to mediate Rac1 activation downstream of FAK (Boehm
et al., 2011; Eucker and Konkel, 2012). In addition, another GEF, Vav2,
appears to act downstream of FAK, EGF receptor, PDGF receptor and
PI3-kinase and stimulates the generation of elevated Cdc42-GTP levels
(Krause-Gruszczynska et al., 2011). These studies were complemented
with experiments using available fibroblast cell lines from knockout
mice. Such knockout cell lines have the great advantage over siRNA
studies that the respective gene of interest is completely deleted in
the genome, and thus not even small traces of protein can be expressed.
In fact, SEM and GPA studies showed that C. jejuni is severely impaired
in its capability to enter cell lines derived from fibronectin−/−,
integrin-β1−/−, focal adhesion kinase (FAK)−/−, Vav1/2−/−and Src
−/−/Yes−/−/Fyn−/− (SYF) triple knockout mice, but can efficiently in-
vade the corresponding wild-type control cells (Krause-Gruszczynska
et al., 2011; Boehm et al., 2011). Finally, infection of integrin-β1−/−

knockout cells stably expressing the integrin-β1 point mutant TT788/
89AA exhibiting proper FAK signaling but defects in extracellular fibro-
nectin fibril formation, and integrin-β1-Y783/795F cells, which have a
pronounced defect in FAK autophosphorylation at Y-397, revealed
large defects in C. jejuni invasion (Krause-Gruszczynska et al., 2011). In-
terestingly, the activation of Rac1 and Cdc42 by C. jejuni associatedwith
the induction of membrane ruffling and filopodia formation was also
significantly abrogated in infected fibronectin−/−, integrin-β1−/−,
FAK−/− and SYF−/− knockout cells, although the bacteria expressed in-
tact flagella and adhered to cells (Krause-Gruszczynska et al., 2011;
Boehm et al., 2011). Collectively, these results strongly support the
view that C. jejuni infection induces fibronectin-/integrin-dependent
signal transduction to stimulate their own uptake by host target cells
using signalling to activate the Rho GTPase members Rac1 and Cdc42.
4.7. Application of dominant-negative and constitutive active expression
constructs

A common method in cell biology is the expression of dominant-
negative (DN) and constitutive-active (CA) constructs in order to investi-
gate the importance of a given factor of interest. A dominant-negative
mutation adversely affects the normal, wild-type gene product within
the same cell. This commonly occurs if the protein can still interact
with the same elements as thewild-type protein, but inhibits its function.
In contrast, a constitutively active protein is a mutated gene product
whose activity is constant and active. Canonical point mutations that
affect the GTPase cycle are well-described and lead to the generation of
CA or DNRhoGTPase constructs (Heasman and Ridley, 2008). To confirm
that Rac1 and Cdc42 activity was required for C. jejuni invasion, INT-407
cells were transfected with the DN alleles of Rac1 (Rac1-T17N) or
Cdc42 (Cdc42-T17N). Transfection of INT-407 cells with both DN-Rac-1
andDN-Cdc42 resulted in a significantly reduced bacterial internalisation
as determined by GPA and IFM; while expression of either DN-Rac1 or
DN-Cdc42 alone was less effective (Krause-Gruszczynska et al., 2007a).
When CA GTPase constructs were expressed the most pronounced effect
was observed with CA-Rac1 (Rac-1-Q61L) whose expression stimulated
C. jejuni invasion ~4.7-fold as compared to the empty vector control,
while moderate effects (~1.7-fold increase) were seen with CA-Cdc42
(Cdc42-Q61L) (Krause-Gruszczynska et al., 2007a). Thus, activation of
Rac1 and Cdc42 are involved in C. jejuni invasion. In addition, over-
expression of DN constructs of caveolin-1 but not GTPase dynamin-II
substantially inhibited C. jejuni uptake, suggesting that caveolin-1 in the
classical caveolae structures of cell surfacesmay also play a role in the up-
take process (Watson and Galan, 2008). Finally, expression of DN forms
PDGF and EGF receptors significantly reduced the amount of recovered
intracellular C. jejuni byGPA, confirming the involvement of both recep-
tor tyrosine kinases in the uptake of C. jejuni (Krause-Gruszczynska et
al., 2011).
4.8. Application of other transient expression constructs

To further investigate the potential involvement of lipid rafts or
caveolae in C. jejuni invasion, Watson and Galan (2008) examined the
acquisition of caveolin-1 and flotillin-1, two markers associated with
these membrane domains, to invading bacteria. Expression of the GFP
(green fluorescence protein)-tagged proteins and LCI have shown that
C. jejuni acquired caveolin-1-GFP and flotillin-1-GFP immediately after
uptake (Watson and Galan, 2008). Quantification of this association
determined that at early timepoints during infection, 60% of the C. jejuni
containing vacuoles (CCVs) co-localised with both caveolin-1-GFP and
flotillin-1-GFP. The association, however, was transient since at later
points after infection, only ~10% of the CCVs were seen in association
with these markers. In addition, the signalling of FAK and Vav2 was
further investigated using transient transfection of point mutant
constructs exhibiting specific signalling defects. First, FAK−/− knockout
cells re-expressing wild-type FAK restored the capability of C. jejuni to
invade these cells as determined by GPA, while expression of FAK
mutants that were either not capable of autophosphorylation
(FAKY397F), impaired kinase activity (FAK K454R), mutated in a bind-
ing site for the adapter protein Grb2 (FAKY925F), or mutated in several
proline residues of two PxxP-motifs (FAKΔPR1/2) necessary for associa-
tion with SH3-domain containing factors such as Graf and p130CAS, sig-
nificantly reduced the invasion rates of C. jejuni by about 35–50%
(Boehm et al., 2011). This indicates an important role of FAK signalling
downstream of fibronectin and integrins in facilitating efficient uptake
of C. jejuni. Second, INT-407 cells were transiently transfected with
wild-type Vav2 and different Vav2 mutants that were either impaired in
EGF receptor-dependent phosphorylation of Vav2 (Vav2 Y172/159F),
lacking the primary phosphatidylinositol-3,4,5-triphosphate binding site
(Vav2 R425C) or were unable in binding to activated EGF receptor
(Vav2 W673R and Vav2 G693R) (Tamás et al., 2003). GPA revealed that
overexpression of either Vav2 mutant construct significantly reduced
the number of intracellular C. jejuni, further confirming the importance
of Vav2 in bacterial uptake (Krause-Gruszczynska et al., 2011). These
findings also support the view that Vav2, by binding to and signaling
through C. jejuni-induced EGF/PDGF receptors and PI3-kinase activation
pathways, may contribute Cdc42 activation during infection (Krause-
Gruszczynska et al., 2011).

5. C. jejuni transmigration across polarised epithelial cells

Cell polarity of the epithelium is an important functional and protec-
tive feature in the gut system in vivo. While most of the above studies
were done with non-polarised cells, polarised intestinal epithelial cells
exhibit apical and basolateral surfaces that are separated by tight and
adherens junctions (Fig. 1). They form microvilli structures with a
well-defined brush border and express several definedmarker proteins.
Various important gut pathogens such as Salmonella, Shigella and
Listeria, however, developed strategies to cross this epithelial barrier,
gain access to submucosal tissues, trigger tissue damage and cause
disease in humans. Generally, there are two different mechanisms,
described as the paracellular and the transcellular transmigration
routes (Kazmierczak et al., 2001; Tegtmeyer et al., 2011). Pathogens
utilising the paracellular mechanism cross the epithelial barrier by
passage between neighbouring epithelial cells and overcome the tight
and adherens junction complexes. In contrast, pathogens specialised
on the transcellular mechanism invade host cells at the apical mem-
brane followed by intracellular trafficking and exit these cells at the
basolateral membrane (Balkovetz and Katz, 2003).

5.1. Transwell assays and electron microscopy

Polarised cell models are particularly valuable for the study of micro-
bial effects on cell barrier permeability, transepithelial electrical resistance
(TER), mode of transmigration and cell invasion. To investigate whether
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C. jejuni can cross the epithelial cell barrier reflective of a virulencemech-
anism, the transwell filter system has been applied (Table 3). For this
purpose, various cell lines were seeded and differentiated for a few
weeks in transwells. TER valueswere followed over time to ensure proper
cell monolayers and junction formation, which have been confirmed by
SEM illustrating the presence of normal microvilli and well-defined
brushborders (Konkel et al., 1992c;Hu et al., 2008) aswell as IFM staining
for E-cadherin (adherens junction marker) and JAM (junction adhesion
molecule, tight junction marker) as described (Boehm et al., 2012). SEM
and TEM studies were used to compare the interaction of C. jejuni with
non-polarised INT-407 cells with polarised Caco-2 cells. The efficiency of
C. jejuni invasion of Caco-2 cells was two- to three fold less as compared
to INT407 cells (Hu et al., 2008). C. jejuni bound to most INT407 cells
and entered about two-thirds of the host cells over 2 h (two bacteria/
cell). In contrast, only 11–17%of differentiated Caco-2 cellswere observed
to bind and internalise either C. jejuni strains 81-176 or NCTC11168, and a
small percentage of infected Caco-2 cells contained 5–20 internalised
bacteria per cell after 2 h (Hu et al., 2008). Further SEM demonstrated
that C. jejuni were present intercellularly between two neighboring cells
as well as intracellularly in CCV compartments (Konkel et al., 1992c; Hu
et al., 2008). Itwas therefore suggested that C. jejuni can translocate across
polarised Caco-2 cell monolayers both by passing through and between
cells as summarised in Fig. 1.

5.2. Determination of CFU and functional studies

Migration of C. jejuni through polarised cells was confirmed by
determination of CFU in the lower chamber of transwells, GPA and
other functional assays. Chloramphenicol, an inhibitor of bacterial protein
synthesis, reduced the translocation rates of C. jejuni (Konkel et al.,
1992c). C. jejuni adherence, internalisation, and translocation were also
inhibited at lower temperatures as examined at 20 °C and 4 °C compared
to 37 °C (Konkel et al., 1992c). These data indicate that adherence, pene-
tration, and translocation of C. jejuni require active bacterial and host cell
processes. However, similar to the TEM studies described above some
researchers supported the paracellular route as major transmigration
pathway (Grant et al., 1993; Monteville and Konkel, 2002; Boehm et al.,
2012), while other groups favoured the transcellular mode (Brás and
Ketley, 1999; Kalischuk et al., 2009; Louwen et al., 2012) or proposed a
mix of both (Konkel et al., 1992c; Hu et al., 2008). Because bacterial
penetration through tight and adherens junctions might be expected to
cause a loss in TER, one major argument for the transcellular mode is
that TER values often did not change upon C. jejuni infection. In addition,
the application of lipid raft inhibitors to the apical surface reduced the
number of transmigrated CFU (Brás and Ketley, 1999; Kalischuk et al.,
2009). Interestingly, C. jejuni induced not only its own internalisation
and translocation but also that of commensal Escherichia coli, without
affecting TER (Kalischuk et al., 2009).

Major arguments for the paracellular route came from competition
experiments with soluble fibronectin and the observation that invasion-
defective ΔciaB or ΔcadF mutants transmigrated as effectively as wild-
type C. jejuni (Monteville and Konkel, 2002). In addition, ΔflaA/B and
motility mutants were unable to pass polarised Caco-2 or MKN-28 cells
suggesting that certain flagellum-mediated activities play a role (Grant
et al., 1993; Boehm et al., 2012).

Interestingly, two other types of mutants, LOS-deficient ΔcstII and
ΔhtrA serine protease which are highly motile, exhibited strong defi-
ciencies in C. jejuni transmigration across polarised cells (Boehm et al.,
2012; Louwen et al., 2012). This suggests that bacterial motility per se
is not required for transmigration, but cstII- and htrA-mediated cell
binding maybe involved. Another important observation is that HtrA
was found to be secreted into the C. jejuni cell culture supernatant
(Hoy et al., 2012; Boehm et al., 2012). Infection studies and in vitro
cleavage assays showed that HtrA cleaves-off the extracellular NTF
domain of E-cadherin on epithelial cells. Deletion of the htrA gene or
expression of a protease-deficient S197A point mutant in C. jejuni led
to severe defects in E-cadherin cleavage and bacterial transmigration
across polarised MKN-28 cell monolayers (Boehm et al., 2012). Thus,
cleavage of host junctional proteins like E-cadherin (andmaybe others)
by secreted HtrA may explain how C. jejuni can transmigrate para-
cellularly between neighboring cells. Interestingly, C. jejuni HtrA was
unable to cleave the fibronectin receptor although this has been seen
for its HtrA counterpart in H. pylori (Hoy et al., 2010; Boehm et al.,
2012). This observation is in agreement with earlier findings that fibro-
nectin is amajor host cell factor necessary for C. jejuni binding and inva-
sion of non-polarised cells. But can C. jejuni invade polarised cells from
basolateral surfaces? The observation that ΔcadFmutants can transmi-
grate through but not invade into polarised cells would support this
idea (Monteville and Konkel, 2002). Basolateral engulfment of C. jejuni
in non-polarised Chang cells has been also shown by TEM and called
subvasion, but studies on this phenotype indicated that the CadF, JlpA
or PEB1 adhesins were not required (van Alphen et al., 2008). Thus,
the processes of C. jejuni transmigration and basolateral invasion at
themolecular level are still not clear. In future, more direct microscopic
and genetic approaches are necessary to investigate in detail the in-
volved bacterial and host factors.

6. Intracellular survival of C. jejuni

While the entry process into eukaryotic cells by C. jejuni has been the
focus ofmany studies in thepast (ÓCróinín andBackert, 2012), only a few
recent reports have examined the survival of C. jejuni within eukaryotic
cells. Consequently, by comparison to other invasive enteropathogenic
bacteria, the intracellular fate of C. jejuni within eukaryotic cells is still
poorly understood. It has been generally suggested that C. jejuni is able
to persist within cultured epithelial cells in vitro for 1–3 days in a
membrane-surrounded compartment termed the CCV (Buelow et al.,
2011; Day et al., 2000; Gaynor et al., 2005; Naikare et al., 2006; Watson
and Galan, 2008; Bouwman et al., 2013). Methods that have been applied
to characterise the intracellular fate of C. jejuni are summarised in Table 4
and described below.

6.1. Intracellular survival assay (ISA)

Most studies investigating the intracellular survival capability of
C. jejuni have used a CFU-based intracellular survival assay (ISA) demon-
strating that C. jejuni is able to survive within various types of
non-phagocytic cells for 24 h (Gaynor et al., 2005; Watson and Galan,
2008) or even up to 72 h (Konkel et al., 1992b; Naikare et al., 2006).
The experimental settings of the ISA approach are similar to the GPA
assay described in Section 4.1. After an initial infection time, cultured
cells are treatedwith a high dose of gentamicin to kill extracellular bacte-
ria. The follow-up cell lysis performed for invasion assays to release the
intracellular bacteria is skipped; instead the cultured epithelial cells are
further cultivated in cell culture medium for various time periods to
investigate the survival capacity of C. jejuni. During this extended incuba-
tion time the experimental procedure varies significantly between studies
as gentamicin is either omitted (Konkel et al., 1992b; Naikare et al., 2006)
or added in concentrations of 10 μg/ml (Candon et al., 2007; Louwen
et al., 2012; Watson and Galan, 2008), 20 μg/ml (Novik et al., 2010) or
50 μg/ml (Konkel et al., 1992b; Van Deun et al., 2008; Bouwman et al.,
2013) to the cell culture medium. After this incubation and subsequent
washing steps, C. jejuni is finally released from the cells by treatment
with detergents or by physical sheering, and intracellular bacteria CFUs
are quantified by plating of serial dilutions. The survival is often presented
as absolute number of intracellular bacteria recovered over time (Buelow
et al., 2011; Candon et al., 2007; Gaynor et al., 2005; Watson and Galan,
2008). Alternatively, the survival rate is calculated either by dividing the
numbers of recovered bacteria in relation to the inoculum or by dividing
the number of bacteria recovered at the end of an infection experiment in
relation to the number of invaded bacteria recovered about four hours
after infection.
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Until now, only few C. jejuni mutants with intracellular persistence
defects have been identified using the ISA test (Table 4). Inactivation
of the stringent response regulator SpoT results, among other defects,
in a reduced intracellular survival capability (Gaynor et al., 2005).
Polyphosphate kinase 1 and 2 (Ppk 1& Ppk2)mediating polyphosphate
metabolism also support the viability of C. jejuni in the CCVs (Candon
et al., 2007; Gangaiah et al., 2010). Furthermore, CiaI, a newly identified
member of the Campylobacter invasion antigen family, is suggested to
be involved in efficient intracellular survival (Buelow et al., 2011). An
active superoxide dismutase SodB is not only required for efficient
adherence and invasion (Novik et al., 2010), but also for intracellular
persistence (Novik et al., 2010; Pesci et al., 1994). It is surprising in
this context that the catalase KatA, involved in the detoxification of
reactive oxygen species, is apparently not required byC. jejuni to survive
within Hep-2 cells (Day et al., 2000). In addition, aspA (aspartate
ammonia-lyase) and frdA (fumarate reductase A) mutants, potentially
defective in fumarate respiration, also showed a reduced survival
capability (Liu et al., 2012). Only onemutation has so far been identified
that leads to slightly increased intracellular survival: Inactivation of
CprS, the sensor kinase of a two-component regulatory system involved
in Campylobacter planktonic growth regulation, improves intracellular
fitness (Svensson et al., 2009).

The ISA technique requires attentiveness to avoid misleading results
because extracellular growing bacteria that have survived the high dose
gentamicin treatment can bemistaken for intracellular bacteria recovered
from the CCVs. It was also suggested that intracellular C. jejuni, which are
protected from gentamicin treatment, are able to escape their host cells
and re-infect other cells (Van Deun et al., 2008). In addition, a so-called
subvasion mechanism, the basolateral invasion of epithelial cells accom-
panied by preceding migration into a subcellular, gentamicin-protected
space, of certain C. jejuni has been suggested (van Alphen et al., 2008;
Bouwman et al., 2013). Few extracellular bacteria that survive gentamicin
treatment can skew survival experiments as in vitro studies have demon-
strated that various cell culturemediawith orwithout serumsupplemen-
tation can promote the growth of certain C. jejuni isolates. In particular,
the high glutamine concentration (4 mM) present in certain cell culture
media provides a suitable growth substrate forC. jejuni isolates expressing
a secreted, active γ-glutamyltranspeptidase (Hofreuter et al., 2008).
So the continuous presence of low gentamicin concentrations up to
20 μg/ml for the extended incubation period during survival experiments
is highly recommended toprevent the ongoing proliferation of extracellu-
lar C. jejuni that have potentially survived the initial gentamicin treat-
ment. Higher gentamicin concentrations over a long time period are
problematic and can lead to the killing of intracellular bacteria in the
CCVs since gentamicin is not completely excluded from eukaryotic cells
(Elsinghorst, 1994).

Numerous survival studies using ISA have clearly demonstrated
that the number of intracellular, viable bacteria declines substantially
during the first 24 h. Recent reports showed that the significant
decrease in the number of intracellular surviving bacteria after 24 h
reflects a less efficient recovery with the standard cultivation
methods used rather than a reduced viability of intracellular C. jejuni.
This phenomenon is due to pronounced physiological adaptation of
C. jejuni to the specific environment present in the CCVs (Liu et al.,
2012; Watson and Galan, 2008). The metabolic alterations of C. jejuni
are most prominently reflected by a general metabolic down shift and
changes in the respiratory activity (Liu et al., 2012) that allows better
adaptation to oxygen-independent respiration. It was further shown
that the physiological adaptions of C. jejuni to the CCV negatively
affect its efficient recovery from this intracellular compartment
unless specific cultivation methods are used. Consequently, C. jejuni
isolated from eukaryotic cells 24 h after infection can be recovered
with higher CFUs when cultivated under very low oxygen/anerobic
conditions than under microaerobic or 10% CO2 cultivation conditions
(Liu et al., 2012;Watson andGalan, 2008). After 48 h, the transfer of the
recovered C. jejuni colonies to a microaerobic or 10% CO2 atmosphere is
required for maximal growth. This is in agreement with previous
observations demonstrating that the in vitro growth of C. jejuni is
restricted in anerobic atmosphere (Sellars et al., 2002). Moreover,
it was recently suggested that C. jejuni undergoes an intracellular
metabolic reprogramming that reduces its recovery on standard
Mueller–Hinton cultivation plates after survival or invasion experi-
ments (Pryjma et al., 2012). Addition of 20 mM sodium sulfite, a
suitable respiratory electron donor substrate for C. jejuni (Myers
and Kelly, 2005), enhanced the recovery of C. jejuni wild-type and
especially of its formate dehydrogenase mutants from infected host
cells (Pryjma et al., 2012).

Although the intracellular survival of C. jejuni in epithelial cells is
well documented, there are conflicting data about the survival capa-
bility of C. jejuni in phagocytic cells. Some studies have described
that C. jejuni can persist for several days in isolated BALB/c macro-
phages, in the murine J774G8 macrophage cell line (Kiehlbauch
et al., 1985), in human monocytes and in the human monocyte cell
line 28SC (Hickey et al., 2005) as well as in murine peritoneal macro-
phages (Day et al., 2000). In contrast, other reports have shown that
C. jejuni is efficiently killed by chicken peripheral macrophages
(Myszewski and Stern, 1991), macrophages derived from human pe-
ripheral monocytes (Wassenaar et al., 1997), and murine bone
marrow-derived macrophages (Watson and Galan, 2008). Experi-
mental variances like the use of different phagocytic immune cells,
different C. jejuni isolates, variable MOIs and infection times and the
usage or non-usage of gentamicin to prevent the extracellular
growth of C. jejuni as discussed previously (Wassenaar et al.,
1997) could be reasons for the conflicting observations. Furthermore,
the altered induction of immune cell differentiation and activation
could influence C. jejuni survival in these experiments. Further studies
are required to clarify the capability of C. jejuni to survive withinmacro-
phages of certain hosts and to identify bacterial factors that are involved
in this potential process.

As the ISA is based on the recovery of intracellular bacteria by
standard cultivation methods, potential survival defects of mutants
have to be characterised in more detail. Follow up experiments like
the live/dead straining procedure described below can provide addi-
tional information to exclude the possibility that the observed pheno-
type is a defect in culturability of investigated C. jejuni strains upon
release from the CCV rather than a loss of their intracellular viability.

6.2. Live/Dead Staining (LDS)

Several reports have investigated the in vitro viability of C. jejuni upon
various environmental stresses using DNA-specific dyes that allow the
discrimination of live from dead bacteria according to their membrane
integrity (Cameron et al., 2012; Ica et al., 2012; Asakura et al., 2007).
This live/dead staining (LDS) technique has been successfully applied as
an alternative to the ISA to investigate the survival of C. jejuni within the
human monocytic 28 SC cells (Hickey et al., 2005), the intestinal T84
epithelial cells (Novik et al., 2010; Watson and Galan, 2008) and the wa-
terborne protozoa Tetrahymena pyriformis and Acanthamoeba castellanii
(Snelling et al., 2005). The LDS method does not depend on bacterial
growth and overcomes therewith the problem of enumerating viable
but non-culturable C. jejuni that can be missed by ISA experiments.
Instead viable intracellular C. jejuni cells are identified by staining with a
cell viability kit and can be counted visually by IFM or enumerated by
flow cytometry.

LDS-based survival experiments are set up as described in Section
6.1 with the following modifications: At the end of the experiment
host cells are lysed and the released C. jejuni cells are not tested for
viability by direct plating and enumerating but separated from the
cell debris by a low speed spin. Subsequently, the bacteria in the
supernatant are stained with a mixture of two solutions: one dye is
membrane permeable and stains all cells (e.g. thiazole orange) whereas
the second dye is membrane impermeable (e.g. propidium iodide) and
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only enters dead bacterial cells with disrupted membranes. Using IFM
C. jejuni cells that remain viable inside the CCV can be seen as green,
whereas dead C. jejuni cells are stained red (Watson and Galan, 2008).
Direct counting by microscopic examination is possible but time con-
suming. In addition, remaining cell debris particles of lysed host cells
could interfere with the precise counting by fluorescence microscopy.
The use of flow cytometry can overcome these problems and makes it
possible to quantify the stained viable and dead C. jejuni cells of a
mixed population (Novik et al., 2010; Watson and Galan, 2008). The
FACS (fluorescence activated cell sorting) analysis method has to be
carefully adapted and optimised for each C. jejuni isolate, as this patho-
gen has rather small dimensions (Walker et al., 1986) in comparison to
other bacteria and different strains vary in their tendencies to self-
aggregate (Golden and Acheson, 2002; Misawa and Blaser, 2000).

6.3. Microscopic methods

TEM studies have revealed that C. jejuni remains tightly surrounded
by a host-derived membrane after invasion into epithelial cells in vitro
and in vivo (Babakhani et al., 1993; De Melo et al., 1989; Hu et al.,
2008; Konkel et al., 1992b; van Spreeuwel et al., 1985; Watson and
Galan, 2008). Recent infection studies with COS-1 cells suggest that
C. jejuni 81-176, once internalised, actively subverts the classical
endocytic pathway to establish its intracellular compartment: Shortly
after invasion, C. jejuni resides in an early-endosomal-like compartment
as demonstrated by IFMexperiments inwhich C. jejuni co-localiseswith
the antibody-stained endocytic marker EEA-1, with the transfected
GFP-fusion proteins of the GTPases Rab4 and Rab5 as well as with a
PX-domain-containing probe (Ellson et al., 2002) for phosphoinisitide
3 phosphate presence (Watson and Galan, 2008). Subsequently, the
CCV co-localises transiently with a transfected GFP-tagged late
endosomal marker protein Rab7. One hour after infection the CCV can
be efficiently stained by IFM using an antibody against the late
endosomal/lysosomal protein Lamp1. At this time point only very limit-
ed co-localisation with the previously detected EEA-1, Rab4, Rab5 and
Rab7 occurs (Watson and Galan, 2008). A similar maturation of the
CCV during the first 2 h after invasion was recently described upon
C. jejuni infection of Caco-2 cells (Louwen et al., 2012). Though marked
with Lamp1 the CCV does not acquire lysosomal properties supported
by the observation that cathepsin B is not detected by IFM staining in
significant amounts on the vesicle where C. jejuni resides (Watson
and Galan, 2008). It was shown recently that C. jejuni CiaI may contrib-
ute to the exclusion of cathepsin D from the CCV (Buelow et al., 2011).
About 5 h after invasion C. jejuni resides in a survival-permissive vacu-
olar compartment that is localised in the perinuclear region of the host
cells as demonstrated by TEM (Hu and Kopecko, 1999; Watson and
Galan, 2008) and can be immuno-stainedwith theGolgimarker protein
GM130 (Watson and Galan, 2008). The translocation of the CCV from
the cell periphery to the perinuclear space could be mediated by the
vesicle transport machinery involving microtubules and dynein motor
protein (Hu and Kopecko, 1999;Watson andGalan, 2008). Infection ex-
perimentswith polarised Caco-2 islands revealed thatC. jejuni resides in
CCVs that can be immuno-stained with antibodies against Lamp1 and
CD63 but not with GM130 (Bouwman et al., 2013). Further studies
have to clarify if the perinuclear localisation of the CCV varies with the
usage of non-polarised or polarised cultured epithelial cells.

C. jejuni resides in the non-spacious CCV during its entire intracel-
lular persistence. This vacuole usually contains a single C. jejuni bacte-
rium (Hu et al., 2008; Watson and Galan, 2008) suggesting that no
obvious intracellular replication of C. jejuni occurs in vitro. Only occa-
sionally multiple bacteria have been observed in one CCV but it is
unclear if this event is the consequence of intracellular C. jejuni replica-
tion or the fusion of several phagosomes containing individual C. jejuni
cells. The latter seems more feasible: While inside/outside IFM
showed up to 11 bacteria inside infected cultured epithelial
cells (Novik et al., 2009), that C. jejuni does not replicate
intracellularly is supported by experiments based on the previous
described survival assays (see Sections 6.1 and 6.2) where after 24 h
no more bacteria can be recovered from infected cells than after 4 h.

7. Conclusions and perspectives

C. jejuni is a predominant foodborne pathogen causing enterocoli-
tis in humans worldwide. This zoonotic bacterium represents part of
the commensal flora in many wild and domestic animals. Its impor-
tance for humans attracted many researchers worldwide to investi-
gate the molecular mechanisms of associated infections. However,
despite the high prevalence of C. jejuni induced disease and research
progress made in recent years, our knowledge is still relatively limit-
ed as compared to other invasive pathogens such as Salmonella,
Listeria, Shigella or Legionella. Efforts with rodent and chicken model
systems have been made to study C. jejuni infection in vivo. Currently,
disease manifestations such as gastroenteritis can be achieved in
gnotobiotic, immunodeficient and CH3 mice with a defined gut
flora, but each model system has limitations (Bereswill et al., 2011;
Haag et al., 2012). Nomodel alone seems ideal to investigate pathoge-
nicity and virulence mechanisms of C. jejuni. In vivo and in vitro
research studies performed in the last two decades revealed that
C. jejuni exhibits remarkable features during infection. Several key
processes such as glycosylation, molecular mimicry, tissue entry and
intracellular survival have been described. Many genes have been
discussed to be involved in the above processes including the capsule,
flagellum, LOS, CadF, HtrA, respiratory factors and others. Future studies
should combine in vivo and in vitro studies and should take advantage of
powerfulmodern technologies including high-resolution IFM and LCI as
well as proteomics-based and cellular signal transduction approaches. It
will be particularly important to investigate in future, the detailed
mechanisms by which C. jejuni enters polarised epithelial cells from
apical and/or basolateral surfaces aswell as how it survives and spreads
intracellularly.
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