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Nucleon electric dipole moments originating from strong CP-violation are being calculated by several 
groups using lattice QCD. We revisit the finite volume corrections to the CP-odd nucleon matrix elements 
of the electromagnetic current, which can be related to the electric dipole moments in the continuum, 
in the framework of chiral perturbation theory up to next-to-leading order taking into account the 
breaking of Lorentz symmetry. A chiral extrapolation of the recent lattice results of both the neutron 
and proton electric dipole moments is performed, which results in dn = (−2.7 ± 1.2) × 10−16eθ0 cm and 
dp = (2.1 ± 1.2) × 10−16eθ0 cm.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The electric dipole moment (EDM) measures the polarity of a 
system of charged particles. For a hadron or any other elementary 
particle at rest, it can be expressed as �d = dŜ , where Ŝ is the di-
rection of the spin of the particle, and the coefficient d refers to 
the EDM that will be discussed in this paper. The interaction of 
a dipole with an electric field �E is described by the Hamiltonian 
Hedm = −�d · �E . Such an interaction changes its sign under both 
parity transformation (P) or a combined transformation of parity 
and charge conjugation (C). Thus, the nucleon EDM is a CP-odd
quantity. In the Standard Model (SM), the Cabibbo–Kobayashi–
Maskawa (CKM) contribution to the neutron EDM is tiny, which 
was estimated to be 1.4 × 10−33 ≤ |dn| ≤ 1.6 × 10−31e cm [1]. 
Thus, the nucleon EDM serves as a sensitive probe of physics be-
yond the SM. So far, there has not been an experimental evidence 
for a non-zero nucleon EDM, and the current experimental up-
per bound for the neutron EDM is |dn| ≤ 2.9 × 10−26e cm [2], 
which is several orders of magnitude larger than the value from 
the CKM mechanism. For the proton EDM, the experimental up-
per bound as derived from the EDM of the 199Hg atom is |dp | <
7.9 × 10−25e cm [3].
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Within the SM, in addition to the CKM mechanism, there is an-
other source of CP violation, which is from the θ -term of quantum 
chromodynamics (QCD). Therefore, the experimental information 
on the nucleon EDMs allows us to constrain both physics beyond 
the SM (BSM) models and the value of the QCD vacuum angle θ0. 
For a recent review on the EDMs of nucleons, nuclei and atoms 
both within and beyond the SM, we refer to Ref. [4].

Besides the active and planned experimental activities (for a 
brief review, see Chapter 7.2 of Ref. [5], and a collection of various 
experiments can be found on the webpage [6]), the contribution of 
the θ -term to the nucleon EDMs is being calculated using lattice 
QCD [7–16]. All these lattice calculations were performed with up 
and down quark masses larger than their physical values, or equiv-
alently with a pion mass larger than its physical mass. One of the 
methods used in the lattice calculation is to calculate the CP-odd 
electric dipole form factor (EDFF) of the nucleon F3,N (q2) in the 
space-like region with finite −q2. The definition of the nucleon 
EDFF in the infinite volume is given by〈
N

(
p′, s′)∣∣ Jν

∣∣N(p, s)
〉

= F3,N(q2)

2mN
ū
(

p′, s′)σμνqμγ5u(p, s) + . . .

= i
F3,N(q2)

2mN

(
p + p′)ν ū

(
p′, s′)γ5u(p, s) + . . . , (1)

with Jν being the electromagnetic current, p and p′ = p + q the 
momenta of the nucleons and s(′) the polarizations. To obtain the 
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Fig. 1. One-loop contributions to the nucleon EDFFs at NLO. Nucleons and pions are represented by solid and dashed lines, respectively. ⊗, black dots and filled squares 
denote CP-violating, second order mesonic and first order meson–baryon vertices, respectively.
EDM, one extrapolates the results for finite momentum transfer to 
the point with q2 = 0,

dN = F3,N(0)

2mN
. (2)

In Eq. (1), the CP-conserving parts are not shown, and the ax-
ial Gordon identity was used in the second step. The latest re-
sults using the form factor method were reported in Ref. [16], 
where the calculation was performed on a lattice with a volume 
of (2.7 fm)3, a lattice spacing of a = 0.11 fm, and pion masses 
of 330 MeV and 420 MeV. The smallest momentum transfer is 
about −q2 = 0.2 GeV2. Various extrapolations or corrections are 
necessary in order to obtain the result in the physical world: chiral 
extrapolation to the physical pion mass, finite volume corrections, 
corrections due to the finite volume spacing, and extrapolation 
from finite to zero momentum transfer. Chiral perturbation the-
ory (CHPT) is the proper theoretical framework to calculate these 
corrections. A lot of work on the nucleon EDM in the framework 
of CHPT has been done, see, e.g., Refs. [17–32].

Finite volume corrections were considered before in Refs. [20,
29]. However, in both works Lorentz invariance was assumed to 
perform the tensor reduction of loop integrals. This is not legiti-
mate since the Lorentz symmetry is broken to the cubic symmetry 
on a lattice with periodic boundary conditions, which is a torus. In 
this paper, we will revisit this issue taking into account the break-
ing of Lorentz symmetry. In fact, in this case, one cannot define the 
EDM as in the infinite volume. Instead, we will calculate the finite 
volume corrections to the CP-violating nucleon matrix elements of 
the electromagnetic current. The calculations will be presented in 
Section 2. The chiral extrapolation of the neutron and proton EDMs 
will be discussed in Section 3, and Section 4 contains a brief sum-
mary.

2. Finite volume corrections on a torus

The decomposition of the nucleon matrix element of the elec-
tromagnetic current in terms of form factors given in Eq. (1) is 
based on the Lorentz invariance and gauge symmetry. However, for 
a torus, the Lorentz invariance is reduced to the cubic symmetry, 
and the decomposition is not valid any more. In this section, we 
will evaluate the finite volume corrections to the CP-violating part 
of the nucleon matrix elements induced by the QCD θ -term. For 
discussions on the finite volume corrections to the CP-conserving 
nucleon matrix elements, see, e.g. Refs. [33–35].

Finite volume corrections are a long-distance effect, and are 
dominated by the degrees of freedom with the longest range. For 
our case, these corrections are dominated by pion–nucleon loops. 
The kaon–hyperon loops are suppressed relative to the pion–
nucleon loops by a factor of e−(MK −Mπ )L , and thus will not be 
considered here. Up to the next-to-leading order (NLO), the one-
loop diagrams contributing to the nucleon EDFFs are shown in 
Fig. 1. Other one-loop diagrams contribute from the next-to-next-
to-leading order in the chiral expansion [24,25]. For the neutron, 
we need to consider the {π−, p} loop, and for the proton, the loops 
of interest are {π0, p} and {π+, n}. The necessary Lagrangians for 
calculating these diagrams can be found in Refs. [19,24,25,29]. 
A detailed analysis at the one-loop level in the infinite volume can 
be found in these references either, and we will focus on the finite 
volume corrections here.

We define the finite volume correction to a quantity Q as

δL[Q] = Q(L) −Q(∞), (3)

where Q(L) and Q(∞) denote the quantity in the finite and infi-
nite volumes, respectively. In the infinite volume, the contribution 
from the pion loops to the CP-violating nucleon matrix element up 
to NLO is given by

εμ

〈
N

(
p′, s′)∣∣ Jμ

∣∣N(p, s)
〉

= i
8eV (2)

0 θ̄0

F 4
π

εμū
(

p′, s′)
× [

Cab
(
Gμ

1 (q) + Gμ
2 (q)

) + CcdGμ
3 (q)

]
γ5u(p, s), (4)

where e is the electric charge of the proton, V (2)
0 is a low-energy 

constant (LEC) of U(3) chiral perturbation theory [36], εμ is the 
polarization vector of the photon, θ̄0 is related to the measurable 
vacuum angle θ0 via [24]

θ̄0 =
[

1 + 4V (2)
0

F 2
π

4M2
K − M2

π

M2
π (2M2

K − M2
π )

]−1

θ0, (5)

and the loop functions Gμ
1 (q), Gμ

2 (q) and Gμ
3 (q) are given by

Gμ
1 (q) = i

∫
d4k

(2π)4

2kμ + qμ

(k2 − M2
π )[(k + q)2 − M2

π ] ,

Gμ
2 (q) = 2m2

N i

∫
d4k

(2π)4

× 2kμ + qμ

(k2 − M2
π )[(k + q)2 − M2

π ][(p − k)2 − m2
N ] ,

Gμ
3 (q) = −4m2

N i

∫
d4k

(2π)4

× kμ

(k2 − M2
π )[(p − k)2 − m2

N ][(p′ − k)2 − m2
N ] . (6)

For the neutron matrix element, the coefficients Cab and Ccd are 
2(D + F )(bD + bF ) and −2(D + F )(bD + bF ), respectively, where 
D and F are LECs in the leading order Lagrangian of baryon CHPT 
(the axial coupling constants), and bD and bF are LECs in the NLO 
Lagrangian related to the baryon mass splittings. For the proton, 
Cab = −2(D + F )(bD + bF ) originates from the {π+, n} loop and 
Ccd = −(D + F )(bD +bF ) is generated from the {π0, p} loop. In the 
following, we will work in the Lorentz gauge with εμqμ = 0. Ex-
pressing Eq. (4) in terms of two-point and three-point scalar loop 
functions in the infinite volume, we get [29]

Cab
(
Gμ

1 (q) + Gμ
2 (q)

) + CcdGμ
3 (q)

= (
p + p′)μ{

Cab

[
− J MM

(
q2) +

(
M2

π − q2

2

)
J MMm

(
q2,m2

N

)]

+ (Cab + Ccd) J Mm
(
m2

N

)}
. (7)
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The definitions and the analytic expressions using infrared regu-
larization of the loop functions J MM(q2), J Mm(m2

N ) and J MMm(q2,

m2
N) can be found in Appendix B of Ref. [29].

Next let us consider the finite volume corrections, which are 
due to the quantization of the momentum on a torus. Assum-
ing the temporal direction to be infinite, we can integrate out the 
temporal component of the loop momentum by means of contour 
integration. The integration over three-momentum will become a 
sum, and the finite volume correction to a loop integral is

δL
[
Gi(q)

] =
[

1

L3

∑
�k

−
∫

d3�k
(2π)3

]
Ii(k,q), (8)

where Ii(k, q) denotes the integrand of the loop function Gi(q). 
The finite volume corrections to the loops in Eq. (6) can be worked 
out as

δL
[
Gμ

1 (q)
] = −1

2

1∫
0

dx
∂

∂q1i
I1/2(
1, �q1),

δL
[
Gμ

2 (q)
]

= 3

2
m2

N

1∫
0

dx

1∫
0

dy y

[
1

3

∂

∂q2i
I3/2(
2, �q2) + ȳpμI5/2(
2, �q2)

]
,

δL
[
Gμ

3 (q)
]

= 3

2
m2

N

1∫
0

dx

1∫
0

dy y

[
1

3

∂

∂q3i
I3/2(
3, �q3) + yp′ μI5/2(
3, �q3)

]
,

(9)

where

�q1 = x�q, 
1 = M2
π − xx̄q2,

�q2 = xy�q − ȳ�p, 
2 = ȳ2m2
N + yM2

π − xx̄y2q2,

�q3 = xy�q − y�p′, 
3 = y2m2
N + ȳM2

π − xx̄y2q2, (10)

with x̄ = 1 − x and ȳ = 1 − y, see Appendix A for definitions and 
details. Therefore, the finite volume correction to the CP-violating 
matrix element of the electromagnetic current for the neutron is 
given by

i
16eV (2)

0 θ̄0

F 4
π

C
(
δL

[
Gμ

1 (q)
] + δL

[
Gμ

2 (q)
] + δL

[
Gμ

3 (q)
])

× ū
(

p′, s′)γ5u(p, s), (11)

with C = (D + F )(bD + bF ). The correction to the proton matrix 
element is

i
16eV (2)

0 θ̄0

F 4
π

C

(
−δL

[
Gμ

1 (q)
] − δL

[
Gμ

2 (q)
] + 1

2
δL

[
Gμ

3 (q)
])

× ū
(

p′, s′)γ5u(p, s). (12)

From Eqs. (11) and (12), it is clear that the matrix elements on a 
torus cannot be written in the form of Eq. (1) as a consequence of 
the lack of Lorentz symmetry.

In order to investigate how large the finite volume correction 
is, we calculate the ratio of the correction over the infinite volume 
result of the matrix element which can be defined as, see Eq. (1),

F̃ μ
3 (p,q) = F3(q2) (

p + p′)μ. (13)

2mN
The infinite volume expressions for both the neutron and proton 
EDFFs were calculated in Refs. [24,25,29], and they are given in 
Appendix B for completeness. The ratios for the neutron and pro-
ton are given by

Rμ
n = 16eV (2)

0 θ̄0

F 4
π F̃ μ

3,n

(
δL

[
Gμ

1 (q)
] + δL

[
Gμ

2 (q)
] + δL

[
Gμ

3 (q)
])

, (14)

and

Rμ
p = 16eV (2)

0 θ̄0

F 4
π F̃ μ

3,p

(
2δL

[
Gμ

1 (q)
] + 2δL

[
Gμ

2 (q)
] − δL

[
Gμ

3 (q)
])

,

(15)

respectively.
For numerical values, we take Fπ = 92.2 MeV [37], V (2)

0 �
−5 × 10−4 GeV4 [38], D = 0.804 and F = 0.463 [39]. From a 
leading order fitting to the octet baryon mass differences, we get 
bD = 0.068 GeV−1 and bF = −0.209 GeV−1. The pion mass depen-
dence of the pion decay constant, the nucleon mass and the mass 
of the eta meson will be neglected since they contribute from the 
next-to-next-to-leading order. As mentioned before, because the 
Lorentz symmetry is broken, the finite volume corrections do not 
only depend on q2. Different qμ with the same q2 can result in 
different corrections, as pointed out in, e.g. Ref. [33]. In lattice cal-
culations of form factors, in order to reduce the statistical noise, 
often the momentum of the sink is set to zero and the momenta of 
the source and the current take small values. The cubic symmetry 
of a torus ensures the equivalence of the three spatial directions. 
Thus, we take �p = {−2π/L, 0, 0} and �q = {2π/L, 0, 0} to show the 
numerical results of the ratios defined above. In this case, as can be 
seen from the expressions, only the temporal and the first spatial 
components of the matrix elements, both in infinite and finite vol-
umes, are nonvanishing. The ratios for both the neutron and proton 
are shown in Fig. 2. The solid curves are the results with a physical 
pion mass, and the dashed ones are for Mπ = 330 MeV, which is 
the smallest pion mass used in the recent lattice calculation [16]. 
Notice that in the plots, we have neglected the contribution from 
the counterterms wa and wb and the regularization scale in the in-
finite volume matrix elements is taken as μ = 1 GeV. That means 
that we compare the loop contribution in the finite to the one in 
the infinite volume at a given natural scale (as indicated by the 
subscript ‘loop’ in the figure). This is done for better displaying 
of the corrections as the tree contributions to the nucleon EDM 
contain some sizeable uncertainties as discussed in the next sec-
tion. One sees that the correction to the spatial matrix element is 
larger than that to the temporal one. In the case of a 330 MeV 
pion mass, the finite volume corrections for L ≥ 2.5 fm are always 
smaller than 3% of the loop contributions for both the neutron and 
the proton. In the case of the physical mass, in order to have a cor-
rection less than 10% (5%) for the neutron, L needs to be larger 
than 4.4 (5.4) fm. The values for the proton are similar.

3. Chiral extrapolation of the neutron and proton EDMs

As stressed in Ref. [29], the baryon octet EDMs depend on 
two LECs at NLO, which are called wa and wb . So far the only 
knowledge of the values of the LECs wa(μ) and wb(μ) is from a 
determination [29] using the lattice data for the neutron and pro-
ton EDMs at a large pion mass of 530 MeV [40]. Here we will 
use the updated lattice results at smaller pion masses of 330 and 
420 MeV [16] for a new determination. As shown in the last sec-
tion, the finite volume corrections to the relevant nucleon matrix 
elements at Mπ = 330 MeV are smaller than 3%, which is much 
smaller than the error bars of the lattice data. Those at the larger 
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Fig. 2. Ratios of the finite volume corrections to the loop contributions to the CP-violating nucleon matrix elements of the electromagnetic current. The three-momenta are 
�p = {−2π/L, 0, 0} and �q = {2π/L, 0, 0}. (a) and (b) are for the temporal and first spatial components for the neutron, respectively, while (c) and (d) are for the proton.

Fig. 3. Fit to the lattice results of the neutron and proton EDMs at Mπ = 330 MeV and 420 MeV [16] (filled triangles with error bars) with the two counterterms wa(μ)

and wb(μ). The filled circle and square with uncertainties at Mπ = 530 MeV are the lattice results reported in Refs. [10] and [40], respectively.
pion mass of 420 MeV are even smaller. Therefore, we can neglect 
the finite volume effect, and fit to the lattice data at both pion 
masses using the expressions in Eqs. (24) and (25) with q2 = 0
given in Appendix B. Fig. 3 presents the best fit with the bands re-
flecting the uncertainties propagated from those of the lattice data. 
The scale is taken to be μ = 1 GeV. We obtain

wa(1 GeV) = (−0.02 ± 0.04) GeV−1,

wb(1 GeV) = (−0.32 ± 0.05) GeV−1. (16)

Using these values, the neutron and proton EDMs at the physical 
pion mass are predicted to be (in units of 10−16eθ0 cm)

dn = −2.7 ± 0.8 ± 0.8, dp = 2.1 ± 0.6 ± 1.0, (17)

where the first uncertainties are from the counterterms wa
and wb , and the second are from varying μ between the mass 
of the rho meson and the mass of the Ξ . Physical observables 
do not depend on the choice of the regularization scale, and the 
scale dependence of the loops is canceled by that of the countert-
erms. However, when we choose to use the values of the LECs at 
a given scale, we may vary the scale in the loops within a cer-
tain range. Such a variation is a higher order effect, and we thus 
use it to estimate the uncertainties due to neglecting higher order 
contributions. If we only consider the loops, then we obtain [29]

dloop
n = −3.1 ± 0.8, dloop

p = 5.6 ± 1.0 (18)

in units of 10−16eθ0 cm. Comparing with the values in Eq. (17), 
one sees that the neutron EDM is dominated by the loops while 
the counterterms and the loop contribution to the proton EDM are 
of similar size at μ = 1 GeV.

4. Summary

In this paper, we have calculated the finite volume corrections 
to the CP-violating nucleon matrix elements of the electromag-
netic current on a torus taking into account the breaking of the 
Lorentz symmetry. The matrix elements do not depend only on q2, 
which is the case in the continuum, and the corrections for differ-
ent space–time directions differ from each another. We used two 
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pion masses to investigate the size of the corrections explicitly. For 
the pion mass of 330 MeV, which is the lowest pion mass em-
ployed in the lattice calculation reported in [16], we found that 
the finite volume corrections are negligible for L ≥ 2.5 fm in com-
parison with the other uncertainties of the lattice results. When 
the pion takes its physical mass, the corrections can be significant. 
In order to have a correction smaller than 10%, one needs a lat-
tice size � 4 fm for the neutron and � 6 fm for the proton (this 
estimate is based on infinite volume results including both loops 
and counterterms, and the central values of the counterterms wa

and wb given in Eq. (16) are used here). We also performed a 
chiral extrapolation of the neutron and proton EDMs of the lat-
tice results [16], and obtain dn = (−2.7 ± 1.2) × 10−16eθ0 cm and 
dp = (2.1 ±1.2) ×10−16eθ0 cm. In the future, it might also be inter-
esting to consider finite volume corrections with twisted boundary 
conditions, which would be helpful to reduce the systematic uncer-
tainties of lattice calculations due to the momentum extrapolation.
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Appendix A. Formulae for finite volume corrections

All the finite volume corrections can be written in terms of cor-
rections to loop integrals. The basic function is given by [34,41]
(here, m denotes a quantity with dimension mass)

Iβ

(
m2, �A) ≡

(
1

L3

∑
�k

−
∫

d3�k
(2π)3

)
1

[(�k + �A)2 + m2]β

= 1

(4π)3/2Γ (β)

∞∫
0

dτ τβ− 5
2 e−τm2

×
[

3∏
i=1

ϑ3

(
Ai L

2
, e− L2

4τ

)
− 1

]
, (19)

where

ϑ3(z,q) ≡
∞∑

n=−∞
q(n2)ei2nz = 1 +

∞∑
n=1

2q(n2) cos(2nz) (20)

is the Jacobi elliptic theta function. This function is even in �A, i.e. 
Iβ(m, �A) = Iβ(m, −�A). For a large value of L, one has the asymp-
totic form

Iβ

(
m2, �A) → e−mL

4πmΓ (β)

(
2m

L

)2−β
[

3∑
i=1

cos(Ai L)

]
. (21)

Thus, we see that the finite volume correction is exponentionally 
suppressed.

When there is a factor of momentum in the numerator of the 
loop integrand, using

∂

∂ Ai

[
(�k + �A)2 + m2]−β = − 2β(ki + Ai)

� � 2 2 β+1
, (22)
[(k + A) + m ]
one can get the following relations [34,35]

I i
β

(
m2, �A) ≡

(
1

L3

∑
�k

−
∫

d3�k
(2π)3

)
ki

[(�k + �A)2 + m2]β

= −AiIβ

(
m2, �A) − 1

2(β − 1)

∂

∂ Ai
Iβ−1

(
m2, �A)

,

I i j
β

(
m2, �A) ≡

(
1

L3

∑
�k

−
∫

d3�k
(2π)3

)
kik j

[(�k + �A)2 + m2]β

= Ai A jIβ

(
m2, �A)

+ 1

2(β − 1)

(
Ai ∂

∂ A j
+ A j ∂

∂ Ai
+ δi j

)
Iβ−1

(
m2, �A)

+ 1

4(β − 1)(β − 2)

∂2

∂ Ai∂ A j
Iβ−2

(
m2, �A)

. (23)

Appendix B. Nucleon electric dipole form factors in infinite 
volume

The NLO expressions for the EDFFs of the nucleons in U(3)

CHPT has been worked out in Refs. [24,25,29]. They depend on 
two counterterms wa(μ) and wb(μ) which are combinations of 
several LECs in the meson and baryon chiral Lagrangians [29]. The 
neutron EDFF reads

F3,n(q2)

2mN
= 8

3
wa(μ)eθ̄0 + V (2)

0 eθ̄0

π2 F 4
π

{
(D + F )(bD + bF )Iπ

− (D − F )(bD − bF )I K + 8(D − F )(bD − bF )2

× (
M2

K − M2
π

) π√−q2
arctan

√−q2

2MK

}
, (24)

where

Iπ(K ) = 1 − ln
M2

π(K )

μ2
+ σπ(K ) ln

σπ(K ) − 1

σπ(K ) + 1

+ π(2M2
π(K ) − q2)

2mN

√−q2
arctan

√−q2

2Mπ(K )

with σπ(K ) =
√

1 − 4M2
π(K )

/q2, and the proton EDFF is given by

F3,p(q2)

2mN
= −4

3
eθ̄0

[
wa(μ) + wb(μ)

]

− V (2)
0 eθ̄0

6π2 F 4
π

{
6(D + F )(bD + bF )

(
Iπ + 3π Mπ

2mN

)

+ 4(DbD + 3F bF )

(
I K + π MK

mN

)

+ 32
(
M2

K − M2
π

)[
F
(
b2

D + 3b2
F

)

− 2

3
DbD(bD − 3bF )

]
π√−q2

arctan

√−q2

2MK

+ π

mN

[
6(D − F )(bD − bF )MK

+ (D − 3F )(bD − 3bF )Mη8

]}
. (25)
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