
Annals of Pure and Applied Logic 51 (1991) 159-172
North-Holland

159

Inductive types and type
constraints in the second-order
lambda calculus*

Nax Paul Mendler
Department of Computer Science, Manchester University, Manchester, UK Ml3 9PL

Communicated by A. Nerode

Abstract

Mendler, N.P., Inductive types and type constraints in the second-order lambda calculus,
Annals of Pure and Applied Logic 51 (1991) 159-172.

We add to the second-order lambda calculus the type constructors p and v, which give the least
and greatest solutions to positively defined type expressions. Strong normalizability of typed
terms is shown using Girard’s candidat de r6ductibifite’ method. Using the same structure built
for that proof, we prove a necessary and sufficient condition for determining when a collection
of equational type constraints admit the typing of only strongly normalizable terms.

1. Introduction

In the first half of this paper, we give an extension to the second-order lambda
calculus [3, 5, 6, 91, which permits the definition of least and greatest solutions to
positively defined type expressions using the type constructors p and Y,
respectively. With p one can define inductive types such as the natural numbers,
constructive ordinals, lists and trees, and there are inductive combinators
available for each type; with Y, ‘lazy’ types such as streams and potentially infinite
trees can be defined. The focus here is not model theory as in [l, 2, 41, but on the
normalization property: the central result is a proof of strong normalizability
(i.e., that every reduction sequence of a term is finite) using Girard’s candidat de
r&hdibilite’ method [6, 71, which we extend to exploit the fact that the collection
of ground forms a complete lattice, and that inductive types can be viewed as the
least and greatest fixed points of monotonic (but not necessarily continuous)
operations on it.

Using the structures built in the first half of this paper, in the second half we
consider typing terms in the presence of equational type constraints [2], which
allow the typing of more terms. The problem statement:

*This research was partly supported by the National Science Foundation under grant MCS-81-
04018.

0168~0072/91/%03.50 0 1991- Elsevier Science Publishers B.V. (North-Holland)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81989173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

160 N. P. Mendler

Given a collection of equations constraints ti = T for i in a fixed index set I,
where ti is a type constant and z. is a type expression in which zi or other type
constants may occur, and which are closed under reflexivity, symmetry,
transitivity and substitution, and the type rule:

a:A A=B

a:B .

Are the resulting typed terms strongly normalizable?

We give a decidable (for finite I) test for this. Thus we see, for example, that
constraints:

r, = Zl-* r,, ti = to’ r1

will yield only strongly normal&able typed terms, while constraints:

r,= ti-, r,, r1= Z2’ ri, r2 = to+ r2

will allow a diverging term to be typed. Our test will be the absence of derivable
type equalities ti = A where ri occurs negatively in A.

2. Inductive types

In this section we will prove the strong normalizability of terms in a
second-order lambda calculus equipped with inductive types. First, the type
expressions, terms and reduction are defined. Then the rest of the section consists
of the proof of strong normalization, which we now outline.

(1) Let T be the set of strongly normalizable untyped terms. 8, a complete
lattice of subsets of T, is defined. Types will be modeled by elements of 3.

(2) In Proposition 3, operations on 8 that will model the type constructors 3,
A, u and Y are defined.

(3) These operations are used to extend an environment p, a function from
type variables to 8, to I[.]Ip, a function from type expressions to 8.

(4) We define what it means for an untyped term t to be a substitution instance
of a typed term a, with respect to a given environment. The untyped, ‘stripped’
term la1 will be an instance of a.

(5) Truth for typing judgments is defined by:

ka :A = Vp V instances t of a, t E [A]lp.

In Proposition 7, by an induction on the derivation of typing judgments, all
judgments are shown to be true.

(6) In Lemma 8, we show that typed term a is strongly normalizable if la(is
strongly normalizable. Now our conclusion, Theorem 9, follows: by (5), if ka :A,
then ka:A; and by (4), this implies Ial ~lA1Jt.x By (1) and (3) this implies that (al
must be strongly normalizable. Thus by Lemma 8, a is strongly normalizable.

Types in second-order lambda calculus 161

2.1. Type expressions, terms and reduction

Assume a denumerably infinite supply of type variables VI, V,, V,, . . . , and let
X, Y and 2 range over them. Define the type expressions as follows.
l X is a type expression.
l If A and B are type expressions, then so are A + B and AX.A.
l If X occurs positively in type expression A, then I_LX.A and vX.A are type

expressions.
In type expressions AX.A, pX.A and vX.A, the X before the dot becomes
bound, as well as any free occurrence of X in A. (‘AX.A’ is our notation for type
abstraction. It is sometimes written l7X.A.) ‘X occurs positively in A’,
Pos(A, X), iff each free occurrence of X in A is on the left-hand side of an even
number of +‘s; similarly, Neg(A, X) iff each free occurrence is on the left-hand
side of an odd number of +‘s. Let A, B and C range over type expressions. Let
FV(A) denote the set of type variables occurring free in A. As one might expect,
in the standard encodings [8]:

Ax B=AZ.(A+B+Z)-+Z,

A+B=AZ.(A -+Z)-+(A--,Z)-,Z.

X occurs positively in them iff X occurs positively in A and B. (‘+-’ associates to
theright: A+B-*C=A-(B --, C).) The positivity requirement will ensure the
monotonicity of certain complete lattice operations, and hence the existence of
least and greatest fixed points for them, which will be the meaning we will give to
the inductive types.

Typed terms are defined as follows.

Definition (typed terms). For each type y = pX.A, there are constants

in’:A[p/X]+ p,

R”: AY.(AX.(X-+ Y)-+A-+ Y)-p-+ Y,

and for each type Y = vX.A, there are constants

out”: v+A[v/X],

S’: AY.(AX.(Y-+X)- Y+A)-+ Y-, Y,

where Y does not occur free in A and is distinct from X. There are also the typing
rules

b:B

x*:A’ hr*.b:A-,B’

b:B

AX.b:AX.B’
X does not occur free in A for any xA occurring free in b,

c:A+B a:A b:AX.B

ca:B ’ bA : B[A/X] ’

We will write ka :A when the typing judgment a : A is derivable. For a type
,U = @A, the constant in’ lets us construct a term of type p by constructing one

162 N. P. Mendler

in the ‘unrolling’ of the p type, A[p/X]. The constant RP is the induction
combinator: for a given type Y, we can construct a function of type p--, Y by
supplying an ‘induction hypothesis’, a term of type AX. (X-+ Y) + A + Y
(remember free occurrences of X in A are being bound by the AX). Such a term
can be thought of as extending the domain of a function of type X+ Y to make it
a function of type A-, Y. For a type Y = vX.A, we dualize this. The constant
out” lets us ‘unroll’ a term of type Y into one of type A[v/X]. The constant S lets
us construct terms of type Y+= Y according to a term supplied of type
AX. (Y + X) + Y + A. Such a term uses a function of type Y + X to construct a
function of type Y --$ A.

The reductions for typed terms are as follows.

;;; y-$4;4w~

(3) (A$? Z&,x,,
(4) AX. (UX) *a,
(5) RP&z(in(b)) ~ap(R~Bu)b,
(6) out(S”Rub) H uv(SvBu)b.

The first four reductions are the standard reductions of the second-order lambda
calculus. The second reduction requires xA not to occur free in a, and the fourth
requires X not to occur free in u.

For p = pX.A, in the reduction rule for RP, our inductively defined function of
type ,U + B is R PBu, and so a must be of type AX. (X + B) + (A + B). Letting X
be ~1, up will map a function of type p + B, namely RPBA, to one of type
A[p/X]+ B, to which we can apply b. And this is how the reduction rules
compute.

For Y = vX.A, in the reduction rule for S”, the roles of constructor and
recursor are reversed. S vBu is an inductively defined function of type B + Y, and
so a must be of type AX. (B *X)* B-A. Letting X be Y, UY will map a
function of type B - Y, namely S”Bu, to one of type B --, A[v/X], to which we
can apply b of type B. Again, this is how the reduction rules compute.

Define a > b to mean a reduces to b by a single application of a reduction rule
to a subterm of a, and define a >* b to mean a reduces to b by a finite number of
such reductions.

2.2. An untyped term model

We will now construct a model of this lambda calculus, modeling types by
almost arbitrary collections of untyped terms. We take as untyped terms the
terms of the typed lambda calculus stripped of their type decorations: we write Ia 1
for the ‘stripped’ untyped term that corresponds to a typed term a. In other words
we will have constants in, R, out and S in addition to untyped variables and the
term forming operations of abstraction and application. Let t, u and v range over
untyped terms. We also inherit stripped versions of the reduction rules of the
typed terms:

(1) (Ax. t)u - t[ulx],
(2) Ax. (tx) I+- t,
(3) Rt(in(u)) H t(Rt)u,
(4) out(Stu) - t(St)u.

Types in second-order lambda calculus 163

As with the typed terms, we write t > u to represent a single step reduction and
t >* u to represent some finite number of reductions. Let T be the set of strongly
normalizable untyped terms.

Say an untyped term is in outermost normal form (ONF) iff it has one of the
following syntactic forms.

ha, R, Rt, in, in t, s, St, stu, out.

These are all terms for which reduction must apply only to proper subterms, if at
all. Say a subset f G T is closed under reduction if t E 5 and f >* u implies u E &
Say a subset 5 c T is complete for outermost normal form if t E 5, whenever t E T
and for any u E ONF, t >* u implies u E 5. Now let 3 be defined as the subsets
5 G T which are closed under reduction and complete for outermost normal form.
We will model types by the elements of %. Requiring terms to be strongly
normalizable and have E closed under reduction may seem like reasonable
requirements, but the last condition is a rather technical one, needed for certain
lemmas like the following, which shows elements of % are closed under the
reverse of j3 reduction.

Lemma 1. For 5 E E, t[ulx] E 5 and u ET imply (Ax.t)u E f.

Proof. (1) t E T. Any reduction sequence of t,

by substitution of u for x is a reduction sequence of t[u/x]:

t[u/x] = to[ulx] > t,[u/x] > t,[ulx] > * * *)

and since t[u/x] E T, we must have t E T.
(2) (Ax.t)u ET. S’ mce t and u are strongly normalizable, any infinite reduction

must preform an outermost /3 or rl reduction. In the @ case, suppose there is a
reduction sequence

(Ar.x.t)u >* (h.t’)u’ >t’[u’/x] > * * - ,

where t >* t’ and u >* u’. Then it is easy to see that t[u/x] >* t’[u/x] >* t’[u’/x],
so by reduction closure t’[u’lx] E E and thus t’[u’/x] E T and so this sequence is
finite. In the 71 case, suppose there is a reduction sequence

(hx.t)u >* (rLs.t”‘x)u’ > t”U’ > * * *)

where t >* t’x and u >* u’. Let t’ be t’x. Again, it is easy to see that
t[u/x] >* t’[u/x] >* t’[u’lx] = f”U’, so by reduction closure t’[u’/x] E Zj and thus
t’[u’/x] E T and so this sequence is finite.

(3) Every term in ONF to which (Ax.t)u reduces is in 5. Suppose (rLr.t)u
reduces to a term r,~ E ONF. The reduction must have preformed an outermost /I
or 7 reduction, but as analyzed in the previous step, in either such reduction
there is a term t’[u’/x] E 5 such that t’[u’/x] >* v. By closure under reduction
conclude v E 5.

(4) BY (2) and (3) conclude that (Ax .t)u E E. Cl

164 N. P. Mendler

Proposition 2. % is a complete lattice under E, with the least element I being the
set of u E T which cannot reduce to ONF, and the greatest lower bound of a
nonempty subset of c” is its intersection.

Note that variables are in I, and so in every E E B Also note that the least
upper bound of a non-empty chain of elements is its union.

Let E”““- B be the collection of monotonic operations on 5. Give this
function space the usual point-wise ordering. Now we can define operations on 3
that correspond to the type constructors. For function space, let + E 8 x %+ Z
be defined by

El--, Ez = {r E T) Vu (u E El+ tu E Ed).

We model type abstraction by intersection: let A E (8* E) --, E be defined by

A(f) = n {f (‘9 I 5 E e>.
For the p and Y types we, of course, will be taking least fixed points (lfp) and
greatest fixed points (gfp). But recall p = uX.A is not equal to A[u/X], but
rather there is the isomorphism inP between them. And similarly for vX.A and
out7 This leads us to the definitions: let p, v : (E J!% E)+ % be defined as

a(f)-@ of ilg.{t~TIVu (t>*in(u)+u Ef(c))},

v(f)=gfpof @.{t ET 1 out(t)ef(E)}.

(Note we are using ‘bold lambda’ as a notation for functions in the model.)

Proposition 3. The definitions given above are well formed. Moreover, + is
anti-monotonic in its first argument and monotonic in its second, and A, p and v
are all monotonic.

Define environments to be mappings p from type variables to E. If 5 E Z, then
let p[E/X] be the environment where

P[CIX](Y) = 5,
if X = Y,

P(Y)? otherwise.

For a given environment p, we extend it to a mapping n.1~ from type expressions
to 2 by induction on type expressions:

UXDP = P(X), IIA -+ % = I[&‘* II%>

UAX.ADp~A(125.UADp[SIXl), UPX.AlIP = Pwu-4P[sIm>
UvX.Allp = v(nmm[EIX]).

The following proposition lists the various assertions needed to show that this
definition is sensible: that the meaning of a type expression is invariant under
cu-conversion of bound type variables, and only depends on the values the
environment assigns to type variables that occur free in it; that the set of terms
assigned to [Alp is an element of E; and finally that the functions applied to the p
and v operators are indeed monotonic. The proof is by a strightforward induction
on A.

Types in second-order lambda calculus 165

Proposition 4. For all type expressions A and environments p and p’,

(1) if Y $ WA), then UAllp = ~~A[YIX~~~P[PGWY~;
ii; Ef E WA).dX) = P’(X), hen IMP = IIAIb’;

(4) Pos(AE, 2) 3 kE.[A]p[g/X] is a monotonic operation on E;

(5) Neg(A, X) * &5!IAIp[ClXl is an anti-monotonic operation on E

Note that @.[A1p[E/X] may be monotonic without being continuous: consider
@.[l +X + (N-+X)lp[EIX], w ereN=pY.l+Yandl=AZ.Z-Z. h

2.3. Strong normalizability

Now we define a notion of truth for judgments. Fix environment p;
an untyped term t is an instance of a typed term a with respect to p if a’s free
variables are among X;I, . . . , x> and

t = la[bl, . . . , b,lxf’, . . . , x,B,]I,

where bi E I[Bnp, for 1 s i < n. In particular, since variables are always in each
5 E & we can let bi = Xi and find Ial is an instance of a. Define truth for
judgments by

ka :A = Vp V instances t of a, t E [[Alp.

Here is the standard substitution lemma and a corollary we will need in
Proposition 7.

Lemma 5. [A[B/X]jjp = [A]lp[E/X], where 5 = uBnp.

Corollary 6. For p = pX.A and Y = vX.A,

[IclIp= GET IVu (t>*in(u)% 4IA[dX]b)},
udb = {t E-r I out(t)EuA[vlX]llp}.

We can now show soundness.

Proposition 7. l-a : A implies La : A.

Proof. Proof by induction on the derivation of judgments. Each axiom and rule is
considered in turn. Here are the justifications for the constants; the other rules
are justified as in Girard’s proof [6,7].

inp:A[plX]-+ p.

Fix p = pX.A, p and t E [A[p/X]np. It suffices to show in(t) E [[pnp. Since t E T,
in(t) ET. If in(t) >* in(t’), then t >* t’ and t’ ~[A[pIX]jjp by closure under
reduction, hence in(t) E [pjjp, by Corollary 6. Conclude t=in@:A[p/X]+ p.

RP: AY.(AX.(X+ Y)-+A-+ Y)+ ,u+ Y.

166 N. P. Mendler

Recall how the proof that a monotonic function on a complete lattice has a least
fixed point proceeds. By ordinal induction an ascending chain is defined:

Go = 1, G,,; = g(G,),

GA = u {G, 1 (Y < A} for limit 3L.

Any fixed point is an upper bound for this chain. By a cardinality argument there
must be a least ordinal a such that for some /3 > (Y, G, = G,. But by
antisymmetry, G, = G,+i, and so G, must be the least fixed point of g.

Fix ,u =pX.A, p, CE 3, and let p1 = p[c/Y]. The chain for least fixed point
IMP1 is;

Fix t E [AX.(X+ Y)+ A+ YIP,. It suffices to prove:

Vu E ([,~Jjpi Rtu E 5.

which we will do by induction on the chain with limit [pnpr.
Base case: u E &. Since t and u are in T, and since u cannot reduce to a term of

the form in(u’), Rtu E I, so that Rtu E 5.
Inductive case: u E c=+i. If u cannot reduce to a term of the form in(u’), the

argument is as in the base case. Otherwise, let pz= pi[&.JX]. Note [[PI@ =
[PIpi = [ynp, by Proposition 4. First we show Rtu E T: an infinite reduction of
it must begin:

Rtu >* Rt’u’ > t’(Rt’)u’ >. . - , (1)

where t >* t’ and u >* in(u’). Since u E Ea+i, u’ ~[Anp~. But (i) t is in
[(X- Y)+ A + Ynpz by the definition of A, and so is t’ by closure under
reduction, (ii) Rt is in [X - Ynp, by the inductive assumption, and so is Rt’ by
closure under reduction; and by these two facts t’(Rt’)u’ E 5, so (1) is finite and
therefore Rtu ET. Now suppose Rtu can reduce to some term v E ONF. The
reduction sequence must look like (l), so there is a t’(Rt’)u’ E .$ that reduces to ZJ.
Thus 21 E 5 by closure under reduction, and as we have shown every term in ONF
to which Rtu reduces is in z, conclude Rtu E 5. Therefore kRp : AY. (AX.(X+
Y)+-A-+ Y)+p-+ Y.

out”: v-+A[v/X].

Fix Y = vX.A, p and t E [[v]p. It suffices to show out(t) E [A[v/X]np, but that is
immediate from Corollary 6. Conclude Lout y : Y + A[-v/X].

S’:AY.(AX.(Y-+X)+ Y-A)+= Y-, Y.

Fix Y= vX.A, p, 5~ Z, t E [AX.(Y*X)+ Y-‘Anp[g/Y] and u E 5. It suffices
to show

Types in second-order lambda calculus 167

which can be shown by induction on the descending chain used to define
[vjp[g/Y], in a similar argument to the proof for R. 0

Lemma 8. A typed term a is strongly normalizable if Ial E T.

Proof. This follows from the observation that a ‘type’ /3 or n reduction re-
duces the number of A’s in a term by exactly one. Suppose there is an infinite
reduction sequence a = a, > aI > a2 > - - - . Stripping it yields a sequence Ial =

Iad, Iad, la2L . . . in which either Iail > la,+ll, when ai reduces to ai+I by a
reduction other than a type @ or 9, or there is a ‘stutter’:]ai] = (ai+rl, when the
reduction was a type reduction. As there can be only finite subsequences of
stuttering, they can be removed to yield an infinite reduction of [al.
Contradiction. 0

Now, this section’s results follows.

Theorem 9. All typed terms are strongly normalizable.

Proof. For ta :A, by Proposition 7 we have La :A. As an instance of a we take
the stripped term la(and note La :A implies Ja(E [[Alp and so Ial E T. Finally, by
Lemma 8 this implies that a is strongly normalizable. q

3. Equational type constraints

A type constraint is an equantion

t=T

between a type constant t and a type expression T in which r and other type
constants may occur. These equations are used in the typing of terms. For
example, the equation r = r+ t can be used to ‘type’ all the terms of the untyped
lambda calculus. The goal of this section is to give a condition P on sets of type
constraints which will hold exactly when the resulting typed terms are strongly
normalizable. For simplicity, we do this in the setting of the simply typed lambda
calculus, although it should be clear how to add type abstraction.

The section is organized as follows. First, types, terms and reduction are
defined. Second, we state condition P and show how its violation leads to the
typing of diverging terms. Third, we give an equivalent formulation of P which
identifies equivalence classes [i] of the type constants ri and a total ordering < of
these classes. We wish to repeat the previous proof of strong normalizability,
using < to define a version of [-I, but two complications appear: < may not be
well founded, so there is no obvious well-founded order to type expressions; and
in defining certain l[rii simultaneously we must take fixed points of operations
which are not all monotonic with respect to set inclusion. But these problems can
be overcome, and we may outline the proof as follows.

(1) Let the definitions of T, Z, environments p, and + stand as in Section 2.

168 N. P. Mendler

(2) Fix a derivation of ka * : A * and let I’ be the union of classes [i] for which ri
appears in this derivation. Define a notion of level ordinals for type expressions
with respect to I’.

(3) Environments p are extended to mappings [-lo from type expressions to z
by level induction.

(4) Define the instances of a typed term, with respect to an environment, and
define truth for the two forms of judgment: type membership and type equality.

(5) We cannot expect all the typing rules to be sound, because we have made
no effort to ensure kri = z for i $ I’. However, by Proposition 12, the axioms and
rules actually used in the derivation of l-a* : A* are sound, so we may conclude
ka* :A*.

(6) As in the first section, from this we can argue that a* is strongly
normalizable . Since a * was arbitrary, when property P holds of the type
constraints, all typed terms are strongly normalizable.

3.1. Type expressions and terms

We define type expressions to be those of the simply typed lambda calculus
with atomic types ri for i in the fixed index set I. Given fixed type expressions &
for i E Z, define judgments as follows.

Definition (typed terms with equational constraints).

Zi = T
i E Z,

A=A’

A=B A=B B=C

B=A’ A=C ’

A=B
CCC”

C’ is C with some occurrences of A replaced by B,

a:A A=B

a:B ’ x*:A’

b:B c:A+B a:A

hU*.b:A-B’ ca:B *

3.2. A condition on the constraints

In the previous section we used positivity to guarantee the monotonicity of
certain semantic operations, and so were able to model inductive types. Here we
have a similar positivity requirement: the required condition P is that ri must
occur only positively in all types C judged equal to ri, that is

P: VC, ri ((kri = C) j POS(C, ri)).

It is an easy exercise to give a polynomial algorithm for P when Z is finite. If P fails
to hold, C can be used in typing a diverging term. We construct such a term now.
So suppose kt = C, where there is a negative occurrence of t in C. If this negative

Types in second-order lambda calculus 169

occurrence of t is on the left-hand side of 2k + 1 arrows, then C is C2k+l, which is
in the following form.

C =A1 . 2k+l- 2k+l+ * ’ ‘+ A ;r:;+ (C2k)’ B2k+l,

Some abbreviations will be useful:

Axi.a=J.xf,. . . ,xF.a, azi =a=: - - * z?.

Assume in the following that zj and xi are variables of type Ai, yi is a variable
of type Ci and f{ is a variable of type Bj+ Bi. For the case k = 0 we define the
terms ci of type Ci as follows.

Now we

And we

Cl = ~~l.~Y~.~:~Y~zozlYo~~

reduce c,zlco:

ClZlCO >*f:(cozozlco) >*f:(wlco).

conclude this term is not normalizable. For the case k > 0 we define
terms Ci Of type Ci as fOllOWS.

cl = h~YO~f~+‘(YOzOt2k+lY2k),

C3 = ~X,.13Y*.f3(YzW1)9

CZktl- = ~Zk+l~~Y2k~f:~+l(Y2kZ2kC2k-l)>

CO = AX0.C2k+1,

C2 = AX2.ilyl.f :(YlzlCo)~

C2k = A~2k*AY2k-l*f::-1(Y2k-1Z2k-1C2k-2).

Now We reduce c2k+l&+l&:

>*ft~+l(C2kz2kC2k-l[c2k/Y2k]) >* ’ ’ * (CZk-l[C2k/Y2k]Z2k-lC2k-2) - ’ *

>* . . .
(C2z2c1[c2k/Y2k]) * * * >* ’ * * (C1[C2k/Y2k]~lCO)~ * *

>* * * ’ (COtO&+lC2k) * * ’ >* * * * (C2k+lZZk+lC2k) ’ ‘. .

And we conclude this term is not normalizable.
As an example, consider the second example given in the introduction:

r,= t1+ ro, t1= r.24 r1, r, = ro--* r2.

From it we can derive kr, = ((3+ t2)+ q) + to, which contains the underlined
negative occurrence of to. The diverging term the previous prescription would
construct is

170 N. P. Mendler

The following states a more useful formulation of P which will be used in the
next subsection.

Proposition 10. Condition P is equivalent to the existence of an equivalence
relation on I, whose classes [i] are ordered by a relation < such that if ri occurs in
q, then [i] = [j] or [i] < [j]. Furthermore, each class [i] is partitioned into two
disjoint halves, [i]’ and [iI_, with j E [i]’ implying Pos(z, rj) and j E [i]- implying

Neg(T, ri).

3.3. Strong normalization

In this subsection we assume P and then argue that all typed terms are strongly
normalizable. It is convenient to have type variables in order to solve the type
equations, so extend the definition of type expressions by adding type variables K
indexed by the index set I. Clearly, if this extended lambda calculus is strongly
normahzable, so is the original one.

The notion now of an untyped term being in outermost normal form is being in
the form ht. Redefine B with respect to this and let the definitions of
environments and the semantic operation --, stand as before. We would like to
extend the environment p to a mapping [-ljp from type expressions to E, but we
cannot simply do structural induction on type expressions, because of atomic
types ri. Order < should be involved but it is not necessarily well founded:
suppose I consists of the natural numbers and T is ri+i+ ri+r. The solution is to
fix a derivation of Ia* :A* and only be concerned with the ri that occur in it.
Once we have concluded a* is strongly normalizable, we can generalize to prove
the final result.

So fix a derivation of l-a* :A* and let I’ be the union of the classes [i] for ri
appearing in this derivation. For i E I’, let its rank #i be 1 plus the finite number
of distinct classes [j] G I’ for which [j] < [il. Now we can define a level ordinal for
each type expression:

9(X) = 0, 2?(ri) = 0, if i 4 I’,

2?(B * C) = sup(LE(B), 2(C)) + 1,

2Y(zJ=o*(#i), ifie1’.

We wish to extend an environment p by this level induction to a mapping [[-jp but
a second complication emerges: at level w * (#i) we will want to find a fixed point
of operation f E Eri]+ @I, where

(2)

This function may not be monotonic if we onrder Eli1 by the usual product
ordering;

(Ei)je[i] F (E’)je[i] -vj E [il Ej E CJ!.
But f will be monotonic if we choose the ordering

(Ei)je[i] E (S’)jc[i] = Vj E [iI+ 5j E E; A vj E [i]- Ei E &fj*

Types in second-order lambda calculus 171

An example of such a situation is the first example in the introduction,
r, = rl+ to and tr = rO+ rr. This ordering means that taking the least fixed
point off will yield the least solutions & for j E [i]’ and the greatest solutions for
j E [i]-, but as we shall see, any fixed point will do.

Finally, we can define [-lp by level induction:

I[& = I, for i 4 I’, HIP = P(X), II-4 --, BDo = HP + UNb.
and at level 6.1 * (#i) define (Urj]lo)jE[il to be the least fixed point off, as defined
in (2). Reinterpreting Proposition 4 and Lemma 5 in the context of this section,
we see they all hold by the same arguments. We can draw another corollary from
Lemma 5.

Corolhry 11. Zf i E I, then Vp [[z&I = [Tnp.

Define instance as before and define truth by:

!=a :A = Vp V instances t of a, t E [AA]lp,

kA = B = Vp [Alp = [B]p.

As noted earlier, all the rules may not be sound, but we can show enough to
conclude !=a * : A * :

Proposition 12. Except for ti = z when i $ I’, all the axioms and rules of types
terms with equational constants of the definition (in Section 3.1) are sound.

Proof. Consider each rule or axiom in turn. The arguments for the rules and
axioms carried over from the definition of typed terms (in Section 2.1) are as
before. For i E I’, kti = z holds by Corollary 11. The results for reflexivity,
symmetry and transitivity of type equality are trivial to verify, the soundness of
the substitution rules follows from Lemma 5, and the soundness of

a:B A=B

a:B

is immediate from the definition of truth. 0

Proposition 12 implies !=a* :A*, and as before, this implies a* is strongly
normalizable. Since a* was an arbitrary typed term, we have shown the following
theorem.

Theorem W. Property P implies all typed terms are strongly normalizable.

4. Conclusions

We have shown how one may add general inductive type constructors to the
second-order lambda calculus while preserving the strong normalizability prop-
erty of terms. Second, we have given a syntactic condition on equational type

172 N. P. Mendler

constraints which holds exactly when the resulting terms are strongly nor-
malizable. In both cases a similar method of proof, based on Girard’s method,
was employed.

Acknowledgements

The author is grateful to Robert Constable, John Mitchell and Prakesh
Panangaden for helpful discussions, Albert Meyer for suggesting the question of
normalization with type constraints, and Val Beazu-Tannen, Furio Honsell and
Dexter Kozen for further suggestions on the text.

References

[l] R. Amadio, K.B. Bruce and G. Longo, The finitary projection model for second order lambda
calculus and solutions to higher order domain equations, Proc. 1st Ann. Symposium on Logic in
Computer Science (IEEE Press, New York, 1986) 122-130.

[2] V. Beazu-Tannen and A.R. Meyer, Lambda calculus with constrained types, R. Parikh,
ed., Logics of Programs, Lecture Notes in Comput. Sci. 193 (Springer, New York, 1985) 23-40.

[3] K.B. Bruce and A.R. Meyer, The semantics of second order polymorphic lambda calculus, in:
Kahn, D. MacQueen and G. Plotkin, eds., Symposium on semantics of data types, Lecture Notes
in Comput. Sci. 173 (Springer, New York, 1984) 131-144.

[4] M. Coppo and M. Zacchi, Type inference and logical relations, Proc. 1st Ann. Symposium on
Logic in Computer Science (IEEE Press, New York, 1986) 218-226.

[5] S. Fortune, D. Leivant and M. O’Donnell, The expressiveness of simple and second-order type
structures, J. Assoc. Comput. Mach. 30 (1) (1983) 151-185.

[6] J.-Y. Girard, Une extension de I’interpretation de Godel a I’analyse, et son application B
l’elimination des coupures dans I’analyse et la thtorie des types, J.E. Fenstad, ed., Proc. Second
Scandinavian Logic Symposium (North-Holland, Amsterdam, 1971) 63-92.

[7] J.-Y. Girard, Interpretation fonctinelle et elimination des coupures dans I’arithmetique d’order
superieur, Ph.D. Thesis, Univ. Paris, (1972).

[8] D. Prawitz, Natural Deduction (Almqvist and Wiksell, Stockholm, 1965).
[9] J. Reynolds, Towards a theory of type structures, in: B. Robinet, ed., Colloque sur la

Programmation, Lecture Notes in Comput. Sci. 19 (Springer, New York, 1974) 403-425.

