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The Basic Helix-Loop-Helix Factor Olig2
Is Essential for the Development of Motoneuron
and Oligodendrocyte Lineages

Results and Discussion

Motoneuron and oligodendrocyte lineages are thought
to be closely related by many lines of evidence [1]. They
are sequentially generated in the ventral ventricular zone
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of the embryonic spinal cord during development. Lin-Kyoto University
eage tracing experiments using retroviruses [2] or clonalYoshida
culture of neuroepithelial cells [3] suggested a sharedKonoe-cho
motoneuron/oligodendrocyte lineage. Furthermore, bothSakyo-ku
lineages are induced by sonic hedgehog (Shh), a ven-Kyoto 606-8501
tralizing secreted factor from the notochord and floor2 Faculty of Science
plate, within the same concentration range [4–7]. How-3 Graduate School of Biostudies
ever, the molecular mechanisms underlying this moto-Kyoto University
neuron/oligodendrocyte switch have remained unclearKitashirakawa
until recently.Sakyo-ku

Olig1 and Olig2 were first identified as Shh-inducedKyoto 606-8502
oligodendrocyte-specific basic helix-loop-helix (bHLH)4 Laboratory of Neural Information
transcription factors [8, 9]. Olig3 was the third memberNational Institute for Physiological Sciences
of the Olig family to be isolated [10]. Many studies have38 Nishigonaka
established that motoneurons [10–12] and oligodendro-Myodaiji
cyte progenitors [8, 9] are generated from the Olig2-Okazaki 444-8585
expressing pMN domain. Interestingly, a neurogenicJapan
bHLH factor, Neurogenin2, is coexpressed with Olig2 at
the time of motoneuron generation and is downregu-
lated at the onset of oligodendrogenesis [11–13]. During
this time, the pattern of Olig2 and Nkx2.2 expression

Summary
switches from mutually exclusive to overlapping [13–15].
Consistent with this observation, combinatorial expres-

Sonic hedgehog (Shh), an organizing signal from ven- sion of transcription factors, Olig2/Neurogenin2 and
tral midline structures, is essential for the induction Olig2/Nkx2.2, is sufficient to trigger the differentiation
and maintenance of many ventral cell types in the programs of motoneurons [11, 12] and oligodendrocytes
embryonic neural tube. Olig1 and Olig2 are related [13, 14], respectively, in the chick embryonic neural tube.
basic helix-loop-helix factors induced by Shh in the In the spinal cord, however, Olig1 expression, and that of
ventral neural tube. Although expression analyses and Olig2, is mostly overlapping, and thus gain-of-function
gain-of–function experiments suggested that these experiments do not clearly define the functional differ-
factors were involved in motoneuron and oligodendro- ences between Olig1 and Olig2. In this study, we ana-
cyte development, they do not clearly define the func- lyzed the consequences of Olig2 loss-of-function. We
tional differences between Olig1 and Olig2. We gener- focused on Olig2 to try to avoid redundancy, as Olig2
ated mice with a homozygous inactivation of Olig2. expression in the early spinal cord is higher than that
These mice did not feed and died on the day of birth. of Olig1 [8–10], and Olig2 has a broader expression
In the spinal cord of the mutant mice, motoneurons domain in the embryonic forebrain [10, 16, 17].
are largely eliminated and oligodendrocytes are not To create a targeted disruption in Olig2, we replaced a
produced. Olig2�/� neuroepithelial cells in the ventral fragment encoding Olig2 with one encoding tamoxifen-
spinal cord failed to differentiate into motoneurons or inducible Cre recombinase, CreERTM (Figure 1A) [18, 19].

Because we were able to easily distinguish CreERTM-oligodendrocytes and expressed an astrocyte marker,
expressing cells due to CreERTM’s cytoplasmic localiza-S100�, at the time of oligodendrogenesis. Olig1 or
tion in the absence of tamoxifen, CreERTM could be usedOlig3, other family members, were expressed in the
as an expression marker in this study and was ex-descendent cells that should have expressed Olig2.
pressed under the control of the Olig2 promoter. TheWe concluded that Olig2 is an essential transcriptional
deletion was confirmed by Southern blot analyses (Fig-regulator in motoneuron and oligodendrocyte devel-
ures 1B and 1C). Olig2�/� mice showed no gross mor-opment. Our data provide the first evidence that a
phological abnormalities and were viable and fertile. Insingle gene mutation leads to the loss of two cell types,
contrast, Olig2�/� mice did not feed and died on the daymotoneuron and oligodendrocyte.
of birth (Figures 2A and 2B). The dead Olig2�/� pups
seemed to lack tonicity in extension muscles and re-
tained their in utero posture after delivery (Figure 2B).5 Correspondence: takebaya@lmls.med.kyoto-u.ac.jp

In order to determine the cause of perinatal lethality,6 Present address: Laboratory of Neural Information, National Insti-
we analyzed spinal cord sections from E18.5 embryos.tute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki

444-8585, Japan. When the embryos were obtained by Caesarian section,
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Figure 1. Targeted Mutation of the Olig2
Locus

(A) Strategy for the targeted replacement of
Olig2 with tamoxifen-inducible Cre recombi-
nase, CreERTM. The filled box indicates the
bHLH domain-encoding region. The open
boxes indicate the exons. Exon 2 was re-
placed with CreERTM and the PGK-neo cas-
sette, and an EcoRV site was introduced. The
5� and 3� probes used for Southern blot analy-
sis are shown below the wild-type genomic
map. DT, diphteria toxin.
(B and C) Southern blot analyses of genomic
DNA isolated from mouse tails. SpeI- and
EcoRV-digested tail DNA was hybridized with
a 5� probe, and EcoRI- and EcoRV-digested
tail DNA was hybridized with a 3� probe. (B)
The 5� probe detects 7.3-kb wild-type and
3.6-kb mutant bands. (C) The 3� probe de-
tects 5.7-kb wild-type and 3.7-kb mutant
bands.
(D) PCR analysis of tail DNA extracted from
wild-type, Olig2�/�, or Olig2�/� mice, using
primers specific for the wild-type Olig2 allele
or the Olig2KICreER allele. The positions of prim-
ers are shown in (A).

the Olig2�/� mice were easily distinguishable from their Olig2�/� mice to touching was uncoordinated, compared
to their wild-type or Olig2�/� siblings, suggesting de-wild-type and Olig2�/� siblings by the gross morphology

described above. Furthermore, the reflex movement of fect(s) in the neuronal circuits involved in spinal reflexes.

Figure 2. Olig2�/� Mice Have No Motoneu-
rons and Oligodendrocytes in the Late Em-
bryonic Spinal Cord

(A and B) Gross morphology of (A) Olig2�/�

and (B) Olig2�/� newborn pups. The arrow in
(A) indicates milk in the stomach. Note that
the mutant mice have a shorter crown-rump
length.
(C–F) Transverse sections of E18.5 spinal
cords of (C and E) Olig2�/� and (D and F)
Olig2�/� embryos stained by haematoxylin-
eosin. The pictures in (E) and (F) show a higher
magnification of the ventral horn depicted in
(C) and (D). Note that the shape of the ventral
horn in the knockout was altered (D) and that
there are no motoneurons with big nuclei (F).
The arrowheads in (E) indicate motoneurons
in the ventral horn of the Olig2�/� mouse spi-
nal cord.
(G and H) Neurofilament (NF) immunostaining
of E18.5 spinal cords of (G) Olig2�/� and (H)
Olig2�/� embryos. NF� motoneurons are lost
in the knockout.
(I and J) PDGFR� immunostaining of E18.5 spi-
nal cords of (I) Olig2�/� and (J) Olig2�/� em-
bryos. The arrowheads in (I) show PDGFR��

oligodendrocyte progenitors in the dorsal spi-
nal cord.
(K and L) GFAP immunostaining of E18.5 spi-
nal cords of (K) Olig2�/� and (L) Olig2�/� em-
bryos.
The scale bars in (C), (D), (K), and (L) represent
250 �m, and the scale bars in (E)–(J) represent
125 �m.
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Figure 3. Loss of Motoneurons in the Early
Embryonic Spinal Cord

(A–K) Double fluorescent immunohistochem-
istry was performed on transverse sections
of the E10.5 thoracic spinal cord using combi-
nations of the following antibodies. (A and B)
Cre and Islet1, (C and D) Cre and HB9, (E and
F) Cre and Lim3, (G and H) Cre and Nkx2.2,
and (I and J) Cre and Pax6. The arrowheads
in (B) and (D) indicate residual Islet1�/HB9�

motoneurons. Note that Islet1� D2 interneu-
rons are also present in the dorsal part of the
Olig2�/� spinal cord (data not shown) [41, 42].
The brackets in (E) and (F) show Lim3� cells
producing domains p2 and pMN. The p2 do-
main, which gives rise to V2 interneurons, lies
dorsal to the pMN domain. Note that Lim3�

cells in the knockout migrate only in the lat-
eral direction (arrow in [F]). The brackets in
(I) and (J) show the CreERTM-expressing pMN
domain. Note that ventral expansion of Pax6
high expression into the pMN domain of the
mutant was observed, in which there was nor-
mally lower Pax6 expression. Quantitative anal-
ysis is shown in (K). The number of marker
positive cells is presented as the mean � SD
from six sections of two or three embryos.
HB9� motoneurons decreased to �5%, while
the number of Nkx2.2� V3 interneuron pro-
genitors in the p3 domain did not change.
(L–O) Double fluorescent immunohistochem-
istry was performed on transverse sections
of the E11.5 thoracic spinal cord using combi-
nations of the following antibodies. (L and M)
Cre and Olig3, (N) Olig3 and Lim3, and (O)
Olig3 and Nkx2.2. Olig3 is normally expressed
in the p0, p2, and p3 domains in the E11.5
spinal cord (L) [25], but the gap at pMN disap-
pears in the mutant (M–O). The arrowheads
in (M) show Olig3� cells in the pMN domain
of the null mutant. The brackets in (N) show
Olig3�/Lim3� cells producing domains p2
and pMN. This results in the production of
Olig3�/Lim3� cells from the CreERTM-express-
ing domain (M and N). The arrowheads in (O)
show Olig3/Nkx2.2 double-positive cells.

Consistent with this observation, we found that there spinal cord (Figures 3A–3D and 3K). Interestingly, Lim3�

cells were produced from both the p2 and pMN domainswere no motoneurons in the ventral horn of the Olig2�/�

spinal cord at any of the levels examined (Figures 2C– in the Olig2�/� spinal cord, as seen in that of Olig2�/�,
but the migration direction of Lim3� cells from the pMN2F). This defect was also confirmed by neurofilament

staining of motoneurons (Figure 2G and 2H). In addition domain was altered. In the mutant, Lim3� cells from
the CreERTM-expressing pMN domain migrated into theto the loss of motoneurons, Olig2�/� mice had no oligo-

dendrocyte progenitors that expressed platelet-derived lateral margin of the cord like Lim3� cells from the p2
domain (Figures 3E and 3F, arrows). There were no obvi-growth factor �-receptor (PDGFR�) in the spinal cord

(Figures 2I and 2J). We did not observe any obvious ous changes in the Nkx2.2-expressing p3 domain (Fig-
ures 3G, 3H, and 3K), but ventral expansion of Pax6 highchange in glial fibrillary acidic protein (GFAP) expression

(Figures 2K and 2L). This result suggests that loss of expression into the pMN of the mutant was observed, in
which there was normally lower Pax6 expression (Fig-Olig2 does not perturb the generic astrocyte differentia-

tion program; however, we could not rule out a minor ures 4I and 4J, brackets) [24]. In the E11.5 ventral spinal
cord, the CreERTM-expressing neuroepithelial cells wereeffect on the astrocyte subpopulation from the pMN

domain (see below). extending radial fiber-like processes to ventral pia mater
in both Olig2�/� and Olig2�/� spinal cords (Figures 3LThere are two possible explanations for the absence

of motoneurons in Olig2�/� mice. One is that motoneu- and 3M). Olig3 was normally expressed in the lateral
margin of the ventricular zone at the levels of p0, p2,rons are not generated, and the other is that motoneu-

rons are produced but do not survive. We analyzed and p3 (Figure 3L) [25]. However, the gap in Olig3 ex-
pression at the level of the pMN domain was absent inspinal cord sections from E10.5 mice and found only a

few Islet1�/HB9� motoneurons [20–23] in the Olig2�/� the null mice, with uninterrupted expression of Olig3 in
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Figure 4. Oligodendrocytes Fail to Develop
in the Olig2�/� Spinal Cord

(A–L) Sections of (A, C, E, G, and I) Olig2�/�

and (B, D, F, H, J, K, and L) Olig2�/� spinal
cords at E14.5 were subjected to immunohis-
tochemistry with antibodies against (A–D)
PDGFR�, (E and F) NG2, (G and H) Olig3, (I
and J) Cre, and (K and L) Cre and S100�.
There are no PDGFR�� or NG2� oligodendro-
cyte progenitors in the Olig2�/� spinal cord.
In (E) and (F), the tube-like structures are
background staining of blood vessels. (G and
H) The expression of Olig3 was not dramati-
cally altered in the Olig2�/� spinal cord (green
nuclear staining). (I and J) Different morphology
of CreERTM-expressing cells in the Olig2�/� and
Olig2�/� spinal cords. The arrowheads in (I)
indicate oligodendrocyte progenitors migrat-
ing toward the dorsal spinal cord. The inset
in (I) shows higher magnification of migrating
oligodendrocyte progenitors. The arrowheads
in (J) indicate radial fiber-like processes. (K
and L) CreERTM-expressing Olig2 null cells ex-
press an astrocyte marker, S100�. The arrow-
heads indicate S100�/CreERTM double-posi-
tive radial processes. The scale bars in (A)
and (B) represent 250 �m, and the scale bars
in (C–F), (I), and (J) represent 125 �m.

the lateral margin of the ventricular zone from p2 to p3 expressing CreERTM were scattered even in the dorsal
mantle zone (Figure 4I, inset and arrowheads). In Olig2�/�(Figures 3M–3O). Therefore, ventral expansion of Olig3�/

Lim3� cells, which are characteristic of immature V2 mice, CreERTM-expressing cells still had radial fiber-like
processes, which expressed an astrocyte marker, S100�interneurons, was observed (Figure 3N). These data sug-

gest that cells with molecular properties of V2 interneu- [30], and never migrated to the dorsal spinal cord (Fig-
ures 4J–4L). These results suggest that the neuroepithe-rons are produced in the CreERTM-expressing Olig2 null

domain and that Olig3 come to be expressed in the lial cells failed to differentiate into oligodendrocyte pro-
genitors and become astrocytes.descendent cells that should have expressed Olig2.

Olig3/Nkx2.2 double-positive cells were also observed Previous studies have suggested that oligodendro-
cytes in the rostral regions of the neural tube also arisein the p3 domain of the Olig2�/� spinal cord (Figure 3O,

see below). from the ventral central nervous system (CNS), similar
to the situation seen in the spinal cord [31–33]. To look atNext, we examined expression of oligodendrocyte

progenitor markers, PDGFR� and NG2 proteoglycan the effect of the Olig2 mutation on brain oligodendrocyte
development, we examined PDGFR� expression in hind-[26], at E14.5, the time of oligodendrogenesis. Both

markers are known to label oligodendrocyte progeni- brain/midbrain tissues at E18.5. In the mutant brain,
very few PDGFR�� cells were present (Figures 5A–5D).tors, called O-2A progenitors [27, 28]. No PDGFR�� or

NG2� oligodendrocyte progenitors were observed in the However, there were still Olig1-expressing cells in most
regions of the CNS (Figure 5E, data not shown). Interest-Olig2�/� spinal cord (Figures 4A–4F, 151 � 15 [mean �

SD], PDGFR�� cells/Olig2�/� section, 0 � 0, PDGFR�� ingly, there were also CreERTM-expressing cells similarly
distributed between Olig2�/� and Olig2�/� mice brainscells/Olig2�/� section; at least 6 sections from 2–3 em-

bryos). However, the expression of Olig3 was not dra- (Figure 5F, data not shown). These results indicate that
Olig2 function is not necessary for the induction of Olig1matically altered in the mutant (Figures 4G and 4H). It

has been proposed that two oligodendrocyte lineages or the maintenance of Olig1/2 expression, and that Olig1
by itself is not sufficient to induce PDGFR�� oligoden-exist in the embryonic spinal cord, one from pMN, the

other from p3 [29, 13, 15]. Our results did not rule out the drocyte progenitors. Unexpectedly, we observed per-
sisting PDGFR�� cells in restricted areas of the Olig2�/�possibility that Nkx2.2�/Olig1�/Olig2� oligodendrocytes

from p3 are specified but fail to differentiate. Careful CNS such as the midbrain, diencephalon, cerebellum,
and medulla (Figures 5G and 5H, data not shown). Zhouanalysis of this second class of oligodendrocyte lin-

eages is required, but there are no early specific markers et al. and Lu et al. reported quite recently Olig1/2 double-
mutant mice and single knockout mice of Olig1 andfor the lineage yet, and Olig2 appears to be involved in

the terminal differentiation step of both lineages [13, Olig2, respectively [34, 35]. Since no PDGFR�� cells are
observed in any brain areas of Olig1/2 double mutants15]. We investigated the cell fate of CreERTM-expressing

Olig2 null cells (Figures 4I–4L). In Olig2�/� mice, CreERTM- [34], they have shown that Olig1 function can compen-
sate for the lack of Olig2 during oligodendrocyte devel-expressing neuroepithelial cells lacked radial fiber like-

processes, and migrating oligodendrocyte progenitors opment in the midbrain and hindbrain. Our previous
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related cofactor(s) other than Olig1 may also participate
in the compensation for the loss of Olig2 function during
oligodendrocyte development in the midbrain/hindbrain
of Olig2�/� mice. It is notable that the oligodendrocyte
lineage is proposed to originate from multiple restricted
lineages based on early expression of proteolipid pro-
tein (PLP/DM20) and segregated expression between
PDGFR� and PLP/DM20 [33, 36]. Interestingly, these
Olig2-independent PDGFR�� cells were observed in the
area (for example, medulla) in which the PLP/DM20-
expressing oligodendrocyte lineage [36] or the PDGF-
A-independent oligodendrocyte lineage [37] exist. What
the relationship among these lineages is remains an
unanswered question.

Long-term lineage-tracing experiments using tamoxi-
fen-inducible Cre recombinase in this transgenic mouse
model would provide us with a better understanding of
the timing of the neuron/glia switch and the final fate
of Olig2-expressing cells in normal or gene knockout
contexts of development. Furthermore, we would be
able to perform gene-activation or -inactivation experi-
ments in specific cell lineages at specific developmental
periods using tamoxifen treatment [19].

Experimental Procedures

Construction of the Targeting Vector
The Olig2 BAC clone was obtained from a 129SVJ mouse BAC
library by hybridization screening using a mouse Olig2 cDNA probe
(Incyte Genomics). We subcloned 3-kb HindIII-NcoI and 3.5-kb NotI-
SacI fragments into a neo-resistance gene cassette vector. Most of
the Olig2 ORF (aa 1–196) was deleted and replaced with CreERTM

using the NcoI site at the first methionine. CreERTM is a tamoxifen-
inducible form of Cre recombinase, which was made by fusing Cre
recombinase and the ligand binding domain of the mutated estrogen
receptor [38]. FLAG epitope was tagged to the C terminus ofFigure 5. Defective Oligodendrocyte Differentiation in the Olig2�/�

CreERTM. The targeted allele is designated as Olig2KICreER.Brain

(A–H) Adjacent sagittal sections of E18.5 (A and B) Olig2�/� and
(C–H) Olig2�/� brains were subjected to immunohistochemistry with

Electroporation and Generation of Germ
antibodies against (A–D, G, and H) PDGFR�, (E) Olig1, or (F) ER�.

Line-Transmitting Mice
The pictures in (B) and (D) show a higher magnification than that

TT2 ES cells (1 	 107 ) [39] were electoroporated with 50 �g linearized
dipicted in (A) and (C). There were fewer PDGFR�� migrating oligo-

targeting vector DNA in 0.5 ml phosphate-buffered saline (PBS)
dendrocyte progenitors than Olig2�/� in the hindbrain/midbrain re-

using a Bio-Rad Gene Pulser. The electroporated cells were then
gion of the mutant mice (compare [A] and [B] and [C] and [D]).

cultured on feeder cells, which had been prepared from G418-resis-
Note, however, there are still remaining PDGFR�� cells in restricted

tant primary embryonic fibroblasts (GIBCO-BRL) and selected with
regions, such as the (G) superior colliculus and the (H) thalamus.

G418 (300 �g/ml) for 6–8 days. Selected clones were cultured in a
The inset in (G) shows typical residual PDGFR�� cells with small

96-well plate; the clones were then frozen, and their genomic DNA
nuclei and scarce cytoplasm. The arrowheads in (B), (G), and (H)

was isolated for Southern blot analysis.
indicate PDGFR�� cells. In spite of the decreased number of

Homologous recombinants, identified by Southern blot analysis
PDGFR�� oligodendrocyte progenitors, there were many Olig1- or

using 5� and 3� external probes, were expanded for injection. South-
CreERTM-expressing cells in a similar distribution pattern (E and F).

ern blot analyses of 656 ES cell clones identified two recombinants.
(E) and (F) show the high-power views corresponding to the black

Chimeric mice were generated by injection of the Olig2 mutant ES
boxed area in (C). The scale bars in (A) and (C) represent 500 �m,

cells into 8-cell-stage ICR embryos and were implanted into pseudo-
the scale bars in (E) and (F) represent 250 �m, and the scale bars

pregnant foster mothers. The resulting chimeric males were bred
in (B), (D), (G), and (H) represent 125 �m.

with Balb/c females. The heterozygote mice were backcrossed with
C57BL/6NCrj inbred mice.

gain-of-function experiments did not clearly define func-
tional differences between Olig1 and Olig2, that is, both Genotype Analysis
combinations, Olig1/Neurogenin2 and Olig2/Neurogenin2, For PCR genotyping, the wild-type or targeted allele was detected

using a common sense primer (5�-TCGAGAGCTTAGATCATCC-3�)exhibited similar biological activity in terms of motoneu-
and antisense primers specific for the wild-type Olig2 (5�-CACCGCron generation [11]. Therefore, we assume that Olig1
CGCCCAGTTTGTCC-3�) and Olig2KICreER (5�-AGCATTGCTGTCACTcan rescue Olig2 function if it is expressed in a large
TGGT-3�). These primer pairs amplify a 247-bp fragment from wild-enough quantity at the proper time. However, we and
type Olig2 and a 367-bp fragment from Olig2KICreER, respectively. PCR

others [35] observed that PDGFR�� cells persist only in was performed at 95
C for 9 min, followed by 95
C for 20 s, 56
C
restricted areas despite broad expression of Olig1. for 30 s, and 72
C for 30 s; PCR was run for 37 cycles using Ampli

Taq Gold (Roche).These observations raise an interesting possibility that
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Histology and Immunohistochemistry eage by ventral midline cells and sonic hedgehog. Dev. Biol.
177, 30–42.Tissues were fixed with 4% PFA, paraffin-embedded, sectioned (4

�m), and stained with haematoxylin and eosin. For immunohisto- 6. Poncet, C., Soula, C., Trousse, F., Kan, P., Hirsinger, E., Pour-
quie, O., Duprat, A.M., and Cochard, P. (1996). Induction ofchemistry, 8 �m (paraffin) or 18 �m (cryo-) sections were made.

Immunohistochemistry was performed as described [10]. Olig1 [11], oligodendrocyte progenitors in the trunk neural tube by ven-
tralizing signals: effects of notochord and floor plate grafts, andCre (Novagen), estrogen receptor (ER)�, PDGFR� (Santa Cruz), NG2

(kind gift of Dr. Joel Levine), and GFAP (DAKO) were detected using of sonic hedgehog. Mech. Dev. 60, 13–32.
7. Orentas, D.M., Hayes, J.E., Dyer, K.L., and Miller, R.H. (1999).rabbit polyclonal antibodies (dilutions: anti-Olig1, 1/750; anti-Cre,

1/3000; anti-ER�, 1/150; anti-PDGFR�, 1/50; anti-NG2, 1/1000; and Sonic hedgehog signaling is required during the appearance
of spinal cord oligodendrocyte precursors. Development 126,anti-GFAP, 1/2000). Olig3 [25] was detected using rat polyclonal

antibody (1/500). PDGFR� (APA5, Pharmingen), S100� (SH-B1, 2419–2429.
8. Lu, Q.R., Yuk, D., Alberta, J.A., Zhu, Z., Pawlitzky, I., Chan, J.,Sigma), neurofilament [40], Nkx2.2, Pax6, Islet1, HB9, and Lim3

(DSHB) were detected using monoclonal antibodies (anti-PDGFR�, McMahon, A.P., Stiles, C.D., and Rowitch, D.H. (2000). Sonic
hedgehog-regulated oligodendrocyte lineage genes encoding1/500; anti-S100�, 1/1000; anti-neurofilament, 1/5; anti-Nkx2.2, 1/
bHLH proteins in the mammalian central nervous system. Neu-50; anti-Pax6, 1/20; anti-Islet1, 1/100; anti-HB9, 1/25; and anti-Lim3,
ron 25, 317–329.1/100). The rodent MNR2 homolog has not been identified, and the

9. Zhou, Q., Wang, S., and Anderson, D.J. (2000). Identification ofmonoclonal antibody against MNR2 reacts with both MNR2 and
a novel family of oligodendrocyte lineage-specific basic helix-HB9 in chicks. Since the staining pattern with the anti-chick MNR2
loop-helix transcrition factors. Neuron 25, 331–343.is very similar to the pattern that was previously reported with HB9

10. Takebayashi, H. Yoshida, S., Sugimori, M., Kosako, H., Komi-on the mouse tissue [22, 23], we used the anti-MNR2 antibody as
nami, R., Nakafuku, M., and Nabeshima, Y. (2000). Dynamicthe anti-HB9 antibody in this study.
expression of basic helix-loop-helix Olig family members: impli-
cation of Olig2 in neuron and oligodendrocyte differentiationAnimals
and identification of a new member, Olig3. Mech. Dev. 99,For embryo staging, the day of detection of the vaginal plug was
143–148.considered 0.5 dpc.

11. Mizuguchi, R., Sugimori, M., Takebayashi, H., Kosako, H., Na-
gao, M., Yoshida, S., Nabeshima, Y., Shimamura, K., and Naka-
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