
A family of embedded Runge-Kutta formulae 

J. R. Dormand and P. J. Prince (*) 

A B S T R A C T  

A family of embedded Runge-Kutta formulae RK5 (4) are derived. From these are presented 
formulae which have (a) 'small' principal truncation terms in the fifth order and (b) extended 
regions of absolute stability. 

1. INTRODUCTION 

Consider the problem of solving numerically the first 
order system of ordinary differential equations 

y ' (x)  = f[x,  y(x)], (1.1) 

wi th!(xo)  known. 

Without loss of generality [1] the first order auto- 
nomous system 

y_'(x) = f [y (x)], (1.2) 

with Y(X0) known, 

can be considered. Under suitable continuity and dif- 
ferentiability conditions approximations Y_n to the 
true solution Y(Xn) at the points x n, where 

Xn+l  = x n + h  n, hn=0(xn)h  a n d 0 < 0 ( X n ) <  1, 

n = 0, 1, 2 .....  can be obtained using an explicit 
Runge-Kutta (RK) formula given by 

S 

Yn+l=Y__n+hnO - (_Yn,hn)=Yn+i~=lbiki  (1.3) 

where 

k I = hn f (Y__n), 

i-1 
ki  = hn_f (y_n + j ~ l  aij kj), • i = 2 , 3  ..... s, 

and usually Y--O = --Y (Xo)- 

The local truncation error t n + 1' of this method at 

Xn + 1 is given by 

t n  + 1 = Y__(Xn) + h n ~  [Y__(Xn)' hn] -Y(Xn + 1) 

which using the Taylor expansion about x n may be 
written 

t n  + 1 = hn {~- [Y__Cxn)' hn] - A [y (Xn), hn] }, 

where 

A [y (x), h] = ~ hr-1 y(r) (x). 
r=l  r ! - 

If_~ and A_ agree to 0(hP) then the process is said to be 

a pth order RK formula (RKp) and t_n + 1 can then be 
written 

t n + l = j ~ l "  p+ j  hn -¢p+j-1 [Y(Xn)]' (1.4) 

where 

nr + 1 a!r + 1)F!r + 1) [y(x)] r 1, 2,.. ~br [y (x)] = Z = 
- - i = 1  1 - 1  - ' "' 

are termed error functions, F! r + 1), i = 1, 2 ..... nr + 1' 

being the elementary differentials [1] of order r + i off-  
Note that if the formula is of order p, then -Or --- 0, 
r = 1, 2 . . . .  , p -1. This implies 

a}r+l)=0,"  i=1 ,2  ..... nr+ 1, r = 1 , 2  ..... p-1.  
(1.5) 

For consistency (Lambert [2]) the following equation 
must be satisfied : 

a~ 1)= ~ b i - l = 0 ,  (n 1=1) .  
i=1 

This equation together with (1.5) are termed equations 
of condition for the RKp formula. Butcher [1] has 
listed the expressions for the elementary differentials 
for up to order 8 and Harris [3] has considered the com- 
puter derivation of the equations of condition. Table 1 
contains the required equations for orders up to 6. 
It is now widely accepted that the Runge-Kutta embed- 
ding technique is an efficient method for the numer- 
ical solution of non-stiff initial value problems. In this 
technique two RK formulae of orders p and q (q > p), 
usually q = p + 1, are obtained which share the same 
function evaluations, i.e. they have the same ai... It is 

• • J common pracuce that the higher order formula uses 
more stages than the lower order formula but in this 
work we shall also allow the converse to be true. From 

(*) J. R. D o r m a n d ,  P. J. Prince, Depa r tmen t  o f  Mathemat ics  and Statistics,  Teesside Poly technic ,  
Middlesbrough,  Cleveland (UK). 
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Table 1. Equations of condition for orders 1 to 6 

! 
Order [ r 1 2 3 4 5 6 7 

No of ele- [ nr 1 1 2 4 9 20 48 
mentary 
differ- 
entials 

Notes 
S 

(i) c i= 22 a.., i=1 ,2  . . . . .  s where s is number of 
j = l  'J 

stages. 
(ii) aij = 0, j a i for an explicit RK. 

(iii) All subscripts run from 1 to s. 

1 a ~ l ) =  .~.b i -  1 
X 

2 a~ 2)= Z b ic i 1 
i 2 

1 ~ b ic?  1 3 a~ 3 ) -  2 i 6 

1 
4 a~3)= i~ b ia i jc j  6 

5 a~ 4)= 1 2 ;  b ic3  1 
6 i 24 

1 
6 a(24)=i~ b ic ia i j c j  8 

1 2; c 2 1 
7 a~ 4 ) -  2 ij  b ia i j  24 

= 1 
8 a i 4 ) i Z k b i a i j a j k C k  24 

9 a~5)=--~-I Z bi c 4 1  
24 i 120 

10 a ) 1 Z bic aijc j 
2 ij 20 

11 a~ 5 ) -  1 i~kbiaijcjaikCk 1 2 4O 

12 a(45)= 1__ £ biciaijcj2 1 
2 ij 30 

13 a~ 5)= 1 2; b ia i jc  ? 1 
6 ij 120 

1 
14 a~ 5) =i~kbiCiaijajkCk 30 

15 @5) = i~k biai jcjajkCk - 4 ~  

16 a~5)= 1__ ~kbia i ja jkc~ 1 
2 i 120 

17 a~5)= Z b-a . .a ,  a c 1 
i jkm 1 lj jk  km m 120 

18 a~ 6)= 1 g b i c 5  1 
120 i 720 

19 a ) = 1  ~ b i c 3 a i j c  j 
6 ij 72 

20 a~6)='2-ijkl y~ b i c i a i j c j a  i kck  481 

21 a (6 ) -  1 ]~ b i c 2 a i j c j 2 1  
4 ij 72 

22 a~ 6) 1 ]g b . a . . c  2 Ck 1 
= ~ i j k  1 lj j aik 72 

1 .Z. b i c i a i j c ?  1 23 a(66)= -~- xj 144 

1 z bi c]  1 
= 2--4- ij aij 720 

25 a(86) 1 ~ b .c2a . .  1 
= 2 - i j k  I x DajkCk 72 

26 a(96)= ~ b i a i j a i k c k a  j Cm - 1-- 
ij k m m 72 

27 a (6)- 1 
10-  i~kb iCia i j c j a jkCk  48 

28 a~6)= 1__ ~ b. cj2 aj k Ck 1 
2 i jk  xaij 120 

29 a (6)- 1 ~ b i a i . a  j 1 
12-  -2--ijkm J kCkaj mcm 240 

30 a (6)-  1--- 2; b - c . a . - a j  2 1 
1 3 -  2 i jk  1 1 xj kCk 144 

31 a (6)- 1 £ b i a i j c j a j k c ~  1 
14 - ~ i jk 180 

32 a~6)= ~ - i j ~ k b i a i j a j k c ~  1 720 

33 a (6)- ~ b c a a 1 
1 6 - i j k m  i i ij j k a k m C m  144 

34 a(6)= 2; b . a . . c j a j  1 
17 ijkm a D kakmCm 180 

35 a(6)= 2; b .a . .  Cm 1 18 i jkm x u a j k c k a k m  240 

a a c 2 1 36 a ( 6 ) - 1  ~2 b .a . .  j k km m 
1 9 -  2 ijkm 1 1j 720 

37 a (6)= Z b . a . . a .  1 
20 ijkmn l lj j k a k m a m n C n  720 
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the embedding an estimate E n +1 = Y__n +1 - ~ n  +1 

(see [5]), of  t n +1' the local truncation error in the 

pth order formula can be obtained. This can be used 
to monitor the local error and hence control the step 
size. For example the formulae 

8 ] 1/p~-1 
= (error per step 

h n + l  0"9hn II-En+lltoo_[ ' control )  

and 

h n + l = 0 " 9 h n f  8 HI t 1/p' 
(error per unit 

En + 1 step control) 

h n 

[4] are widely used, 8 being the maximum allowable 
local error. Applied in local extrapolation (higher 
order) mode { RKq(p) instead of RKp (q) mode }, 
which practical results indicate is preferable, ([5], [6]) 
the embedded algorithm takes the form 

Y n + l = g n  + h n ~ ( Y n  hn)=9_n+ ~ b ik i  
- ' - - -  ' i = 1  - 

a n d  

S 

Y_n + 1 =_Yn + hn_~ (~n' hn) =_Yn + i~1 bi-ki' (1.6) 

where 

k 1 = h n _f (_Y n) 
and 

i -1  
ki = hn f__ (~n + j ~ l  aij kj), i = 2 , 3  . . . . .  s. 

In this case s is the number of stages (vector function 
evaluations per step) used by the combined process. 
To distinguish between the two formulae caps are 
used to indicate the qth order formttla. Fehlberg ([7], 
[8]) has developed embedded RK formulae which 
have a 'small' principal truncation term in the lower 
order formula. Since this term gives the local error 
estimate an artificially small term could lead to poor 
step size control (see [11]). The aim of this paper is 
to develop RK5 (4) formulae which (a) have a 'small' 
principal truncation term in the Fifth order (this will 
be elaborated further in section 3 below) and (b) have 
an extended region of absolute stability. 

2. A CLASS OF RK5 (4) EMBEDDED FORMULAE 

After the first step the effective number of function 
evaluations per step is still six although one extra func- 
tion evaluation is lost after any step rejection. In the 
following, the 17 governing equations for the 5th order 
formula will be referred to as equations O, ~ . . . . .  8 
where all subscripts run from 1 to 6, and the eight 
governing equations for the 4th order will be referred 
to as equations @, ®,. . . ,  ®, where all subscripts run 
from 1 to 7. 
A solution of the 25 equations is considered by imposi- 
tion of the following equations : 
6 ^ 

i=2;1 ~aij=l~j(1- -cj),  j = 1 , 2 , . . . , 6 , -  (2.2) 

b2 = b2 = 0, 

6 2 6 
2; a.. 1 ci 2; a . . c  2__ 1 c 3 

' - 5 - i  j = l  u c J = T  j = l  1j , 

i= 3, 4, 5, 6, (2.3) 

three of which are dependent [10]. This leaves the fol- 
lowing independent equations from the original 25 : 

~ ,  ~), (~, ~), ~), ~, @, (~, ®, @ and ®. Equations 

and ® can further be simplified to give 
6 ^ 
2; biciai2 = 0, (2~4) 

i=1 
and 

6 
2; biai2 = 0 (2.5) 

i=1 

respectively, b I and b i will be determined from 
and ® respectively since these are the only equations 
in which they occur. From (2.2) c 6 = 1 and therefore 

Q, ~,  ~ and 6) yield the following expressions for 

b3' b4' b5 and 1~6: 

b3 = 3 -  5 (c 4 + c5) + 10 c 4 c 5 

60c3(1-c 3) (c3-c 4) (c 3 - c  5) ' 

b4 = 3 -5 (c  3 + c5) + 10c3c 5 

60c 4 (1 -c4) (c 4-c3)  (c 4 - c5) 

3 -5  (c 3 + c4) + 10c3c 4 

1~5 ~ 60c 5 (1 - c5) (c 5 - c3) (c 5 - c4) 

Reference to table 1 shows that there are 25 equations 
to be satisfied for an RKS(4). Here the possibility of 
using seven stages is considered, where the first evalua- 
tion at the nth step is the same as the last evaluation at 
the previous step ([9], [11]). This implies 

b 7 = 0  

c 7 = 1 (2.1) 
and 

= t~j, j = 1, 2 . . . . .  6. aTj 

b6 = 12 -15(c3+ c4+ c5) + 20(c3c4+ c4c 5 + c5c3) -30c3c4cc 
60 (1 - c3) (1 -c4) (1 -c5) 

(2.6) 
With i = 3 and 4 (2.3) gives 

2 c 3 c2=-~- 3' a32 = ~ c 3 '  

3c~(3c3-2c 4) c2(c4-c3 ) 
,,4: , 
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and (2.2) with j = 2 and (2.4) gives 

5 
Y. bia i2  (1- ci) = 0, 

i=3 

which yields a52. Hence a62 follows from (2.4). Equa- 
tions (2.3) with i = 5 may be solved for a53 and a54, 

equation (2.2) withj = 5 gives a65, allowing a63 and 
a64 to be determined from (2.3) with i = 6. The re- 

maining three equations from (2.2) and (2.3) are de- 

pendent and therefore satisfied. The equations (~) , 

(~),  (D and (2.5) are linear in the b's and can be 

used to determine b 3, b 4, b 5 and b 6 given a value for 
b 7 which is arbitrary. 

3. CHOICE OF THE DEGREES OF FREEDOM 

In this model of an RK5 (4) there are four degrees of 
freedom : c 3, c 4, c 5 and b 7. The value ofb  7 will be 
chosen to tune the embedded process [11] so that a 
reasonable error prediction, and hence step size con- 
trol, may be attained. Since the local extrapolation 
mode is being adopted one way of choosing the three 
c's would be to make the principal truncation term 

(hPn + 1 _~p) 'small' for the 5th order formula (see 

[12]). For general systems of equations this is of 
course a prohibitive task. Practical tests [8], however, 
indicate that, in spite of our comments in section 1, 
good results for the lower order mode are obtained 
by attempting to make the a i as small as possible. 

In this paper the parameters are chosen to give a small 

~(6)[[ 2. For the present model with the II assumptions 

made it is found that (see table 1) 

a ? )  1 a~ 6) 1 a(36) 1 ~.i 6) 1 a~6) 
- - / - 6 -  - i 5  - i o  = lO  

_ 1 a ~ 6 ) 1  ~,16)=_~5 a(6) 1 a(6) 
5 - -  3--6- 12 = - 20 14' 

~(6) 1 ~(6) ~(6) ~(6) 1 ~(6)__a(6) 
6 =-~- 10= 1 3 = -  15 = - - ~ - ~ 1 8 -  19'  

~(6)_~(6) 1 ~(6) and ~(6) ~(6) where 
8 - 9 = - - ~ -  17' 20 = -  16' 

~6) _ {2 - 3 (c 3 + c4) + 5c3c 4 } - c 5 {3-5 (c 3 +c4) + 10c3c 4 } 

a 6)_ 

h~ 6) = 

720O 

(1 - 2 c3) - c 4 (2 - 5 c3) 
720 

{ 2 - 3 c  4 (3-5c3) } -  3c 5 {1-5c4(1-2c3)  } 

and 

~(6) 3c 4 (2 - 5c3) - 1 
20 = 720 

720 

(3.1) 

In addition we impose the constraints that [ c i [ < 1 
and that the c i are reasonably 'distinct', thus avoiding 
large values ofb  i (see 2.6) and aij which could cause 
considerable rounding errors in practical applications. 
Following Lawson [13] another choice of the parameters 
aims to extend the region of absolute stability. In this 
case where there are two RK formulae the region of 
absolute stability should be enlarged for both formulae. 
For the 5th order formula applied to y '=  Xy (X com- 
plex) the region of absolute stability is the region in the 
left hand part of the complex plane where 

5 z r I r ~=0 ~ + dz6 < 1, ( z = x + i y )  

where 

6 )  1 c 4 (2- 5c3) 
d= ~(20 + 6 ! -  240 ( 3 . 2 )  

from (3.1). 

The corresponding region for the 4th order formula is 
defined by 

r~O zr [ r! + ez5 + fz6 + gz7 < 1, (3.3) 

where 

(95 ~.f a(6) 1 and = a  (7) 1 
e = a  )+  . '  f=  20+6--[  g 48+7--[ .  

Other choices for the degrees of freedom are possible 

as r~(6) zer such those which make ~ 6 )  or 20 o. In the 

former case the higher order formula is then 6th order 
for equations of the type y" = f_(x), (i.e. quadrature 

problems) and in the latter case the higher order formula 
is 6th order for equations of the form y '= Ay + bx 

(A a constant matrix and b a constant vector). Con- 
cerning the quadrature problem, it has been noted 
previously [ 14] that many embedded formulae of high 
order, such as those of Fehlberg [7] with p ;~ 5, and 
Dormand & Prince [11] fail because, in this case, the 
two formulae yield the same numerical approximation 
for Y(Xn + 1). 

Consequently the local error estimate is zero, preventing 
step-size control. Shampine [15] has developed a modi- 
fication to the RKF7 formula of Fehlberg [7] which 
overcomes this difficulty but it is preferable to develop 
formulae which are free from this deficiency. The for- 
mulae presented in this paper are effective in the quad- 
rature (or near quadrature) case and it is intended to 
present higher order formulae with the same property 
in a future paper. 
The choice of the parameter b 7 leads to two cases : 

(a) b 7 ¢ 0. 

As mentioned previously b 7 is now the 'tuning' par- 
ameter. In this case the b i will be distinct from the bi 

so that there are differing formulae. The choices 
c 3 = 3/10, c 4 = 4/5, c 5 = 8/9 and b 7 = 1/40 lead to 
the formula RK5(4)7M presented in table 2. 
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1 
5 

3 
10 

4 

8 
9 

1 
5 

3 9 
40 40 

44 56 32 

45 15 9 

19372 25360 64448 
6561 2187 6561 

9017 355 46732 
3168 33 5247 

35 0 500 
384 1113 

212 
729 

49 5103 
176 18656 

125 2187 11 
192 6784 84 

I~ i 

35 
384 

0 

b i 

5179 
57600 

0 

500 
1113 

125 
192 

2187 
6784 

11 
84 

7571 
16695 

393 
640 

92097 
339200 

187 
2100 

1 
40 

4 

For this formula lift (6) tl2 = 3.99 × 10 "-4, d =  1 
600' 

e -  1097 , f=  161 and g=____l_l which 
120000 120000 24000 

3 

i Imz  

give the regions of absolute stability sketched in figure 
1. For RKF4 [8], which practical results ([5], [6]) 
indicate is preferable in local extrapolation mode, 

11&(6) 112 = 3.36 x 10 -3 which is about 8 times larger 

than that for the RK5 (4)7M. The stability regions 
for RKF4 are also sketched in figure 1. 

Lawson [12] has shown that an enlarged stability re- 

Table 2. Coefficients for RK5 (4) 7M 

ci aij 

1 3 
gion is obtained i fd  = 1280 giving c 4 - 16 (2 -5c  3 

The remaining parameters, c 3, c 5 and b 7, have then 

been selected to give smaU II ~t(6) 112 and extended 

stability region for the 4th order. It can be argued [16] 
that high stability for the lower order formula is un- 
necessary when local extrapolation is used. However, 
an absolute stability failure on the lower order for- 

A: RK5(4)7S, B : RKF4, C: RK5(4)6M, D: RK5(4)7M. 

3 

2 Imz 

1 

- 5 - 4 - 3  - 2  ,-1 0 

Re z 
Fig. l(a). Stability regions for fifth order formulae. 

(3.2). -6 -5  -4  -3  -2 -1 0 

Re z 
Fig. l(b). Stability regions for fourth order formulae. 

4 

~ J 3 

2 In" 

I 

5 4 3 2 1 0 

Re z 
Fig. 1(c) The union of the stability regions l(a) and 
l(b) for each formulae pair. This may be interpreted 
as the stability regions for composite pairs. 

Imz 
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mula could cause severe problems in step size control, 
resulting in a loss of  computational efficiency. Con- 
sequently it is preferable to make the stability region 
of the lower order formula comparable to that of the 
higher order formula. With ca = 1/3 and c= = 2/3 
[[ ~ (6) [2 = 1.81 x 10 -3 an ; the  best choice o r b  7 

to give comparable stability regions is 1/150. How- 
ever this results in a poorly 'tuned' formulae pair and 
a compromised choice is b 7 = - 1/50. The formula in 
this case is termed the RK5(4) 7S and is given in 
table 3. Figure 1 gives the stability regions. 

Table 3. Coefficients for RK5 (4) 7S 

ci aij  l~i b i 

2 
9 

3 

5 
9 

2 

2 
9 

1 1 
12 4 

55 
324 

83 

___2__55 5_0 
108 81 

13 61 9 
330 22 66 110 

_ 1_99 9 1 27 22 
28 4 7 7 7 

19 0 3 243 33 
200 5 400 40 80 

19 431 
200 5000 

0 0 

3 333 
5 500 

243 7857 
400 10000 

33 957 
40 1000 

7 193 
80 2000 

0 1 
50 

(b) b 7 = 0. 

In this case the seventh evaluation is not required, 
and it is found that unless the matrix 

c 3 c 4 c 5 1 

2 2 2 
c 3 c 4 c 5 1 

3 3 3 
c 3 c 4 c 5 1 

a32 a42 a52 a62 

is singular then b i = b i '  i = 1, 2 . . . . .  6, i.e. the two 

RK formulae are identical. The previous matrix is 
singular [17] if 

c3 (3.3) c4= 
2 ( 5 c 2 -  4c3  + 1) 

thus b3, b 4 and b 5 are determined from ®, ® and 

® given a value of the 'tuning' parameter b 6, which 

must not be chosen equal to [06 . 

Following (a) c 3 and c 5 are chosen to give 'small' 

tl-  (6)[12, and c 3 = 3/10, c 5 = 2/3 and b 6 = 1/20 

give [l~ (6) 112 = 1.23 x 10 -3 leading to the formula 

RK5 (4) 6M (table 4, stability regions figure 1). This 
formula is sixth order for quadrature problems. 

Table 4. Coefficients for RK5 (4) 6M 

ci aij bi 

0 

1 1 
5 5 

3 3 
10 40 

3 __3 
5 10 

2 226 
3 729 

1 181 
270 

9 
4O 

___9 6 
10 5 

25 880 55 
27 729 729 

5 266 91 189 
2 297 27 55 

b i 

19 31 
216 540 

0 0 

1000 190 
2079 297 

125 145 
216 108 

81 351 
88 220 

5 1 
56 20 

The second choice of  extending the region of absolute 
stability leads to unacceptable formulae. Choosing 

d = 1 (3.2) and (3.3) yield the two possible pairs 
1275' 

of  values (i) (c 3, c4) = (2/13, 13/85) and 

(ii) (c3, c4) = (16/45, 72/85). Both of these are un- 

suitable because they result in 'large' a i j ,  bi and b i 

which are unsatisfactory with regard to rounding error. 
Comparing cases (a) and (b) it can be seen that use of  
the seventh evaluation yields an extra degree of free- 

dom which can be used to give smaller I1_~(6) II 2 or 
an extended region of absolute stability. These advan- 
tages are offset by the loss of an extra evaluation fol- 
lowing a rejected step. 

4. NUMERICAL RESULTS 

The algorithms described above have been tested on a 
wide range of problems including those given by Hull 
et al. [3] in the DETEST implementation (see table 5). 
According to the criteria laid down by Hull et al. the 
two "minimum truncation error" formulae RK5(4)7M, 
RK5 (4)6M are more efficient than the RKF4 (Fehl- 
berg [8]). A feature which is not considered by Hull 
et al., but which the authors believe to be of some 
importance, is the measurement of global error, and a 
modified version of DETEST used in connection with 
this work computes the maximum global error (over 
all steps and variables). Rather than a complete presen- 
tation of results over the 25 problems in DETEST the 
efficiency curves for two problems, viz A3 and D5, are 
shown here. 
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Table 5. DETEST results taken over seven tolerances 10 - 3 - r ,  r = 0, 1 .. . . .  6 

Formula FCN calls No of steps Max Error Fraction deceived 

RKF4 226208 36363 12.4 0.005 
(in 5(4) mode) 

RK5(4) 7M 209305 33126 9.7 0.008 

RK5(4) 6M 267324 43394 1.2 0.000 

RK5(4) 7S 186229 29158 15.2 0.027 

Fraction bad deceived 

0.000 

0.000 

0.000 

0.001 

(a) Problem A3 : 

y ' =  y cosx, y(0) = 1, x ~  [0, 20]. 

Four efficiency curves for this problem are shown in 
figure 2. It is clear that the RK5(4)7M is much supe- 
rior to the other formulae in this case, 800 function 
evaluations being sufficient for a maximum global 
error (absolute) of 10 -6 , compared with 1450 for 
the RKF4 (in local extrapolation mode). 

(b) Problem D5 : (Two-body gravitational problem) 

Yl = Y3' Yl(0) = l - e ,  

Y2 = Y4' Y2(0) = 0, 

y~ _yl/(y2 2,3/2 
= + Y2) ' Y3 (0) = 0, 

y~ =_y2/(y2 + y2)3/2, Y4(0) = X/1 + e 
1 - e  ' 

e = 0.9 (eccentricity of orbit), x ~ [0, 20]. 

This problem represents a severe test for the step-size 
control procedure since the step length must vary by 
about two orders of magnitude. Figure 3 shows the 
efficiency curve for this problem and again it is ap- 
parent that the RK5(4)7M is most efficient. 

It should be emphasized that these tests on the four 
formulae have been conducted under identical circum- 
stances. The number of function evaluations is inclusive 
of rejected steps and so represents a machine inde- 
pendent measure of the relative efficiencies of the 
methods under test. 
Any of the embedded formulae may be applied success- 
fully to a moderately stiff system of differential equa- 
tions. However, the step-size will depend on the ratio 
of the stability limit to the modulus of the largest 
eigenvalue of the Jacobian matrix rather than a real- 
istic error estimate unless very small tolerances are 
used. Thus formulae with only moderate stability 
ranges will require small steps and the RK5(4)7S will 
permit a substantial reduction in computing time 
provided only a modest global error is required. If high 
accuracy is needed the RK5(4)7S offers no advantage. 

5. CONCLUSIONS 

The above experiments justify our attempt to fred 
'minimum' truncation error formulae since the formula 
with the higher asymptotic applicability is most effi- 
cient. The extra degree of freedom obtained by allow- 
ing seven function evaluations for the lower order 
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formula  permits  lower  t runca t ion  terms at a pena l ty  
o f  the loss o f  one ext ra  evaluat ion when a step rejec- 
t ion occurs bu t  this seems to be worthwhi le .  I t  also 
allows the derivat ion o f  a practical  high stabili ty 
formula  RK5(4)7S.  
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