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1. Introduction

In numerical analysis many methods produce sequences, for instance iterative methods for solving
systems of equations, methods involving series expansions, discretization methods (that is methods
depending on a parameter such that the approximate solution tends to the exact one when the pa-
rameter tends to zero), perturbation methods, etc. Sometimes, the convergence of these sequences
is slow and their e�ective use is quite limited. Convergence acceleration methods consist of trans-
forming a slowly converging sequence (Sn) into a new sequence (Tn) converging to the same limit
faster than the initial one. Among such sequence transformations, the most well known are certainly
Richardson’s extrapolation algorithm and Aitken’s �2 process. All known methods are constructed
by extrapolation and they are often called extrapolation methods. The idea consists of interpolating
the terms Sn; Sn+1; : : : ; Sn+k of the sequence to be transformed by a sequence satisfying a certain
relationship depending on parameters. This set of sequences is called kernel of the transformation
and every sequence of this set is transformed into a constant sequence by the transformation into
consideration. For example, as we will see below, the kernel of Aitken’s �2 process is the set of
sequences satisfying ∀n; a0(Sn − S) + a1(Sn+1 − S) = 0, where a0 and a1 are parameters such that
a0 + a1 6= 0. If Aitken’s process is applied to such a sequence, then the constant sequence (Tn = S)
is obtained. The parameters involved in the de�nition of the kernel are uniquely determined by the
interpolation conditions and then the limit of the interpolating sequence of the kernel is taken as an
approximation of the limit of the sequence to be accelerated. Since this limit depends on the index
n, it will be denoted by Tn. E�ectively, the sequence (Sn) has been transformed into a new sequence
(Tn).
This paper, which is based on [31], but includes new developments obtained since 1995, presents

my personal views on the historical development of this subject during the 20th century. I do not
pretend to be exhaustive nor even to quote every important contribution (if a reference does not
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appear below, it does not mean that it is less valuable). I refer the interested reader to the literature
and, in particular to the recent books [55,146,33,144]. For an extensive bibliography, see [28].
I will begin with scalar sequences and then treat the case of vector ones. As we will see, a

sequence transformation able to accelerate the convergence of all scalar sequences cannot exist.
Thus, it is necessary to obtain many di�erent convergence acceleration methods, each being suitable
for a particular class of sequences. Many authors have studied the properties of these procedures and
proved some important classes of sequences to be accelerable by a given algorithm. Scalar sequence
transformations have also been extensively studied from the theoretical point of view.
The situation is more complicated and more interesting for vector sequences. In the case of a

sequence of vectors, it is always possible to apply a scalar acceleration procedure componentwise.
However, such a strategy does not take into account connections which may exist between the
various components, as in the important case of sequences arising from iterative methods for solving
a system of linear or nonlinear equations.

2. Scalar sequences

Let (Sn) be a scalar sequence converging to a limit S. As explained above, an extrapolation
method consists of transforming this sequence into a new one, (Tn), by a sequence transformation
T : (Sn)→ (Tn). The transformation T is said to accelerate the convergence of the sequence (Sn) if
and only if

lim
n→∞

Tn − S
Sn − S = 0:

We can then say that (Tn) converges (to S) faster than (Sn).
The �rst methods to have been used were linear transformations

Tn =
∞∑
i=0

aniSi; n= 0; 1; : : : ;

where the numbers ani are constants independent of the terms of the sequence (Sn). Such a linear
transformation is usually called a summation process and its properties are completely determined
by the matrix A=(ani). For practical reasons, only a �nite number of the coe�cients ani are di�erent
from zero for each n. Among such processes are those named after Euler, Cesaro and H�older. In
the case of linear methods, the convergence of the sequence (Tn) to S for any converging sequence
(Sn) is governed by the Toeplitz summability theorem; see [115] for a review. Examples of such
processes are

Tn =
1

n+ 1

n∑
i=0

Si

or

Tn =
1

k + 1

n+k∑
i=n

Si:

In the second case, the sequence (Tn) also depends on a second index, k, and the convergence has to
be studied either when k is �xed and n tends to in�nity, or when n is �xed and k tends to in�nity.
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With respect to convergence acceleration, summation processes are usually only able to accelerate
the convergence of restricted classes of sequences and this is why the numerical analysts of the
20th century turned their e�orts to nonlinear transformations. However, there is one exception:
Richardson’s extrapolation process.

2.1. Richardson’s process

It seems that the �rst appearance of a particular case of what is now called the Richardson ex-
trapolation process is due to Christian Huygens (1629–1695). In 1903, Robert Moir Milne (1873)
applied the idea of Huygens for computing � [101]. The same idea was exploited again by Karl
Kommerell (1871–1948) in his book of 1936 [78]. As explained in [143], Kommerell can be con-
sidered as the real discoverer of Romberg’s method although he used this scheme in the context of
approximating �.
Let us now come to the procedures used for improving the accuracy of the trapezoidal rule for

computing approximations to a de�nite integral. In the case of a su�ciently smooth function, the
error of this method is given by the Euler–Maclaurin expansion. In 1742, Colin Maclaurin (1698–
1746) [90] showed that its precision could be improved by forming linear combinations of the
results obtained with various stepsizes. His procedure can be interpreted as a preliminary version of
Romberg’s method; see [49] for a discussion.
In 1900, William Fleetwood Sheppard (1863–1936) used an elimination strategy in the Euler–

Maclaurin quadrature formula with hn = rnh and 1 = r0¡r1¡r2¡ · · · to produce a better approxi-
mation to the given integral [132].
In 1910, combining the results obtained with the stepsizes h and 2h, Lewis Fry Richardson (1881–

1953) eliminated the �rst term in a discretization process using central di�erences [119]. He called
this procedure the deferred approach to the limit or h2-extrapolation. The transformed sequence
(Tn) is given by

Tn =
h2n+1S(hn)− h2nS(hn+1)

h2n+1 − h2n
:

In a 1927 paper [120] he used the same technique to solve a 6th order di�erential eigenvalue problem.
His process was called (h2; h4)-extrapolation. Richardson extrapolation consists of computing the
value at 0, denoted by T (n)k , of the interpolation polynomial of the degree at most k, which passes
through the points (xn; Sn); : : : ; (xn+k ; Sn+k). Using the Neville–Aitken scheme for these interpolation
polynomials, we immediately obtain

T (n)k+1 =
xn+k+1T

(n)
k − xnT (n+1)k

xn+k+1 − xn
with T (n)0 = Sn.
Let us mention that Richardson referred to a 1926 paper by Nikolai Nikolaevich Bogolyubov

(born in 1909) and Nikolai Mitrofanovich Krylov (1879–1955) where the procedure (often called
the deferred approach to the limit) can already be found [11].
In 1955, Werner Romberg (born in 1909) was the �rst to use repeatedly an elimination approach

for improving the accuracy of the trapezoidal rule [121]. He himself refers to the book of Lothar
Collatz (1910–1990) of 1951 [50]. The procedure became widely known after the rigorous error
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analysis given in 1961 by Friedrich L. Bauer [3] and the work of Eduard L. Stiefel (1909–1978)
[138]. Romberg’s derivation of his process was heuristic. It was proved by Pierre-Jean Laurent in
1963 [81] that the process comes out from the Richardson process by choosing xn=h2n and hn=h0=2

n.
Laurent also gave conditions on the choice of the sequence (xn) in order that the sequences (T

(n)
k )

tend to S either when k or n tends to in�nity. Weaker conditions were given by Michel Crouzeix
and Alain L. Mignot in [52, pp. 52–55]. As we shall see below, extensions of Romberg’s method
to nonsmooth integrands leads to a method called the E-algorithm.
Applications of extrapolation to the numerical solution of ordinary di�erential equations were stud-

ied by H.C. Bolton and H.I. Scoins in 1956 [12], Roland Bulirsch and Josef Stoer in 1964–1966 [47]
and William B. Gragg [65] in 1965. The case of di�erence methods for partial di�erential equations
was treated by Guri�� Ivanovich Marchuk and V.V. Shaidurov [91]. Sturm–Liouville problems are
discussed in [117]. Finally, we mention that Heinz Rutishauser (1918–1970) pointed out in 1963
[122] that Romberg’s idea can be applied to any sequence as long as the error has an asymptotic
expansion of a form similar to the Euler–Maclaurin’s.
For a detailed history of the Richardson method, its developments and applications, see [57,77,143].

2.2. Aitken’s process and the �-algorithm

The most popular nonlinear acceleration method is certainly Aitken’s �2 process which is given
by

Tn =
SnSn+2 − S2n+1

Sn+2 − 2Sn+1 + Sn = Sn −
(Sn+1 − Sn)2

Sn+2 − 2Sn+1 + Sn ; n= 0; 1; : : :

The method was stated by Alexander Craig Aitken (1895–1967) in 1926 [1], who used it to ac-
celerate the convergence of Bernoulli’s method for computing the dominant zero of a polynomial.
Aitken pointed out that the same method was obtained by Hans von Naegelsbach (1838) in 1876
in his study of Furstenau’s method for solving nonlinear equations [104]. The process was also
given by James Clerk Maxwell (1831–1879) in his Treatise on Electricity and Magnetism of 1873
[95]. However, neither Naegelsbach nor Maxwell used it for the purpose of acceleration. Maxwell
wanted to �nd the equilibrium position of a pointer oscillating with an exponentially damped simple
harmonic motion from three experimental measurements. It is surprising that Aitken’s process was
known to Takakazu Seki (1642–1708), often considered the greatest Japanese mathematician. In his
book Katsuy�o Sanp�o, Vol. IV, he used this process to compute the value of �, the length of a chord
and the volume of a sphere. This book was written around 1680 but only published in 1712 by his
disciple Murahide Araki. Parts of it can be found in [73]. Let us mention that the Japanese characters
corresponding to Takakazu have another pronounciation which is K�owa. This is the reason why this
mathematician is often called, erroneously as in [29,31] Seki K�owa.
What makes Aitken’s process so popular is that it accelerates the convergence of all linearly

converging sequences, that is sequences such that ∃a 6= 1

lim
n→∞

Sn+1 − S
Sn − S = a:

It can even accelerate some logarithmic sequences (that is corresponding to a= 1) which are those
with the slowest convergence and the most di�cult to accelerate.
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Aitken’s �2 process is exact (which means that ∀n; Tn= S) for sequences satisfying, a0(Sn− S)+
a1(Sn+1 − S) = 0; ∀n; a0a1 6= 0; a0 + a1 6= 0. Such sequences form the kernel of Aitken’s process.
The idea naturally arose of �nding a transformation with the kernel

a0(Sn − S) + · · ·+ ak(Sn+k − S) = 0; ∀n;
a0ak 6= 0; a0 + · · · + ak 6= 0. A particular case of k = 2 was already treated by Maxwell in his
book of 1873 and a particular case of an arbitrary value of k was studied by T.H. O’Beirne in 1947
[107]. This last work remains almost unknown since it was published only as an internal report. The
problem was handled in full generality by Daniel Shanks (1917–1996) in 1949 [130] and again in
1955 [131]. He obtained the sequence transformation de�ned by

Tn = ek(Sn) =

∣∣∣∣∣∣∣∣∣

Sn Sn+1 · · · Sn+k
Sn+1 Sn+2 · · · Sn+k+1
...

...
...

Sn+k Sn+k+1 · · · Sn+2k

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
�2Sn · · · �2Sn+k−1
...

...
�2Sn+k−1 · · · �2Sn+2k−2

∣∣∣∣∣∣∣

:

When k = 1, Shanks transformation reduces to the Aitken’s �2 process. It can be proved that
ek(Sn)=S; ∀n if and only if (Sn) belongs to the kernel of the transformation given above. The same
ratios of determinants were obtained by R.J. Schmidt in 1941 [127] in his study of a method for
solving systems of linear equations.
The determinants involved in the de�nition of ek(Sn) have a very special structure. They are

called Hankel determinants and were studied by Hermann Hankel (1839–1873) in his thesis in
1861 [72]. Such determinants satisfy a �ve-term recurrence relationship. This relation was used
by O’Beirne and Shanks to implement the transformation by computing separately the numerators
and the denominators of the ek(Sn)’s. However, numerical analysts know it is di�cult to compute
determinants (too many arithmetical operations are needed and rounding errors due to the computer
often lead to a completely wrong result). A recursive procedure for computing the ek(Sn)’s without
computing the determinants involved in their de�nition was needed. This algorithm was obtained in
1956 by Peter Wynn. It is called the �-algorithm [147]. It is as follows. One starts with

�(n)−1 = 0; �(n)0 = Sn

and then

�(n)k+1 = �
(n+1)
k−1 +

1

�(n+1)k − �(n)k
:

Note that the numbers �(n)k ’s �ll out a two-dimensional array. The �-algorithm is related to Shanks
transformation by

�(n)2k = ek(Sn) and �(n)2k+1 = 1=ek(�Sn):

Thus, the �’s with an odd lower index are only auxiliary quantities. They can be eliminated from
the algorithm, thus leading to the so-called cross rule due to Wynn [153].
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When implementing the �-algorithm or using Wynn’s cross rule, division by zero can occur and
the algorithm must be stopped. However, if the singularity is con�ned, a term that will again be used
in Section 1.6, that is if it occurs only for some adjacent values of the indexes k and n, one may
jump over it by using singular rules and continue the computation. If a division by a number close
to zero arises, the algorithm becomes numerically unstable due to the cancellation errors. A similar
situation holds for the other convergence acceleration algorithms. The study of such problems was
initiated by Wynn in 1963 [151], who proposed particular rules for the �-algorithm which are more
stable than the usual rules. They were extended by Florent Cordellier in 1979 [51,151]. Particular
rules for the �-algorithm were obtained by Redivo Zaglia [155].
The convergence and acceleration properties of the �-algorithm have only been completely de-

scribed only for two classes of sequences, namely totally monotonic and totally oscillating sequences
[154,15,16].
Shanks’ transformation and the �-algorithm have close connections to Pad�e approximants, contin-

ued fractions and formal orthogonal polynomials; see, for example [18].

2.3. Subsequent developments

The Shanks transformation and the �-algorithm sparked the rebirth of the study of nonlinear ac-
celeration processes. They now form an independent chapter in numerical analysis with connections
to other important topics such as orthogonal and biorthogonal polynomials, continued fractions, and
Pad�e approximants. They also have applications to the solution of systems of linear and nonlinear
equations, the computation of the eigenvalues of a matrix, the solution of systems of linear and
nonlinear equations, and many other topics, see [40]. Among other acceleration methods which were
obtained and studied, are the W -process of Samuel Lubkin [89], the method of Kjell J. Overholt
[110], the �-algorithm of Wynn [148], the G-transformation of H.L. Gray, T.A. Atchison and G.V.
McWilliams [70], the �-algorithm of Claude Brezinski [14], the transformations of Bernard Germain–
Bonne [63] and the various transformations due to David Levin [85]. To my knowledge, the only
known acceleration theorem for the �-algorithm was obtained by Naoki Osada [108]. Simultane-
ously, several applications began to appear. For example, the �-algorithm provides a quadratically
convergent method for solving systems of nonlinear equations and its does not require the knowl-
edge of any derivative. This procedure was proposed simultaneously by Brezinski [13] and Eckhart
Gekeler [61]. It has important applications to the solution of boundary value problems for ordinary
di�erential equations [44]. Many other algorithms are given in the work of Ernst Joachim Weniger
[145], which also contains applications to physics, or in the book of Brezinski and Michela Re-
divo Zaglia [40] where applications to various domains of numerical analysis can be found. The
authors of this book provide FORTRAN subroutines. The book of Annie Cuyt and Luc Wuytack
must also be mentioned [53]. The �-algorithm has been applied to statistics, see the work of Alain
Berlinet [9], and to the acceleration of the convergence of sequences of random variables, consid-
ered by H�el�ene Lavastre [82]. Applications to optimization were proposed by Le Ferrand [84] and
Bouchta Rhanizar [118].
Instead of using a quite complicated algorithm, such as the �-algorithm, it can be interesting

to use a simpler one (for instance, Aitken’s �2 process) iteratively. Such a use consists of ap-
plying the algorithm to (Sn) to produce a new sequence (Tn), then to apply the same algorithm
to (Tn), and so on. For example, applying the iterated �2 process to the successive convergents
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of a periodic continued fraction produces a better acceleration than using the �-algorithm [24]. In
particular, the iterated �2 process transforms a logarithmic sequence into a sequence converging
linearly and linear convergence into superlinear, to my knowledge the only known cases of such
transformations.
The experience gained during these years lead to a deeper understanding of the subject. Research

workers began to study more theoretical and general questions related to the theory of conver-
gence acceleration. The �rst attempt was made by R. Pennacchi in 1968 [114], who studied rational
sequence transformations. His work was generalized by Germain–Bonne in 1973 [62], who pro-
posed a very general framework and showed how to construct new algorithms for accelerating some
classes of sequences. However, a ground breaking discovery was made by Jean Paul Delahaye and
Germain–Bonne in 1980 [56]. They proved that if a set of sequences satis�es a certain property,
called remanence (too technical to be explained here), then a universal algorithm, i.e. one able to
accelerate all sequences of this set, cannot exist. This result shows the limitations of acceleration
methods. Many sets of sequences were proved to be remanent, for example, the sets of monotonic
or logarithmic sequences. Even some subsets of the set of logarithmic sequences are remanent.
Moulay Driss Benchiboun [5] observed that all the sequence transformations found in the literature

could be written as

Tn =
f(Sn; : : : ; Sn+k)
Df(Sn; : : : ; Sn+k)

with D2f ≡ 0, where Df denotes the sum of the partial derivatives of the function f. The reason
for that fact was explained by Brezinski [26], who showed that it is related to the translativity
property of sequence transformations. Hassane Sadok [123] extended these results to the vector case.
Abderrahim Benazzouz [7] proved that quasilinear transformations can be written as the composition
of two projections.
In many transformations, such as Shanks’, the quantities computed are expressed as a ratio of

determinants. This property is related to the existence of a triangular recurrence scheme for their
computation as explained by Brezinski and Guido Walz [46].
Herbert Homeier [74] studied a systematic procedure for constructing sequences transformations.

He considered iterated transformations which are hierarchically consistent, which means that the
kernel of the basic transformation is the lowest one in the hierarchy. The application of the basic
transformation to a sequence which is higher in the hierarchy leads to a new sequence belonging to
a kernel lower in the hierarchy. Homeier wrote several papers on this topics.
Thus, the theory of convergence acceleration methods has progressed impressively. The practical

side was not forgotten and authors obtained a number of special devices for improving their e�-
ciency. For example, when a certain sequence is to be accelerated, it is not obvious to know in
advance which method will give the best result unless some properties of the sequence are already
known. Thus, Delahaye [54] proposed using simultaneously several transformations and selecting,
at each step of the procedure, one answer among the answers provided by the various algorithms.
He proved that, under some assumptions, some tests are able to �nd automatically the best answer.
The work of Delahaye was extended by Abdelhak Fdil [58,59]. The various answers could also be
combined leading to composite transformations [23]. It is possible, in some cases, to extract a linear
subsequence from the original one and then to accelerate it, for example, by Aitken’s �2 process
[37]. Devices for controlling the error were also constructed [21].
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When faced with the problem of accelerating the convergence of a given sequence, two approaches
are possible. The �rst is to use a known extrapolation procedure and to try to prove that it acceler-
ates the convergence of the given sequence. The second possibility is to construct an extrapolation
procedure especially for that sequence. Convergence tests for sequences and series can be used for
that purpose as explained by Brezinski [25]. This approach was mostly developed by Ana Cristina
Matos [92]. Special extrapolation procedures for sequences such that ∀n; Sn−S=anDn, where (Dn) is
a known sequence and (an) an unknown one, can also be constructed from the asymptotic properties
of the sequences (an) and (Dn). Brezinski and Redivo Zaglia did this in [39].
A.H. Bentbib [10] considered the acceleration of sequences of intervals. Mohammed Senhadji

[129] de�ned and studied the condition number of a sequence transformation.

2.4. The E-algorithm

As we see above, the quantities involved in Shanks transformation are expressed as a ratio of
determinants and the �-algorithm allows one to compute them recursively. It is well known that an
interpolation polynomial can be expressed as a ratio of determinants. Thus polynomial extrapolation
also leads to such a ratio and the Neville–Aitken scheme can be used to avoid the computation of
these determinants which leads to the Richardson extrapolation algorithm. A similar situation arises
for many other transformations: in each case, the quantities involved are expressed as a ratio of
special determinants and, in each case, one seeks for a special recursive algorithm for the practical
implementation of the transformation. Thus, there was a real need for a general theory of such
sequence transformations and for a single general recursive algorithm for their implementation. This
work was performed independently between 1973 and 1980 by �ve di�erent people. It is now known
as the E-algorithm.
It seems that the �rst appearance of this algorithm is due to Claus Schneider in a paper received

on December 21, 1973 [128]. The quantities S(hi) being given for i = 0; 1; : : :, Schneider looked
for S ′(h) = S ′ + a1g1(h) + · · · + akgk(h) satisfying the interpolation conditions S ′(hi) = S(hi) for
i = n; : : : ; n + k, where the gj’s are given functions of h. Of course, the value of the unknown S ′

thus obtained will depend on the indexes k and n. Assuming that ∀j; gj(0) = 0, we have S ′ = S ′(0).
Denoting by �nk the extrapolation functional on the space of functions f de�ned at the points
h0¿h1¿ · · ·¿ 0 and at the point 0 and such that �nkf = f(0), we have

�nkS
′ = c0S(hn) + · · ·+ ckS(hn+k)

with c0 + · · ·+ ck = 1. The interpolation conditions become
�nkE = 1; and �nkgj = 0; j = 1; : : : ; k

with E(h) ≡ 1. Schneider wanted to express the functional �nk in the form �nk = a�
n
k−1 + b�

n+1
k−1. He

obtained the two conditions
�nkE = a+ b= 1

and

�nkgk = a�
n
k−1gk + b�

n+1
k−1gk = 0:

The values of a and b follow immediately and we have

�nk =
[�n+1k−1gk]�

n
k−1 − [�nk−1gk]�n+1k−1

[�n+1k−1gk]− [�nk−1gk]
:



C. Brezinski / Journal of Computational and Applied Mathematics 122 (2000) 1–21 9

Thus, the quantities �nkS
′ can be recursively computed by this scheme. The auxiliary quantities

�nkgj needed in this formula must be computed separately by the same scheme using a di�erent
initialization. As we shall see below, this algorithm is just the E-algorithm. In a footnote, Schneider
mentioned that this representation for �nk was suggested by B�orsch–Supan from Johannes Gutenberg
Universit�at in Mainz.
In 1976, G�unter Meinardus and G.D. Taylor wrote a paper [97] on best uniform approximation

by functions from span(g1; : : : ; gN )⊂C[a; b]. They de�ned the linear functionals Lkn on C[a; b] by

Lkn(f) =
n+k∑
i=n

cif(hi);

where a6h1¡h2¡ · · ·¡hN+16b and where the coe�cients ci, which depend on n and k, are such
that cn ¿ 0; ci 6= 0 for i = n; : : : ; n+ k, sign ci = (−1)i−n and

n+k∑
i=n

|ci|= 1;

n+k∑
i=n

cigj(hi) = 0; j = 1; : : : ; k:

By using Gaussian elimination to solve the system of linear equations
N∑
i=n

aigi(hj) + (−1) j�= f(hj); j = 1; : : : ; k;

Meinardus and Taylor obtained a recursive scheme

Lki (f) =
Lk−1i+1 (gk)L

k−1
i (f)− Lk−1i (gk)Lk−1i+1 (f)
Lk−1i+1 (gk)− Lk−1i (gk)

with L0i (f) = f(hi); i = n; : : : ; n+ k. This is the same scheme as above.
Newton’s formula for computing the interpolation polynomial is well known. It is based on di-

vided di�erences. One can try to generalize these formulae to the case of interpolation by a linear
combination of functions from a complete Chebyshev system (a technical concept which insures the
existence and uniqueness of the solution). We seek

P(n)k (x) = a0g0(x) + · · ·+ akgk(x);
satisfying the interpolation conditions

P(n)k (xi) = f(xi); i = n; : : : ; n+ k;

where the xi’s are distinct points and the gi’s given functions. The P
(n)
k can be recursively computed

by an algorithm which generalizes the Neville–Aitken scheme for polynomial interpolation. This
algorithm was obtained by G�unter M�uhlbach in 1976 [103] from a generalization of the notion
of divided di�erences and their recurrence relationship. This algorithm was called the M�uhlbach–
Neville–Aitken algorithm, for short the MNA. It is as follows:

P(n)k (x) =
g(n+1)k−1; k(x)P

(n)
k−1(x)− g(n)k−1; k(x)P(n+1)k−1 (x)

g(n+1)k−1; k(x)− g(n)k−1; k(x)
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with P(n)0 (x)=f(xn)g0(x)=g0(xn). The g
(n)
k; i ’s can be recursively computed by a quite similar relation-

ship

g(n)k; i (x) =
g(n+1)k−1; k(x)g

(n)
k−1; i(x)− g(n)k−1; k(x)g(n+1)k−1; i(x)

g(n+1)k−1; k(x)− g(n)k−1; k(x)
with g(n)0; i (x) = gi(xn)g0(x)=g0(xn) − gi(x). If g0(x) ≡ 1, if it is assumed that ∀i¿ 0; gi(0) = 0, the
quantities P(n)k (0) are the same as those obtained by the E-algorithm and the MNA reduces to it.
Let us mention that, in fact, the MNA is closely related to the work of Henri Marie Andoyer
(1862–1929) which goes back to 1906 [2]; see [30] for detailed explanations.
We now come to the work of Tore H�avie. We already mentioned Romberg’s method for ac-

celerating the convergence of the trapezoidal rule. The success of this procedure is based on the
existence of the Euler–Maclaurin expansion for the error. This expansion only holds if the function
to be integrated has no singularity in the interval. In the presence of singularities, the expansion of
the error is no longer a series in h2 (the stepsize) but a more complicated one depending on the
singularity. Thus, Romberg’s scheme has to be modi�ed to incorporate the various terms appearing
in the expansion of the error. Several authors worked on this question, treating several types of
singularities. In particular, H�avie began to study this question under Romberg (Romberg emigrated
to Norway and came to Trondheim in 1949). In 1978, H�avie wrote a report, published one year
later [71], where he treated the most general case of an error expansion of the form

S(h)− S = a1g1(h) + a2g2(h) + · · · ;
where S(h) denotes the approximation obtained by the trapezoidal rule with step size h to the de�nite
integral S and the gi are the known functions (forming an asymptotic sequence when h tends to
zero) appearing in the expansion of the error. Let h0¿h1¿ · · ·¿ 0; Sn = S(hn) and gi(n) = gi(hn).
H�avie set

E(n)1 =
g1(n+ 1)Sn − g1(n)Sn+1
g1(n+ 1)− g1(n) :

Replacing Sn and Sn+1 by their expansions, he obtained

E(n)1 = S + a2g
(n)
1;2 + a3g

(n)
1;3 + · · ·

with

g(n)1; i =
g1(n+ 1)gi(n)− g1(n)gi(n+ 1)

g1(n+ 1)− g1(n) :

The same process can be repeated for eliminating g(n)1;2 in the the expansion of E
(n)
1 , and so on. Thus,

once again we obtain the E-algorithm

E(n)k =
g(n+1)k−1; kE

(n)
k−1 − g(n)k−1; kE(n+1)k−1

g(n+1)k−1; k − g(n)k−1; k
with E(n)0 = Sn and g

(n)
0; i = gi(n). The auxiliary quantities g

(n)
k; i are recursively computed by the quite

similar rule

g(n)k; i =
g(n+1)k−1; kg

(n)
k−1; i − g(n)k−1; kg(n+1)k−1; i
g(n+1)k−1; k − g(n)k−1; k

with g(n)0; i = gi(n).
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H�avie gave an interpretation of this algorithm in terms of the Gaussian elimination process for
solving the system

E(n)k + b1g1(n+ i) + · · ·+ bkgk(n+ i) = Sn+i ; i = 0; : : : ; k

for the unknown E(n)k .
In 1980, Brezinski took up the same problem, but from the point of view of extrapolation [19].

Let (Sn) be the sequence to be accelerated. Interpolating it by a sequence of the form S ′n = S +
a1g1(n)+ · · ·+akgk(n), where the gi’s are known sequences which can depend on the sequence (Sn)
itself, leads to

Sn+i = S ′n+i ; i = 0; : : : ; k:

Solving this system directly for the unknown S (which, since it depends on n and k, will be denoted
by E(n)k ) gives

E(n)k =

∣∣∣∣∣∣∣∣∣

Sn · · · Sn+k
g1(n) · · · g1(n+ k)
...

...
gk(n) · · · gk(n+ k)

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

1 · · · 1
g1(n) · · · g1(n+ k)
...

...
gk(n) · · · gk(n+ k)

∣∣∣∣∣∣∣∣∣

:

Thus E(n)k is given as a ratio of determinants which is very similar to the ratios previously mentioned.
Indeed, for the choice gi(n)=�Sn+i, the ratio appearing in Shanks transformation results while, when
gi(n) = xin, we obtain the ratio expressing the quantities involved in the Richardson extrapolation
process. Other algorithms may be similarly derived.
Now the problem is to �nd a recursive algorithm for computing the E(n)k ’s. Applying Sylvester’s

determinantal identity, Brezinski obtained the two rules of the above E-algorithm. His derivation
of the E-algorithm is closely related to H�avie’s since Sylvester’s identity can be proved by using
Gaussian elimination. Brezinski also gave convergence and acceleration results for this algorithm
when the (gi(n)) satisfy certain conditions [19]. These results show that, for accelerating the con-
vergence of a sequence, it is necessary to know the expansion of the error Sn − S with respect to
some asymptotic sequence (g1(n)); (g2(n)); : : : : The gi(n) are those to be used in the E-algorithm. It
can be proved that, ∀k

lim
n→∞

E(n)k+1 − S
E(n)k − S = 0:

These results were re�ned by Avram Sidi [134–136]. Thus the study of the asymptotic expansion of
the error of the sequences to be accelerated is of primary importance, see Walz [144]. For example,
Mohammed Kzaz [79,80] and Pierre Verlinden [142] applied this idea to the problem of accelerating
the convergence of Gaussian quadrature formulae [79] and Pedro Lima and Mario Gra�ca to boundary
value problems with singularities [88,87] (see also the works of Lima and Diogo [87], and Lima and
Carpentier [86]). Other acceleration results were obtained by Matos and Marc Pr�evost [94], Pr�evost
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[116] and Pascal Mortreux and Pr�evost [102]. An algorithm, more economical than the E-algorithm,
was given by William F. Ford and Avram Sidi [60]. The connection between the E-algorithm and
the �-algorithm was studied by Bernhard Beckermann [4]. A general �-algorithm connected to the
E-algorithm was given by Carsten Carstensen [48]. See [27] for a more detailed review on the
E-algorithm.
Convergence acceleration algorithms can also be used for predicting the unknowns terms of a

series or a sequence. This idea, introduced by Jacek Gilewicz [64], was studied by Sidi and Levin
[137], Brezinski [22] and Denis Vekemans [141].

2.5. A new approach

Over the years, a quite general framework was constructed for the theory of extrapolation algo-
rithms. The situation was quite di�erent for the practical construction of extrapolation algorithms
and there was little systematic research in their derivation. However, thanks to a formalism due to
Weniger [145], such a construction is now possible, see Brezinski and Matos [38]. It is as follows.
Let us assume that the sequence (Sn) to be accelerated satis�es, ∀n; Sn − S = anDn where (Dn) is a
known sequence, called a remainder (or error) estimate for the sequence (Sn), and (an) an unknown
sequence. It is possible to construct a sequence transformation such that its kernel is precisely this
set of sequences. For that purpose, we have to assume that a di�erence operator L (that is a linear
mapping of the set of sequences into itself) exists such that ∀n; L(an) = 0. This means that the
sequence obtained by applying L to the sequence (an) is identically zero. Such a di�erence operator
is called an annihilation operator for the sequence (an). We have

Sn
Dn

− S
Dn
= an:

Applying L and using linearity leads to

L
(
Sn
Dn

)
− SL

(
1
Dn

)
= L(an) = 0:

We solve for S and designate it by the sequence transformation

Tn =
L(Sn=Dn)
L(1=Dn)

:

The sequence (Tn) is be such that ∀n; Tn=S if and only if ∀n; Sn−S=anDn. This approach is highly
versatile.
All the algorithms described above and the related devices such as error control, composite se-

quence transformations, least squares extrapolation, etc., can be put into this framework. Moreover,
many new algorithms can be obtained using this approach. The E-algorithm can also be put into this
framework which provides a deeper insight and leads to new properties [41]. Matos [93], using re-
sults from the theory of di�erence equations, obtained new and general convergence and acceleration
results when (an) has an asymptotic expansion of a certain form.

2.6. Integrable systems

The connection between convergence acceleration algorithms and discrete integrable systems is a
subject whose interest is rapidly growing among physicists. When a numerical scheme is used for
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integrating a partial di�erential evolution equation, it is important that it preserves the quantities that
are conserved by the partial di�erential equation itself. An important character is the integrability
of the equation. Although this term has not yet received a completely satisfactory de�nition (see
[66]), it can be understood as the ability to write the solution explicitly in terms of a �nite number
of functions or as the con�nement of singularities in �nite domains. The construction of integrable
discrete forms of integrable partial di�erential equations is highly nontrivial. A major discovery in
the �eld of integrability was the occurrence of a solitary wave (called a soliton) in the Korteweg–
de Vries (KdV) equation. Integrability is a rare phenomenon and the typical dynamical system is
nonintegrable. A test of integrability, called singularity con�nement, was given by B. Grammaticos,
A. Ramani and V. Papageorgiou [67]. It turns out that this test is related to the existence of singular
rules for avoiding a division by zero in convergence acceleration algorithms (see Section 1.2).
The literature on this topic is vast and we cannot enter into the details of it. We only want to

give an indication of the connection between these two subjects since both domains could bene�t
from it.
In the rule for the �-algorithm, V. Papageorgiou, B. Grammaticos and A. Ramani set m = k + n

and replaced �(n)k by u(n; m) + mp+ nq, where p and q satisfy p2 − q2 = 1. They obtained [111]
[p− q+ u(n; m+ 1)− u(n+ 1; m)][p+ q+ u(n+ 1; m+ 1)− u(n; m)] = p2 − q2:

This is the discrete lattice KdV equation. Since this equation is integrable, one can expect integrability
to hold also for the �-algorithm, and, thanks to the singular rules of Wynn and Cordellier mentioned
at the end of Subsection 1.2, this is indeed the case.
In the rule of the �-algorithm, making the change of variable k = t=�3 and n − 1=2 = x=� − ct=�3

and replacing �(n)k by p+ �2u(x − �=2; t) where c and p are related by 1− 2c= 1=p2, A. Nagai and
J. Satsuma obtained [105]

�2u(x − �=2 + c�; t + �3)− �2u(x + �=2− c�; t − �3) = 1
p+ �2u(x + �=2; t)

− 1
p+ �2u(x − �=2; t) :

We have, to terms of order �5, the KdV equation

ut − 1
p3
uux +

1
48p2

(1− p−4)uxxx = 0:

Other discrete numerical algorithms, such as the qd, LR, and �-algorithms are connected to other
discrete or continuous integrable equations (see, for example [112]). Formal orthogonal polynomials,
continued fractions, Pad�e approximation also play a rôle in this topic [113].
By replacing the integer n in the �-algorithm by a continuous variable, Wynn derived the con
uent

form of the �-algorithm [149]

�k+1(t) = �k−1(t) +
1
�′k(t)

with �−1(t) ≡ 0 and �0(t) = f(t). This algorithm is the continuous counterpart of the �-algorithm
and its aim is to compute limt→∞f(t). Setting Nk(t) = �′k(t)�

′
k+1(t), A. Nagai, T. Tokihiro and

J. Satsuma [106] obtained

N ′
k(t) = Nk(t)[Nk−1(t)− Nk+1(t)]:

The above equation is the B�acklund transformation of the discrete Toda molecule equation [139].
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So, we see that some properties of integrable systems are related to properties of convergence
acceleration algorithms. On the other hand, discretizing integrable partial di�erential equations leads
to new sequence transformations which have to be studied from the point of view of their algebraic
and acceleration properties. Replacing the second integer k in the con
uent form of the �-algorithm by
a continuous variable, Wynn obtained a partial di�erential equation [152]. Its relation with integrable
systems is an open question.
The connection between integrable systems and convergence acceleration algorithms needs to be

investigated in more details to fully understand its meaning which is not clear yet.

3. The vector case

In numerical analysis, many iterative methods lead to vector sequences. To accelerate the conver-
gence of such sequences, it is always possible to apply a scalar algorithm componentwise. However,
vector sequence transformations, specially built for that purpose, are usually more powerful. The
�rst vector algorithm to be studied was the vector �-algorithm. It was obtained by Wynn [150] by
replacing, in the rule of the scalar �-algorithm, 1=��(n)k by (��(n)k )

−1 where the inverse y−1 of a
vector y is de�ned by y−1 = y=(y; y). Thus, with this de�nition, the rule of the �-algorithm can be
applied to vector sequences. Using Cli�ord algebra, J.B. McLeod proved in 1971 [96] that ∀n; �(n)2k =S
if the sequence (Sn) satis�es a0(Sn−S)+ · · ·+ak(Sn+k−S)=0; ∀n with a0ak 6= 0; a0 + · · ·+ak 6= 0.
This result is only valid for real sequences (Sn) and real ai’s. Moreover, contrary to the scalar case,
this condition is only su�cient. In 1983, Peter R. Graves–Morris [68] extended this result to the
complex case using a quite di�erent approach.
A drawback to the development of the theory of the vector �-algorithm was that it was not known

whether a corresponding generalization of Shanks transformation was underlying the algorithm, that
is whether the vectors �(n)k obtained by the algorithm could be expressed as ratios of determinants
(or some kind of generalization of determinants). This is why Brezinski [17], following the same
path as Shanks, tried to construct a vector sequence transformation with the kernel a0(Sn−S)+ · · ·+
ak(Sn+k − S) = 0. He obtained a transformation expressed as a ratio of determinants. He then had
to develop a recursive algorithm for avoiding their computation. This was the so-called topological
�-algorithm. This algorithm has many applications, in particular, to the solution of systems of linear
equations (it is related to the biconjugate gradient algorithm [18, pp. 185�]). In the case of a
system of nonlinear equations, it gave rise to a generalization of Ste�ensen’s method [13]. That
algorithm has a quadratic convergence under some assumptions as established by Herv�e Le Ferrand
[83] following the ideas presented by Khalide Jbilou and Sadok [75]. The denominator of the vector
�(n)2k obtained by the vector �-algorithm was �rst written as a determinant of dimension 2k + 1 by
Graves–Morris and Chris Jenkins in [69]. The numerator follows immediately by modifying the �rst
row of the denominator, a formula given by Ahmed Salam and Graves–Morris [126]. However, the
dimension of the corresponding determinants in the scalar case is only k + 1. It was proved by
Salam [124] that the vectors �(n)2k computed by the vector �-algorithm can be expressed as a ratio of
two designants of dimension k + 1. A designant is a generalization of a determinant when solving
a system of linear equations in a noncommutative algebra. An algebraic approach to this algorithm
was given in [125]. This approach, which involves the use of a Cli�ord algebra, was used in [45]
for extending the mechanism given in [41] to the vector and matrix cases. The vector generalization
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of the E-algorithm [19] can be explained similarly. This algorithm makes use of a �xed vector
y. Jet Wimp [146, pp. 176–177] generalized it using a sequence (yn) instead of y. Jeannette van
Iseghem [140] gave an algorithm for accelerating vector sequences based on the vector orthogonal
polynomials she introduced for generalizing Pad�e approximants to the vector case. Other vector
sequence transformations are due to Osada [109] and Jbilou and Sadok [76]. Benchiboun [6] and
Abderrahim Messaoudi [100] studied matrix extrapolation algorithms.
We have seen that, in the scalar case, the kernels of sequence transformations may be expressed

as relationships with constant coe�cients. This is also the case for the vector and the topological
�-algorithms and the vector E-algorithm. The �rst (and, to my knowledge, only) transformation
treating a relationship with varying coe�cients was introduced in [42]. The theory developed there
also explains why the case of a relationship with non-constant coe�cients is a di�cult problem in
the scalar case and why it could be solved, on the contrary, in the vector case. The reason is that
the number of unknown coe�cients appearing in the expression of the kernel must be strictly less
than the dimension of the vectors. Brezinski in [34] proposed a general methodology for constructing
vector sequence transformations. It leads to a uni�ed presentation of several approaches to the subject
and to new results. He also discussed applications to linear systems. In fact, as showed by Sidi [133],
and Jbilou and Sadok [75], vector sequence transformations are closely related to projection methods
for the solution of systems of equations. In particular, the RPA, a vector sequence transformation
de�ned by Brezinski [20] was extensively studied by Messaoudi who showed its connections to
direct and iterative methods for solving systems of linear equations [98,99].
Vector sequence transformations lead to new methods for the solution of systems of nonlinear

equations. They also have other applications. First of all, it is quite important to accelerate the con-
vergence of iterative methods for the solution of systems of linear equations, see [32,33,36]. Special
vector extrapolation techniques were designed for the regularization of ill-posed linear systems in
[43] and the idea of extrapolation was used in [35] to obtain estimates of the norm of the error
when solving a system of linear equations by an arbitrary method, direct or iterative.
General theoretical results similar to those obtained in the scalar case are still lacking in the vector

case although some partial results have been obtained. Relevant results on quasilinear transformations
are in the papers by Sadok [123] and Benazzouz [8]. The present author proposed a mechanism for
vector sequence transformations in [45,34].

4. Conclusions and perspectives

In this paper, I have tried to give a survey of the development of convergence acceleration
methods for scalar and vector sequences in the 20th century. These methods are based on the idea
of extrapolation. Since a universal algorithm for accelerating the convergence of all sequences cannot
exist (and this is even true for some restricted classes of sequences), it was necessary to de�ne and
study a large variety of algorithms, each of them being appropriate for some special subsets of
sequences.
It is, of course, always possible to construct other convergence acceleration methods for scalar

sequences. However, to be of interest, such new processes must provide a major improvement
over existing ones. For scalar sequence transformations, the emphasis must be placed on the theory
rather than on special devices (unless a quite powerful one is found) and on the application of new
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methods to particular algorithms in numerical analysis and to various domains of applied sciences. In
particular, the connection between convergence acceleration algorithms and continuous and discrete
integrable systems brings a di�erent and fresh look to both domains and could be of bene�t to them.
An important problem in numerical analysis is the solution of large, sparse systems of linear

equations. Most of the methods used nowadays are projection methods. Often the iterates obtained
in such problems must be subject to acceleration techniques. However, many of the known vector
convergence acceleration algorithms require the storage of too many vectors to be useful. New
and cheaper acceleration algorithms are required. This di�cult project, in my opinion, o�ers many
opportunities for future research.
In this paper, I only brie
y mentioned the con
uent algorithms whose aim is the computation of

the limit of a function when the variable tends to in�nity (the continuous analog of the problem
of convergence acceleration for a sequence). This subject and its applications will provide fertile
ground for new discoveries.
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