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Abstract

We calculate the nuclear part of the deuteron anapole moment with the wave functions obtained from the Argonnev18
nucleon–nucleon interaction model. The anapole moment operators are considered at the leading order. To minimize the
uncertainty due to a lack of current conservation, we calculate the matrix element of the anapole moment from the original
definition. In virtue of accurate wave functions, we can obtain a more precise value of the deuteron anapole moment which
contains less uncertainty than the former works. We obtain a result reduced by more than 25% in the magnitude of the deuteron
anapole moment. The reduction of individual nuclear contributions is much more important however, varying from a factor 2
for the spin part to a factor 4 for the convection and associated two-body currents.
 2002 Elsevier Science B.V.

1. Introduction

After Zel’dovich introduced the concept of the ana-
pole moment (AM) [1], a first non-zero measurement
was reported quite recently in the133Cs atom [2]. Iso-
lation of the effect is difficult because the AM has a
small contribution compared to the leading orderZ0

exchange in atomic physics. However, the part that
involves the nuclear spin is suppressed by a factor
1 − 4 sinθ2

w (∼ 0.08). Thus in some cases, the AM
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which is a higher order effect in electro-weak interac-
tions can be comparable with the spin-dependentZ0

contribution. Flambaum and Khriplovich showed that
the AM of a heavy nucleus is proportional toA2/3 [3],
from which one can deduce the dominance of the AM
overZ0 exchange or radiative corrections for largeA.
Since then, calculations of the AM of heavy nuclei
have been the object of the major interest in the the-
oretical works of the domain [3–7].

The dominant nuclear structure dependent con-
tribution to the AM of a light system, namely the
deuteron, was pointed out by one of the authors [8].
The spin current which stems from the anomalous
magnetic moment of the nucleon was expected to
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give a few times larger contribution than the con-
vection current or exchange currents and it was ver-
ified in several papers [9–12]. These contributions
appear beside those from the nucleon anapole mo-
ment [13], which in some cases have the same or-
der. Moreover, when entering a physical process, they
cannot be disentangled from other radiative correc-
tions [13].

Khriplovich and Korkin (KK in short) calculated
the AM of the deuteron analytically with the zero-
range-approximated (ZRA) wave functions [11]. Their
result of the spin-current term, which is the most
dominant contribution to the AM of the deuteron, has
exactly the same form as the one obtained from the
framework of the effective field theory by Savage and
Springer (SS in short) [10]. The error of the result,
which may be mainly from the simple wave functions,
is estimated to be about 20%. However, in recent
calculations of the asymmetry in the process,�n+p →
d + γ , we showed that the ZRA (or the effective field
theory [14]) result exceeds the ones obtained with a
few phenomenological wave functions by more than
50% [15,16]. With this observation, it may be possible
that the error of the deuteron AM with ZRA wave
functions can be larger than 20%. With the purpose
to minimize theoretical uncertainties, we calculate the
deuteron AM with the wave functions obtained from
the Argonnev18 (Av18) potentials [17].

The low momentum transfer which characterizes
the process makes it possible to treat the problem with
heavy-baryon-chiral-perturbation theory (HBChPT).
With the counting rules of HBChPT, one can ob-
tain the transition operators order-by-order in a well-
defined way. In this Letter, we consider the leading
order operators that contribute to the deuteron ana-
pole moment. The matrix elements of the operators
are evaluated very accurately with the phenomenolog-
ical wave functions obtained from the Av18 model.
Therefore the error of the calculation is dominantly
from the higher order operators that are not taken into
consideration. This hybrid method will delineate short
range corrections to the leading order terms which
were treated approximately in the former works. For
the quantity of interest here, we expect the accuracy to
be of the order of the discrepancy between two differ-
ent calculations of the parity-non-conserving (PNC)
asymmetry in the neutron–proton radiative capture,
roughly 10% [16].

2. The anapole moment

The anapole moment of a system is obtained from
the expansion of the vector-potential

(1)Ai (x)=
∫

dx′ ji (x′)
|x − x′|

in a series inx−1 (x ≡ |x|). The quantityj is the matrix
element of the current density operator for given initial
and final states

(2)j = 〈ψf |ĵ|ψi〉.
The zeroth order term vanishes since there is no
net current and the first order term gives the vector
potential of the magnetic dipole. The second order
can be separated into a magnetic quadrupole term and
the anapole term. After some algebra, one obtains the
following form of the anapole term1

(3)a ≡ 2π

3

∫
dx x × (

x × j(x)
)

with which the vector potential of the anapole moment
reads

(4)Aanapole(x)= 1

4π

(
−a∇2 1

x
+ a · ∇∇ 1

x

)
.

The second term ofAanapole can be removed by a
suitable choice of gauge and the resultant anapole
vector potential takes the form

(5)Aanapole(x)= a δ(3)(x).

If current conservation is satisfied, Eq. (3) can also be
written as

(6)a = −π

∫
dxx2j(x).

In many calculations of the nuclear AM, Eq. (6)
was adopted as the working definition of the AM.
However, as shown in [7], the contribution of a current
term depends strongly on this definition while the
total result may be sensitive on fulfilling the current-
conservation constraint. The situation becomes more
uncertain for the exchange currents or higher order
terms. Thus in order to avoid possible large effect

1 While we have the AM in fm2, a dimensionless definition
favored by other groups can be obtained by multiplying ours by
m2
N
/4π .
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on the result due to lack of current conservation, we
preferentially adopt in our calculations the original
definition, Eq. (3). We nevertheless stress that we
include in our work a minimal set of two-body currents
ensuring current conservation in relation with the PNC
one-pion exchange interaction. This one (together with
the PC part) turns out to be essential in ensuring the
approximate equivalence of Eq. (6) with Eq. (3), as
will be seen at the end of the Letter.

3. Operators and wave function

In the HBChPT, one can specify the magnitude of
a diagram in terms of the power(ν) of the momentum
transfer(Q) by the rule

(7)ν = 2L− 2(C − 1)− 1+
∑
i

νi,

where

(8)νi = di + ni

2
+ ei − 2.

L is the number of loops,C is the number of
disconnected lines,di , ni and ei are the numbers of
derivatives, nucleon lines and external gauge fields at
the vertexi, respectively. All the strong and electro-
magnetic vertices satisfy

(9)νi � 0

but the leading PNC vertex [18]

(10)L(1)
πNN = −h

(1)
πNN√

2
N†(�τ × �π)zN

hasνi = −1. One can easily verify that the standard
one-body and PNC two-body currents in Fig. 1 have

(a)

(b)

Fig. 1. Diagrams representing one and two-body electromagnetic
contributions.

ν = −2. Leading one-body currents (Fig. 1(a)) are
composed of spin and convection currents and PNC
exchange contributions are in Fig. 1(b). The leading
PNC vertex marked with× is from Eq. (10). The
current density operators of each diagram are

(11)ĵspin(x)= e

2∑
i=1

µi
N

2mN

∇x × (�σiδ(3)(x − ri )
)
,

(12)ĵcovn(x)= e

2∑
i=1

1+ τ zi

4mN

{
pi , δ(3)(x − ri )

}
,

(13)

ĵpair(x)= −e
gAh

(1)
πNN

2
√

2fπ

(�τ1 · �τ2 − τ z1τ
z
2

)
y0(r12)

×
2∑

i=1

�σiδ(3)(x − ri ),

(14)

ĵpion(x)= −e
gAh

(1)
πNN

2
√

2fπ

(�τ1 · �τ2 − τ z1τ
z
2

)

× (�σ1 · �∂1 − �σ2 · �∂2)(�∂1 − �∂2)

× y0(r1x)y0(r2x),

wherer12 ≡ |r1 − r2|, rix ≡ |ri − x| and

y0(r)≡ e−mπ r

4πr
.

µi
N is defined as

µi
N ≡ 1

2

(
µS + τ zi µV

)
with µS = 0.88 andµV = 4.71. The PNC interaction
of the proton and the neutron generates parity-odd
components in the deuteron wave function. In the
context of the meson-exchange picture, the PNC
interaction is mediated byπ , ρ,ω and heavier mesons.
PNC components in the wave function can be obtained
by solving the Schrödinger equation with the PNC
potentials given in [18]. In a low energy process, it
is believed that the pion exchange will dominate PNC
interactions when its contribution is not forbidden by
some selection rule. The pion-exchange PNC potential
reads

(15)V 1π
pnc(r)= gAh

(1)
πNN√
2fπ

(�τ1 × �τ2)
z I · r̂

d

dr
y0(r),

where r ≡ rp − rn, r ≡ |r| and I ≡ 1
2(�σp + �σn).

The constants,gA andfπ are given the values 1.267
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and 92.4 MeV, respectively. For the deuteron, the
PNC potential, Eq. (15), gives rise to a parity-odd
3P1 component. We write the parity admixed wave
function as

ψd(r)= 1√
4π r

[(
u(r)+ S12(r̂)

w(r)√
8

)
ζ00

(16)− ih
(1)
πNN

√
3

2
I · r̂v(r)ζ10

]
χ1Jz,

whereS12(r̂) ≡ 3�σ1 · r̂�σ2 · r̂ − �σ1 · �σ2 and χ and ζ
represent a spinor and an isospinor, respectively. The
quantitiesu(r), w(r) andv(r) are obtained by solving
the Schrödinger equation and one can calculate the
matrix elements of the current density operators,
Eqs. (11)–(14), with the obtained solutions. After that,
the calculation of the anapole moment with Eq. (3) is
straightforward.

4. Results

The anapole moment, Eq. (3), reads for each term

(17)

aspin= −µV

√
1

6

π

mN

∫
dr rv(r)

× (
u(r)− √

2w(r)
)
eIh(1)πNN ,

(18)

aconv= 1

3

√
1

6

π

mN

∫
dr rv(r)

× (
u(r)− √

2w(r)
)
eIh(1)πNN ,

(19)

apair = −
√

2πgA
9fπ

∫
dr r2y0(r)

(
u(r)+ 1√

2
w(r)

)

× (
u(r)− √

2w(r)
)
eIh(1)πNN ,

(20)

apion =
√

2πgA
3fπmπ

∫
dr ry0(r)

(
u(r)+ 1√

2
w(r)

)

×
[
u(r)

(
1− 1

3
mπr

)

− 1√
2
w(r)

(
1+ 1

3
mπr

)]
eIh(1)πNN .

Numerical results are

(21)aspin= −0.531eIh(1)πNN,

(22)aconv= 0.038eIh(1)πNN,

(23)apair = −0.026eIh(1)πNN,

Fig. 2. The diagrams of the leading order nucleonic anapole
moment. Solid, dashed and wavy lines represent the nucleon, pion
and photons, respectively.

(24)apion = 0.027eIh(1)πNN,

where all the values are in the fm2 unit.
Nucleon anapole diagrams shown in Fig. 2 are

ranked withν = −2. In order to be consistent with
the order counting of the effective field theory, the
nucleonic terms also should be included. This term
was already calculated in several works [13,19–21].
Since the results are consistent in both magnitude and
sign, we do not repeat its calculation but just adopt
the result here. The leading order nucleonic anapole,
taking into account the deuteronD-state probability
PD , reads

aN = − gA

6
√

2fπmπ

(
1− 3

2
PD

)
eIh(1)πNN

(25)= −0.417eIh(1)πNN.

Then the anapole moment of the deuteron at the
leading order is

ad = aspin+ aconv+ apair+ apion + aN

= −(0.531− 0.038+ 0.026− 0.027+ 0.417)

× eIh(1)πNN

(26)= −0.909eIh(1)πNN.

5. Discussions

As expected, the spin term is the most dominant one
among the contributions from the currents. The contri-
butions from the convection, pair and pion terms are
much smaller while the two last ones strongly cancel.
The sum of these three contributions is only about 7%
of the spin term. However the nucleonic term is close
to the spin term, which is quite contradictory to the
former results of the deuteron anapole moment.

In order to illustrate this feature clearly, let us
compare our result with the ones by SS [10] and KK
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[11]. Firstly, SS’s result is

aSS
d = aSS

spin+ aSS
PE+ aN

= −(1.03− 0.18+ 0.46)eIh(1)πNN

(27)= −1.31eIh(1)πNN,

where the pion-exchange term (PE) corresponds to
the sum of the convection, pair and pion terms in our
calculation. We have verified in a separate calculation
that SS’s result can be obtained with the ZRA wave
function [22]. Secondly, KK’s result reads

aKK
d = aKK

spin+ aSS
orb + aKK

N

= −(1.03− 0.07+ 0.21)eIh(1)πNN

(28)= −1.17eIh(1)πNN.

Since KK also used the ZRA wave function, their
spin term is equal to SS’s one. However there are
substantial differences in the remaining terms. In
the following, we successively discuss these different
contributions.

The biggest quantitative difference of our result
with the above ones comes from the spin term. The
Av18 result is roughly half of the ZRA value. In
[11], KK argued that the uncertainty of the ZRA
wave function is about 20%. Taking this uncertainty
into consideration, the spin term can be reduced to
−0.82eIh(1)πNN which is still larger than our result by
about 55%. The discrepancy of our result with the KK
(as well as SS) estimate is understood by noting that
our calculation incorporates the effect of a short-range
repulsion in S-states as well as the known repulsive
character of theNN interaction in the3P1 channel.
We also note that the ZRA wave function contains
only a central component,u(r), while our calculation
includes a tensor one,w(r) too. Contrary to the
PNC asymmetry innp radiative capture [15,16], this
component produces a partly destructive interference.
The contribution of each part is

(29)acen
spin= −0.724eIh(1)πNN,

(30)aten
spin= 0.193eIh(1)πNN.

In some cases, the contribution of the tensor part in
the wave function is assumed to be small and its
contribution is neglected. However in the deuteron
anapole moment, this contribution is non-negligible

and its effect on the magnitude of the anapole moment
is substantial.

We now turn to the second contribution in Eqs. (27),
(28), which, among other contributions, involves the
convection current one. There too, a large suppression
of our results is observed but the effect is more dras-
tic for the PE term in SS’s result than for the orbital
one in KK’s result. In SS’s result, PE term’s contribu-
tion is about 15% of the total magnitude, but in our
result it is only 4% of the total value. Then, the ques-
tion arises why the PE term in SS does not coincide
with the orbital term in KK.

It can be shown that the anapole moment of
the convection term with the definition Eq. (3) is
equivalent to the orbital term

(31)aconv=
〈
−i

πe

12mN

[
l2, r

]〉
,

where l ≡ r × p is the angular momentum operator
in the center of mass frame. The global factor of the
sum of the spin and the convection term,(µV − 1/3)
always appears regardless of wave functions. This
explains the relative ratio of the contributions due to
the spin and convection currents in KK’s work as well
as in ours.

As mentioned above, KK’s orbital term accounts
for only the convection term. In KK’s argument, they
made use of the fact that

(32)Jpair(r)+ Jpion(r)∝ r.

With the definition Eq. (3), it may be that this term
gives a zero contribution since

(33)a ∝ r × (r × J).

We would like to point out that caution is required
in the above reasoning. Firstly, the matrix elements
that are relevant in the calculation of the anapole
moment involve thecurrent density operator and not
the current operator. It can be easily shown that the
current operator which is obtained by integrating the
current density operator with respect to the field point
x does satisfy Eq. (32). However the anapole moment
should be obtained from the double vector product
of the current density operator and field pointx,
whose result may not be like Eq. (32) in general.
Secondly, a rough substitutionx → r in Eq. (3) gives
Eq. (33). This substitution, even if one is working
in the center of mass frame and thus center of mass
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coordinate is discarded, should be carefully derived
from the evaluation of the matrix elements with the
two-body wave function. A crude transformation of
the coordinates may give wrong results. As our result
shows, a rigorous derivation with thecurrent density
operator gives a non-zero contribution of the two-
body currents. We also checked that this derivation
provides coincidence with SS’s result [22]. Curiously,
the extra contributions that the SS’s work accounts for
do not seem to show up in our results. It turns out that
the term proportional to 1/mπ in Eq. (24), a priori
favored, is suppressed with the ZRA value (numerical
factor 0.07 instead of 0.18). It is reminded that in the
zero-pion-mass limit, this term is cancelled by another
one arising from the nucleonic term [10]. The other
term (Eq. (23) and part of Eq. (24)), which is less
singular in configuration space and has an opposite
sign, is essentially unchanged. As a result, the sum of
the two contributions almost vanishes in our work.

Concerning the nucleonic term (third one in
Eqs. (27), (28)), KK adopt

(34)

aKK
N = − gA

6
√

2fπmπ

(
1− 6mπ

πmN

ln
mN

mπ

)
eIh1

πNN .

The first term in the parenthesis coincides with the
one we retained and the second term stems from the
1/mN correction to the first term. In the context of
the counting rule of the effective field theory, this
1/mN term is classified in the higher order corrections
to the leading term. In order to be consistent with
the strategy of the effective field theory, the 1/mN

corrections should be taken into account consistently,
i.e., their correction should be calculated not only for
the nucleonic term but also for current terms or any
other types that have the same order. In that sense,
KK’s result contains the 1/mN correction partially.
However, it is interesting to notice that the magnitude
of the 1/mN correction to the nucleonic term amounts
to a half of its leading value. This indicates that the
higher order 1/mN corrections can play a critical role
in the magnitude of the deuteron anapole moment.
Other higher order effects that involve a set of new
low energy constants [13] may also introduce some
uncertainty. They are not required at the order we
consider, but the size of their contribution to the
deuteron anapole moment could be sizeable.

It is known that a number of contributions is re-
quired to fulfill gauge invariance, allowing one to use
(or recover) the generalized Siegert’s theorem [23].
As already mentioned, this was shown for the ana-
pole moment of heavy nuclei [7]. In a separate work,
we have observed that, while the spin current satisfies
gauge invariance by itself, convection, pair and pion
currents are not gauge invariant solely and gauge in-
variance is restored when the three terms are summed
up in a minimal case [22]. In the general case, one
should also include two-body currents related to the
description of theNN strong interaction. As a way to
investigate how much gauge invariance is broken, we
compare the anapole moments calculated with Eqs. (3)
and (6). Eq. (3) is defined from the definition of the
anapole vector potential and Eq. (6) is derived from
Eq. (3) by imposing current conservation. Calculation
of the anapole moment from Eq. (6) is straightforward
too. The results are

(35)aCC
conv= 0.051eIh(1)πNN,

(36)aCC
pair = −0.076eIh(1)πNN,

(37)aCC
pion = 0.045eIh(1)πNN,

where the superscript CC implies the result with the
assumption of current conservation. As expected, in-
dividual contributions differ from those in Eqs. (22)–
(24), but it is also noticed that the sum differs,
0.020eIh(1)πNN , instead of 0.039eIh(1)πNN . The first
candidate to explain the discrepancy is the two-
body current associated to the strong one-pion ex-
change interaction. The corresponding contribution,
0.018eIh(1)πNN , which should be added to the sum
of contributions of Eqs. (35)–(37), removes most of
the difference. This one-pion exchange interaction
can also generate self-gauge invariant contributions
that will affect equally the sum of contributions in
Eqs. (22)–(24) and (35)–(37). Due to cancellations of
pair and pion contributions, this common contribution
is found to be small(−0.0007eIh(1)πNN).

Low momentum transfer of the process makes the
pion-exchange potential most dominant one. Higher
order effects including heavy-meson exchanges are
well reproduced by the local counter terms in low
energy processes. The fact that the counter terms do
not appear at the order we are working reflects that
theρ- or ω-meson contributions are at higher orders.
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However ifh(1)πNN is as small as the one from the18F
experiment [24] or in the soliton model calculation
[25], the dominance of pion-exchange potential is
suspicious and the contribution ofρ- or ω-exchanges
can be comparable toπ . Calculation of the heavy-
meson exchange effects is an important future work in
estimating the contribution of the higher order terms
that are not taken into account in the present work.

Concluding, we calculated the anapole moment of
the deuteron with the wave functions obtained from
theAv18 potential. Its magnitude is reduced by more
than 25% from the previous ZRA results. If the contri-
bution of the nucleon anapole moment is put aside, the
effect is much larger however, ranging from a factor 2
for the spin contribution to a factor 4 for the contribu-
tion of the convection current and associated two-body
currents. We observed that gauge invariance for these
last contributions, hopefully smaller, is a severe con-
straint and its fulfillment is a non-trivial problem. The
calculation of gauge-invariant higher order corrections
including heavy-meson exchanges will be the future
challenge. While the contribution to the anapole mo-
ment calculated here involves the deuteron structure
and requires a particular attention, it may not be the
largest one. In Ref. [13], upper limits were provided
on contributions of the nucleon anapole moment dif-
ferent from the one retained here. Moreover, in a phys-
ical process, beside this contribution, there could be a
much larger contribution due to the one-quark radia-
tive corrections [13,26].
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