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THE ABOVE paper appeared in Volume 1, pp. 101-120 of Topology, and the aim of it was to 

prove that the set of all structurally stable differential equations is open and dense in the 

space, with the Cl-topology, of all differential equations defined on a compact 12f2. In this 

note we clarify a point concerning the proof of that theorem that was brought to our 

attention by E. Lima and S. Schwartzman. 

ln Lemma 4 we consider the segment G: x = - 1, 0 >, y > -$ on the co-ordinate 

square R : 1.x-I < 1, 1~1 < 1, and call qi the point of the trajectory y of Y, through p = (0, 0) 

where it hits ~7 for the i-th time and pi the corresponding point on the y-axis, i.e. the point 

where the arc of 7 beginning at qi hits the y-axis for the first time. We then consider the 

trajectory y(u) of X(u) through p. Assuming that y does not pass through the top or bottom 

side of R, which can always be done, then there is a II,, so small that for u ,< uO, Y(U) hits ,J 

for the i-th time at a point qi(U) and if we call pi(U) the corresponding point on the y-axis 

then we pass continuously from the arc pqi to the arc pq,(u); besides the point qi(u) varies 

continuously and monotonically with U. 

Now in the proof of Lemma 4 we need to consider the extremity qi(u); of the arc 

pqi(u) of y(u), for values of u between zio and 1. But when u goes beyond zlo the arc pqi(u) 

may hit suddenly the bottom of the segment 0 for u = ti and qi(U) -+ qi+l(fi) as u ---) ti where 

qi+l(fi) is the point where y(fi) hits 0 for the (1 + I)-th time. So, to extend qi(u) for u > u. 

one has to consider i depending on u and the problem is to give a precise definition of the 

extension q,(,,(u), continuous and increasing on U. In Lemma 4 it is assumed implicitly that 

this can be done up to 11 = 1. No doubt qic,,(U> may be defined on a certain interval 

0 < 1~ < U* < 1 but it might happen that i(u) -+ CQ as II --) U* < 1 so that u = 1 would never 

be reached. 

Actually this difficulty appears also in Lemmas 5 and 7. We now indicate how to 

remedy this situation. 

We first remark that for the proof of these lemmas we need only to consider the case 

where ~~ is orientable; otherwise lifting the field Y, together with the co-ordinate square R 

t This note was written with the partial support of the Air Force office of Scientific Research. 
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to the orientable covering Mb of :lff we get either a closed orbit or else a new connection 

between saddle points in M’ and therefore the same happens in ;Cf’. We now observe that 

if we drop in Lemma 3 the assumption that Tu # d, Tb # c then the statement ofthis Lemma 

is to be changed by adding that cO, ci, may be isolated points of II and this has no effect 

whatsoever on what follows, so that we may use Lemma 3 with 

Ta = d, Tb = c. (1) 

Now, to simplify matters we define qi, qi(u) as the i-th intersection of 7 and y(u), respectively, 

not with 0 as before but with the side cd of R, and pi. pi(u) as before; vve recall that i is an 

integer determined so that qi is closed enough to (- 1, 0). 

When dealing with Lemmas 4 and 5 we consider a co-ordinate rectangle such that 

ca and db are arcs of the same trajectory of p SO that (1) is satisfied and c1 = d,,. Under these 

assumptions when i(u) has a discontinuity at ur then i(n’) = i(u”) = i(u,) - 1 where 11’ and 

IL” are close enough to uI, u’ < 11, < u”. SO i(u) is certainly bounded. Now a ‘new’ intersec- 

tion between y(u) and cd which is introduced from the bottom can never go to the top and 

give rise to another since before that we get a closed orbit (Lemma 4) or else a new connec- 

tion between saddle points (Lemma 5). Therefore if these things are avoided, after a certain 

value of u, i(u) in fact remains constant and qi(“,(U) is defined up to u = 1. This settles the 

situation in case of Lemmas 4 and 5. 

In case of Lemma 7, one takes the side db of R as an arc of d in such a way that it 

corresponds to the first time 6 meets R; then the function i(u) can never increase and this is 

enough to settle the question in this case. 

We end this note with two remarks unrelated to the situation raised above; (a) in 

Lemma 7 when considering the trajectory 5 it may be necessary to ‘go back’ so that 5 does 

not come from a saddle point; this is always possible but it may be that w(t) # ~((6); (b) The 

problem raised on p. 113 about the existence of non-trivial minimal sets for fields of class 

c2 on M* has been answered in the negative by A. Schwartz in a forthcoming paper. This 

does not imply that in the proof of the density theorem one may skip $5, since in order to 

cover the situation of Lemma 7 we still need the arguments of Lemmas 3, 4 and 5. 
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