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Abstract There are probable damages and defects happening throughout structure execution or

transport and consignment. Defect experience in construction is precious and remarkable. This

research work is a trial to develop an easy system to accomplish the most common tasks in the pro-

cess of detection and monitoring of the as-built structure. However, assessment programmes

involved cannot sufficiently detect and deal with defects that happen at construction process, as

they are based on measurements at particular positions and periods, and are not included into full

electronic techniques. Therefore there is an important requirement to always observe the construc-

tion developments to keep away from major rework prices and interruptions. This research repre-

sents an automated advance to register laser remote sensing data of as-built model, with BrIM

(Bridge Information Model) for a constructed bridge. An experimental work is carried out to con-

firm the planned method for monitoring the structural defects through a case study was imple-

mented in the design and inspection data in the Jacques Cartier Bridge in Canada. The outcomes

demonstrate that the existing technique can be employed to sense the defected elements or structure

imprecision fast and accurately.
� 2016 NationalAuthority forRemote Sensing andSpace Sciences. Production andhosting byElsevierB.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction and review

Automation in remote sensing systems is a challenging field of

research work due to the need of reducing cost (Serwa et al.,
2010). There is still a significant rate of damages and defects
occurring during transportation and shipment. Typically, an

extra 10–20% of structural material is used to brace and sup-
port modules during shipment. However, most defects and
damage still occur during transportation, which leads to

rework after arrival on site as an unfavourable secondary
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Figure 1 Technologies for BIM and building (after Chen et al.,

2015).
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effect. Additionally, errors and inaccuracies, which are mostly
due to human interaction and challenging materials beha-
viours in the different stages, are other issues that cause rework

and cost as a consequence. It has been estimated that approx-
imately 10% of the construction rework cost is caused due to
delays in defect detection (Nahangi et al., 2014; Akinci et al.,

2006; Arditi and Gunaydin, 1997). Engineering constructions
(e.g. bridges, buildings, roads, etc.) are subjected to defects,
deformations and failures due to natural factors such as natu-

ral cold and hot cycles, problematic soil, changes in ground
water level, etc. Therefore, there are many simple consequences
that could result from the failure of a large structure. For these
reasons, early detection of possible structural damage is criti-

cal. This stimulates the need for a reliable methodology for
routine structural defect monitoring. Monitoring and analyz-
ing deformations of these structures constitutes a special

branch of Geodesy. There are several techniques for measuring
the defects and deformations (Ismaiel et al., 2013; Gairns,
2008). These can be grouped mainly into two as geodetic and

non-geodetic techniques. Laser scanning technique is the most
recent and accurate technology for object geometry recovery.
Laser scanners capture a huge amount of points for objects

in a very short time in order to deliver what is called ‘‘point
cloud” (Abdelhafiz, 2014). Multiple scans from different posi-
tions have to be taken in order to achieve all object faces and
details in a 3D environment. Laser scanners are being utilized

to collect 3D geometric as-built information for renovation,
retrofit, and expansion projects in industrial, commercial,
and heavy-civil sectors of construction, and a set of these stud-

ies suggests some cost benefits of using scanners for quality
control purposes (Akinci et al., 2006; Cyra, 2004). The interest
in terrestrial laser scanning has rapidly increased. However, to

date, most research using laser scanners in structural assess-
ment has focused on measuring structural deformation, esti-
mating material loss, or finding surface defects, which can be

used in structural engineering to complete drawings for an
as-built structure or to test the actual dimensions of the as-
built structure against its design (Abdelhafiz, 2009). The
National Building Information Model Standard (NBIMS)

defines BIM as ‘‘a digital representation of physical and func-
tional characteristics of a facility and it serves as a shared
knowledge resource for information about a facility forming

a reliable basis for decisions during its life cycle from inception
onward” (Smith and Edgar, 2006). BIM represents real world
elements such as walls, doors, and windows as 3D objects. In

addition to geometry details, other information can be
attached to these objects including manufacturers, fire rating,
schedule, and cost estimates (Goedert and Meadati, 2008).
Fig. 1 depicts the distribution of introduced technologies for

data acquisition from real-life processes and integration
between virtual models and physical building. There are eight
types of technologies in total, among which laser scanning,

radio frequency identification (RFID), and camera are the
most popular technologies proposed for BBB (Bridging BIM
and Building) (Chen et al., 2015). Other related technologies

include Augmented Reality (AR), Geographic Information
System (GIS), Global Positioning System (GPS), and sensor.

Chen et al. (2015) mentioned that the laser scanning which

is adopted in 28 studies digitally captures geometric data and
spatial relationships through laser light (Shih and Huang,
2006). It is mainly used for process tracking (e.g. Turkan
et al., 2012) and ‘generation of ‘as-built’ models’ (e.g.

Arayici, 2007; Jung et al., 2014; Tang et al., 2010). Deviations
between the ‘as-built’ and ‘as-designed’ models are used to
assess the quality of construction work (Akinci et al., 2006).

Besides, the spatial data of specific objects support site moni-
toring (Su et al., 2006), resources tracking (Teizer et al.,
2007), and safety management (Cheng and Teizer, 2013).
According to the studies, current BBB practice using laser

scanning is heavily reliant on manual effort (Anil et al.,
2011; Brilakis et al., 2011). Some researchers present
approaches and algorithms that can achieve automatic object

identification (Bosché et al., 2013; Xiong et al., 2013) and
improve object recognition quality (Bosché et al., 2009), and
flash LADAR technology enables rapid scanning for highly

active situations (Randall, 2011). The objective of this research
is enhancement of the building defect inspection by the simpli-
fication of the method of information visualization, by regis-
tration and comparison between the ‘‘as-built” model from

3D range sensors and the ‘‘designed” model from BrIM to
detect the geometric discrepancies and defects with different
accuracies. In previous cases studies, the researchers used laser

scanners to scan building sites periodically and created ‘‘as-
built” models of each site, and geometric discrepancies were
detected as defects.

2. Materials

The developed system is planned to carry out the research

requirements using the techniques discussed in the previous
sections to realize the case study purposes. Bisby and Briglio
(2004) revealed the fact that 40% of in-service bridges in

Canada are aged 50 years or more, so the importance of pro-
cess improvement in Operation and Maintenance (O&M)
becomes significant (Gagnon et al., 2008; Industry Canada,
2013), Jacques Cartier Bridge is chosen as the subject of the

case study. Fig. 2 shows the layout of the scanning problem
for the as-built bridge indicating the approximate dimensions
of the studied part of the bridge. The length of the scanned

part was 75 m while the approximate height was 50 m.
The laser scanner was put at a distance of 107 m apart from

this part of the bridge. The bridge data were acquired from the

bridge management authority (The Jacques Cartier and Cham-
plain Bridges Incorporated) (PJCCI, 2004; Zaki and Mailhot,
2003). The data include CAD drawings, deck rehabilitation

schedules and inspection and maintenance records. Further
details about the system can be found elsewhere (Hu and
Hammad, 2005); they proposed a location-based computing



Figure 2 Layout of the scanning problem.
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system to facilitate the data collection activities of the bridge
inspection by registering defects on the 3D model of the bridge.

3. Methods

The proposed system was planned to cover most of the neces-
sary tasks as shown in Fig. 3. The system started with bridge

object through laser scanning process to produce point cloud
model (e.g.: Data exchange File –DXF– or Drawing file
–DWG–. . .etc.) at the same role, the predesigned CAD model

was obtained in the form of BrIM. Both tiers were injected to
the commercial modelling software to apply the pre-
processing, preparing and comparison. Both models were

extracted to obtain the final ASCII point format of xyz coor-
dinates. Registration operation was applied using both coarse
CAD SystemLaser Scanning

BrIMPoint Cloud Model

Commercial Modeling Software
e.g: Geomagic Studio

DXF Extraction

BrIM ASCIIPoint Cloud ASCII

Registration

Accuracy 
Assessment

Bridge Object

Figure 3 Overview of the proposed system.
and fine methods. At the final step, an accuracy assessment of
the overall system was applied.

3.1. Scanning

The laser scanner that we utilized includes a commercially-
available HDS2500 (shown in Fig. 4) that has a maximum

40� � 40� field-of-view and SmartScan TechnologyTM – for
added scanning control. With a single-point range accuracy
of ±4 mm, angular accuracies of ±60 micro-radians, and a

beam spot size of only 6 mm from 0 to 50 m range, the
HDS2500 delivers survey-grade accuracy while providing a
versatile platform for data capture. Its 360� � 195� pan & tilt

mount and dual internal rotating mirrors enable it to be
deployed in virtually any orientation (http://hds.leica-geosys-
tems.com, accessed 6/2015). The combination of high accuracy
and field versatility makes the HDS2500 ideal for fixed or

raised installation when levelled tripod mounting is not practi-
cal, or for applications with less stringent field-of-view
requirements.

In terms of commercially available systems, we have used
AutoCAD in creating the as-planned product model, for data
collection to fully record a complex object, the scanner is

moved around the object to measure points from many differ-
ent angles and hence achieve a complete coverage. This
method has a long range, up to about 200 m under ideal con-
ditions. CYCLONE is the software interface was used to oper-

ate the scanner. Features such as user specified scan area and
density, data filtering, scan scripting and automatic target
recognition and extraction and other tools are provided that

help to ensure the accuracy and reliability of the collected data
(Mailhot and Busuioc, 2006). The versatile and powerful mod-
elling module of CYCLONE enables operators to use point

clouds directly and process them into objects for robust export
Figure 4 Leica HDS2500 laser scanner.

http://hds.leica-geosystems.com
http://hds.leica-geosystems.com
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into CAD or other applications and also to allow robust
import of data from CAD. The entry of the planned dimen-
sional scheme takes in a 3D scan point cloud and a 3D BrIM.

The first action of the method consists in aligning (registering)
the point cloud in the coordinate system of the model. For this,
the approach based on plane matches and other approaches

can be used (such as point or features matching) (Bosché,
2012). After that, each point of the point cloud is corresponded
to a BrIM model (or none) using a metric join two criterion:

(1) closeness: orthogonal distance of the point on the BrIM
model objects surfaces; (2) plane normal similarity: similarity
in orientation of the normals of the local surfaces around the
scan point and around its matched point in the BrIM model,

the matched point is the closest orthogonal projection of the
scan point on the BrIM model objects (Bosché and Guenet,
2014). This step essentially achieves a full segmentation of

the initial point clouds in a set of sub-point clouds matched
to the different BIM model objects. Fig. 5 illustrates this
Scan-BIM process. To show the viability of the proposed
Figure 5 System procedures for scans and 3D B

Figure 6 1,417,663 points of 3D laser scan
methodology, the system is developed and discussed in the next
section.

This study proposes enhancement of the building defect

inspection by the simplification of the method of information
visualization by registration and comparison between the ‘‘as-
built” model from 3D range sensors and the ‘‘designed” model

from BrIM to detect the geometric discrepancies and defects
with different accuracies. Standing on the method, the Defect
Information Model (DIM) is in its real shape, which decreases

the difficulty and saves the time of modelling the irregular
shapes. The registration for laser scanned data and 3D BrIM
include two main steps: (1) preprocessing, and (2) alignment.
Preprocessing is a set of processes in order to acquire the appro-

priate point clouds to be used in the alignment step.

3.1.1. Preprocessing

These processes include:

Data acquisition as shown in Fig. 6.
IM model (after Bosché and Guenet, 2014).

of Jacques Cartier Bridge tie-down pier.



Figure 8 Designed column model in form of 3D point clouds.
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This stage starts with acquiring about 1,417,663 points of
3D laser scan of Jacques Cartier Bridge tie-down pier using
HDS 2500 laser scanner.

Noise removal as shown in Fig. 7.
This stage is applied using commercial modelling software

(Geomagic Studio) to reduce the noise of points in the studied

sample of the bridge. NR (Noise Reduction) filter was used;
this filter uses scanner error (noise) as an indication for noise,
so the noise can be reduced by moving points to statistically

correct locations. The result is a more uniform arrangement
of points that can be wrapped more smoothly. The standard
deviation of space vector of the points’ movements was
0.00564 m. The Standard Deviation describes the variability

of the distances that points were moved during noise
reduction.

Format conversion to 3D points coordinates of the bridge

extracted and converted from DXF format and imported to
the VB programming software.

Basically, the included frame identified as BrIM has to be

implemented by researchers. These researchers can be concep-
tual objects defined in BrIM software. Hence, it is essential to
convert those objects into a dataset comparable to the cap-

tured data, for that purpose, we filled the designed column
model with a form of 3D point clouds as shown in Fig. 8.

3.1.2. Alignment stage

The comparisons between the designed and the as-built object
stage results in quantifying and assuring the accuracy of the
structure. An Iterative Closest Points (ICP)-based approach

(Besl and McKay, 1992) is proposed here for the registration
of the as-designed BrIM, and the as-built point cloud acquired
by laser scanner. The registration process consists of two main
steps:

(1) Rough registration that coarsely aligns the two sets
together.
Figure 7 (a) Reducing the noise in the column with standard dev
(2) Fine registration that accurately finds the best fit and ori-
entation to register the point clouds.

Fig. 9 shows the algorithm for registration that commences

with PCA (Principal Component Analysis) for coarse registra-
tion and follows ICP for fine registration. PCA and ICP are
briefly described in Fig. 9.

Where the resulting point cloud that represents as-built
data is called ‘Scene (S)’ and the BrIM that represents as-
designed data is called the Model (M). In order to have the
iation = 0.00564 m, (b) after reducing the noise in the model.



Figure 9 Recent registration algorithm (Nahangi et al., 2014).
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3D BrIM Model (M) and the scanned as-built status (S)
roughly aligned, coarse registration is performed with a stan-
dard deviation = 0.282 m, as shown in Fig. 10. Among all

existing methods for coarse registration, Principal Component
Analysis (PCA) is sufficiently quick and robust. The prompt-
ness and robustness of the method is due to its linear perfor-

mance and simplicity of computation of the parameters
involved. The accuracy provided by PCA is also adequate
compared to the accuracy provided by iterative methods that

were discussed by (Salvi et al., 2007). Serwa et al. (2010) indi-
cates that PCA can be applied to obtain minimum and maxi-
mum correlations in data variables. Summarily, PCA finds
Figure 10 (a) Coarse registration of the column BrIM and point cl

(blue: BrIM model, white: scanned point cloud).
the principal axis in the two databases and aligns the principal
axes. The resulting registration is roughly aligned and expe-
dites the fine registration step significantly. Having performed

the coarse registration step (Fig. 10), the point clouds should
be registered more accurately in order to be able to evaluate
the scanned point cloud which represents the as-built status

of assembly (Nahangi et al., 2014).
Additionally, it expedites the fine registration performance

as a secondary result. Some results of registration for the col-

umn sample are shown in Fig. 11. In order to evaluate the per-
formance of the registration another metric is defined; Root
Mean Square (RMS) shows the accuracy of the registration.
ouds, with standard deviation = 0.282 m. (b) Registration results



Figure 11 (a) Registration results, (green: BrIM model, white:

scanned point cloud). (b) Initial position of the column BrIM and

point clouds.
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RMS is defined as follows:

RMS ¼ 1

n

Xn

i¼1

ðdiÞ ð1Þ

where n is the number of corresponding points, and d is the
Euclidean distance between corresponding points in M and S.

3.2. Software development

Most of the selected papers do not provide information about
3D model or BrIM development software. In order to rein-
force the connection between the database and 3D model or

BIM, software is developed by Application Programming Inter-
face (API) which is programmed by either VB.Net, C# or C+
+ (e.g. Goedert and Meadati, 2008; Riaz et al., 2014; Chen

et al., 2015). The Comparative software must be developed
to achieve the research objectives (Farghaly et al., 2012). The
software is called LSAR (Laser Scanner Analyser and Recon-
structor) which was developed. It was developed by Serwa

using VB programming language and it is under enhancement
to fulfil all laser scanning applications. This software was
designed to automatically extract points from DXF file and
Figure 12 Coordinates of the br
convert them to ASCII file. In addition, it applies the closest
point algorithm (fine registration). Also it evaluates the accu-
racy of the registration between the as built model and BrIM.

The proposed software package was used to carry out the soft
operations such as DXF extraction (Fig. 12).

The software was developed in Visual Basic language (VB)

and then applied to studied assemblies based on the described
implementation procedures. Fig. 13 depicts the task of DXF
extraction of the specific coordinate’s points from the given

object of 3D BrIM.
Fig. 14 shows accuracy assessment module in the form of

RMS and it indicates the results of accuracy of the original
research data.

Where:

RMS�XY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRMS�X2 þRMS�Y2Þ

q

RMS� R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRMS�X2 þRMS�Y2 þRMS� Z2Þ

q

A modification is performed and the final value of RMS is
calculated. It is noted that the desired accuracy for registration

is achieved for the studied assembly.
Fig. 15 shows the output RMS file that contains DX, DY

and DZ of each registered point sample to evaluate the whole
developed system.

Using a computer that is facilitated to a 3.0 GHz processor
and 20 GB RAM, the processing time for performing the iter-
ations of the developed model takes about some seconds. Con-

sidering the required time for data acquisition and pre-
processing. The achieved RMS value in addition to the visual-
ized results shows that the proposed registration technique is

correctly performed and is sufficiently reliable for making fur-
ther decision with regards to the structure quality and con-
struction process. The sources of error that affect in the
registration accuracy are related to the scanning accuracy

and the assembly shape. The scanning accuracy slightly relies
on the other light source interference. Additionally, the assem-
blies that are (semi-) symmetric may be incorrectly registered

due to the same registration results for the symmetrical orien-
tations (Nahangi et al., 2014). Thus, the developed model may
be limited to the described cases; however it reliably works in

all studied as they are well scanned and not symmetric.
idge extracted from DXF file.



Figure 13 Flow chart of DXF file extraction of points’ coordinates.
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4. Results

4.1. Registration evaluation

RMS in X direction was 0.054 m, in Y direction was 0.056 and
in Z direction was 0.101 m. RMS in the planemetric XY plane
was 0.077 m and so the space RMS was 0.127 m as shown in
Fig. 14, .One can note that each X and Y direction have
approximately equal accuracy while Z direction is the worst.
It is commonly in laser scanner application that Z direction
has the lowest accuracy. The important remark is that the laser

scanner point average spacing at the plane of the bridge was
about 0.091 m. Comparing the results one can note that
according to laser scanner specification of beam spot size of



Figure 14 (RMS) in X, Y and Z directions and the total R.

Figure 16 As built model has wider base from the design model.
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only 6 mm from 0 to 50 m range then beam spot size of
12.84 mm from 0 to 107 m range. Also for maximum range

of 200 m gives beam spot size of 24 mm.

4.2. The deviation detection and the defect evaluation

The deviation detection has performed frequently throughout
the construction process, it is expected that the as-built part
of the integrated model will change over time and will achieve

its highest level of completeness only when construction is fin-
ished. Thus, comparing design information to as-built infor-
mation will not always be possible, since as-built information

can be expected to be missing. The deviations found need to
be further processed in relation to the construction specifica-
tions to assess whether a deviation is a defect.

The evaluation of deviations is done by comparing them to

the targeted quality standards, expressed in construction spec-
ifications, for the related components. This process utilizes the
construction specification model developed for generating

inspection goals and compares the amount of deviations to
the corresponding allowable tolerances defined in specifica-
tions (Akinci et al., 2006). If a given deviation exceeds the

allowable tolerance, then it constitutes a construction defect
and thus further actions need to be taken to correct the defect
or to incorporate it into the next version of the design.
Figure 15 Results of (RMS) in X, Y and
In the case study, we have successfully identified small scale
deviations that would be harder to identify without using the

method described in this paper; we have identified the type
of deviation related to a design change that was not captured
in the design documents. Fig. 16 shows the design model of the

column foot registered on the as built model which has wider
foot from the design model.

5. Conclusion

This research presented an approach that integrates TLS and
BrIM technologies. TLS is used to acquire dense 3D point

clouds of surfaces to be controlled. Data are then registered
in the coordinate system of the project 3D BrIM. This paper
represents an automated advance to register laser remote sens-
ing data of as-built model, with BrIM for constructed bridge.

An experimental work is carried out to monitor the structural
defects through the design and inspection data in the Jacques
Cartier Bridge in Canada. Based on the registration results

presented in this research, the model is concluded to be accu-
rate to monitor the construction processes. The coarse registra-
tion step in the presented model eliminates the incorrect

registration of points cloud; the application of the model is
limited to situations where an accurate point cloud is available.
The outcomes demonstrate that the existing technique can be

employed to sense the defected elements or structure impreci-
sion fast and accurately. Development of specific purposes
Z directions for the registered points.
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software is more easy and reliable for the evaluation of overall
system performance.
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Appendix A

The following visual basic code function called ReadDXF
extracts specified code/value (e.g. xyz coordinates) from a

DXF file. This function requires four string parameters, a valid
DXF file name, a DXF section name, the name of an object in
that section, and a comma delimited list of codes:
Function ReadDXF  ) _
ByVal dxfFile As String, ByVal strSection As String _ ,
ByVal strObject As String, ByVal strCodeList As String (

Dim tmpCode, lastObj As String
Open dxfFile For Input As #1
codes = ReadCodes
While codes(1) <> "EOF "

If codes(0) = "0" And codes(1) = "SECTION" Then
codes = ReadCodes ()
If codes(1) = strSection Then

codes = ReadCodes
While codes(1) <> "ENDSEC "

If codes(0) = "0" Then lastObj = codes(1 (
 ' If this object is one you're interested in

If lastObj = strObject Then
 ' Surround the code with commas
tmpCode = "," & codes(0  ( &", "

 ' If this code is in the list of codes ..
If InStr(strCodeList, tmpCode) Then

 ' Append the return value .
ReadDXF = ReadDXF _ &

codes(0) & "=" & codes(1) & vbCrLf
End If

End If
 ' Read another code/value pair

codes = ReadCodes
Wend

End If
Else
codes = ReadCodes

End If
Wend
Close #1
End Function
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