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Iteration theories provide a sound and complete axiomatization of the
equational properties of the iteration (or fixed point) operation in many
models of theoretical computer science including ordered and metric
structures, trees and synchronization trees. All known equational axioma-
tizations of iteration theories consist of a small set of equational axioms
for Conway theories and a complicated equation scheme, the commuta-
tive identity. Here we associate an identity with each finite semigroup. We
prove that the set consisting of the Conway identities and the group iden-
tities associated with the finite (simple) groups is complete. Moreover,
we prove that the Conway identities and a subcollection of the semigroup
identities associated with a subclass of the finite semigroups is complete
iff each finite (simple) group divides one of the semigroups in the sub-
class. We also formulate a conjecture and study its consequences. The
results are a generalization of Krob's axiomatization of the equational
theory of the regular sets. ] 1999 Academic Press

1. INTRODUCTION

Iteration theories were introduced in [2, 3] and independently in [12]. The
axioms of iteration theories capture the equational properties of the iteration opera-
tion in several models related to computer science, including the following:

v Continuous functions on cpo's, or continuous ordered theories [40], where
iteration is defined by least fixed points.

v Contraction theories over complete metric spaces, or Elgot's iterative
theories [10], where iteration is defined by unique fixed points.

v Matrix theories over complete or countably complete semirings, where
iteration is defined in terms of infinite geometric sums [4].

v Tree theories [4], synchronization trees [30, 4].
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v Functor theories on |-categories or algebraically complete categories,
where iteration is defined via initial algebras [4, 18].

For a detailed study of iteration theories we refer to [4].
All known equational axiomatizations of iteration theories consist of a small set

of equational axioms for Conway theories and a complicated equation scheme, the
commutative identity. Here we associate an identity with each finite automaton and
each finite semigroup, see also [14]. We prove that the set consisting of the
Conway identities and the group identities associated with the finite (simple) groups
is complete. Moreover, we prove that the Conway identities and a subcollection of
the semigroup identities associated with a subclass Si , i # I of the finite semigroups
is complete iff each finite (simple) group divides one of the semigroups Si . Then we
formulate a conjecture and prove that it implies that the Conway identities and an
equation Sn associated with each integer n�3 are complete. The equation Sn is a
simplified form of the identity associated with the n-state automaton whose input
letters induce a cyclic permutation and a transposition of the state set.

Suppose that G is a finite group on the set [n] of the first n integers. Suppose
further that we work with continuous functions on a cpo A. Take any continuous
function f : An+ p � A, and consider the least solution of the system of fixed point
equations in the variables x1 , ..., xn and parameters y1 , ..., yp

x1=f (x11 , ..., x1n , y1 , ..., yp)

b (1)

xn=f (xn1 , ..., xnn , y1 , ..., yp),

where ij denotes the product of i # [n] and j # [n] in the group G. Second, consider
the single fixed point equation

x=f (x, ..., x, y1 , ..., yp)=h(x, y1 , ..., yp)

obtained by identifying the first n variables. Then h is a continuous function
A1+ p � A, so for each value in A of the parameters y1 , ..., yp , the fixed point equa-
tion (2) has a least solution h-( y1 , ..., yp). (It is known that h-, as a function of the
parameters is also continuous.) The group identity associated with G asserts that
the components of the least solution of (1) are all equal to h-( y1 , ..., yp). Under the
Conway identities, this assertion is equivalent to the fact that h-( y1 , ..., yp) is the
first component of the least solution of (1). Moreover, identities associated with
isomorphic groups are equivalent.

The main difficulty in our completeness proof is to establish the commutative
identity in Conway theories satisfying the group identities. We briefly outline our
argument. As mentioned above, we associate an identity C(A, X ) with each finite
automaton (A, X ) and an identity C(S) with each finite semigroup S. Then we
prove that if a Conway theory T satisfies an identity C(G) associated with a finite
group G, then the ``vector form'' of C(G) also holds in T. Since the Conway iden-
tities also imply their own vector forms, we conclude that whenever an identity is
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a logical consequence of the Conway identities and some set of the group identities,
then the vector form of this identity also holds in all Conway theories satisfying the
given set of group identities. Then we prove that in Conway theories, if the identity
C(A, X ) associated with a finite automaton (A, X ) holds, then so does the identity
C(B, X ), where (B, X ) is a subautomaton of (A, X ). We also establish a related fact
for the ``renaming'' of the input symbols. Then we prove that in Conway theories
satisfying a certain collection of the group identities, if the identity C(A, X )
associated with a finite automaton (A, X ) holds, then so does the identity C(B, X ),
where (B, X ) is a homomorphic image of (A, X ) under a ``permutation-reset''
homomorphism. As a further result of this sort, we prove that if the automaton
(C, X ) is obtained from the automata (A, X ) and (B, Y ) by cascade composition,
and if C(A, X ) and the vector form of C(B, Y ) hold in a Conway theory T, then
the identity C(C, X ) also holds in T. Moreover, we establish the identity associated
with the 2-state identity-reset automaton in any Conway theory. In conclusion, by
a variant of the Krohn�Rhodes Decomposition Theorem for finite automata proved
in [15], we obtain that if a Conway theory T satisfies the group identities, then
each identity associated with any finite automaton holds in T, as well as its vector
form. This completes the proof of the completeness of the Conway identities and the
group identities, since it has been shown in [14] that in Conway theories the vector
forms of the identities associated with finite automata are equivalent to the commu-
tative identity. A more elaborate argument proves that any identity associated with
a finite automaton (A, X ) is a logical consequence of the Conway identities and
those group identities associated with the (simple) group divisors of the semigroup
of (A, X ). We do not repeat the proof [12] that the Conway identities and the
commutative identity are complete. This argument is based on an equational formal-
ization of the minimization of flowchart schemes.

Our concept of a group identity, or the identity associated with a finite automaton
or semigroup originates in [7], see also [26]. In fact, in matrix theories over Conway
semirings [4, 22], each identity involving the iteration operation has an equivalent
form involving the Kleene star operation. See [4]. In such theories, the semigroup
identities take the form of Conway's semigroup identities [7]. It was conjectured in
[7] and proved by Krob in [26] that a small set of equational axioms including
the Conway identities and the group identities form a complete axiomatization of
the equational theory of the regular sets. The results of the present paper may be
seen as a generalization of Krob's result. In fact, the use of the Krohn�Rhodes
Decomposition Theorem was facilitated by Krob's paper. He gave a translation of
a standard proof of the Krohn�Rhodes Decomposition Theorem [28] into the
equational theory of the regular sets, by reproducing, step by step, the whole proof
in equational logic. In contrast, our completeness argument uses the improved
Krohn�Rhodes decomposition [15] as a subroutine. No part of its proof is repro-
duced. Moreover, several arguments in [26] make use of the fact that the additive
structure is idempotent. This condition is not available in our setting.

Apart from the fact that the results of this paper imply Krob's, the completeness
of the Conway identities and the group axioms for iteration theories has many
applications. First, it follows that the Conway identities and a simple version of
Park's fixed point induction principle are complete for the equational theory of
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iteration theories. (In fact, one does not need the full strength of the Conway
identities for this fact.) This result, originally proved in [14], may be seen as a
generalization of Kozen's axiomatization [25] of the equational theory of the
regular sets (or of the variety generated by the Kleene algebras of binary relations).
A second application concerning finite state process behaviors will also be treated
here, others elsewhere.

The equational theory of iteration may be studied in several frameworks includ-
ing clones, theories, sorted theories, cartesian categories, or the simple algebraic
language of +-terms and the closely related ``where-expressions'' of [32]. Although
we state and prove our results in terms of theories, they can be translated to each
of the other frameworks with no problem at all. See [6, 24]. Here we only give a
translation into the language of +-terms.

The rest of the paper is organized as follows. In Sections 2, 3, and 4, we recall
the concepts of theories, Conway theories, and iteration theories. Then, in Section 5
we define the vector forms of identities. Section 6 is devoted to some basic concepts
on automata and semigroups. Section 7 contains the definition of the identity
C(A, X ) associated with an automaton (A, X ) together with the definition of the
identity C(S) associated with a semigroup S. The main results are formulated in
Section 8. In Section 9, we recall the Krohn�Rhodes Decomposition Theorem and
the variant proved in [15]. Then, in Section 10, we prove that under the Conway
identities, each group identity implies its own vector form. Sections 11 and 12
contain the main lemmas concerning the constructions of subautomata, renaming,
and cascade composition. In Sections 13 and 14, we study the identities associated
with permutation automata and permutation-reset automata. Permutation-reset
homomorphisms are dealt with in Section 15. The proof of the completeness of the
Conway identities and the group identities is finally completed in Section 16. Section 17
is devoted to a conjecture and its consequences. +-terms are considered in Section 18.
The completeness of the Park induction principle is proved in Section 19. The other
applications are treated in Section 20. Here, we also show how our results imply
Krob's. Some further results are mentioned in Section 21.

2. THEORIES

For an integer n�0, we let [n] denote the set [1, ..., n]. Thus [0] is the empty
set.

Theories were defined by Lawvere [27] in order to provide a categorical frame-
work for equational logic. There is a short definition of theories.

Definition 2.1. A theory is a small category T whose set of objects is the
natural numbers n�0, and in which each object n is the n-fold coproduct of object
1 with itself.

In any theory T, we write composition in diagrammatic order. Thus, if f : n � p
and g: p � q in T, f } g is a morphism n � q. The identity morphism n � n is
denoted 1n . The fact that each object n is the n-fold coproduct of object 1 with itself
can be expressed in more detail by the following condition: There exist distinguished
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morphisms in : 1 � n, i # [n], such that for any sequence of morphisms fi : 1 � p,
i # [n], p�0, there is a unique morphism f : n � p with

in } f =fi , i # [n]. (3)

In particular, there is a unique morphism 0 � p which we will denote by 0p .
We will assume that each theory T comes with given distinguished morphisms in .

Moreover, we require that the morphism 11 is the identity morphism 11 . (See below
for the justification of this assumption.)

Remark 2.2. Sometimes theories are defined dually, replacing coproducts with
products. Another alternative is to reverse the natural direction of the arrows. For
example, if A is a set, the theory PowA has morphisms n � p all functions A p � An.
Composition is function composition in the reverse order, and for each i # [n],
n>0, the distinguished morphism in is the i th projection An � A.

Definition 2.3. Suppose that T and T $ are theories. A theory morphism T � T $
is a functor .: T � T $, which preserves the objects and the distinguished
morphisms, so that

in.=in ,

for all i # [n], n�0.

Since a theory morphism .: T � T $ is the identity map on objects, we may iden-
tify it with a family of maps T(n, p) � T $(n, p). Here, T(n, p) denotes the hom-set
of T-morphisms n � p. An isomorphism .: T � T $ is a theory morphism which is
bijective on the hom-sets.

A morphism with source 1 will be called scalar. Suppose that fi is a scalar
morphism 1 � p, for each i # [n]. The morphism f : n � p determined by the
coproduct property (3) will be denoted ( f1 , ..., fn) . This operation of tupling creates
a bijection between the sets T(1, p)n and T(n, p). It follows that 1n =(1n , ..., nn) ,
for all n�0. Moreover, since 11=11 , we have ( f )= f, for all scalar morphisms
f: 1 � p.

Suppose that T is a theory. A subtheory T $ of T is a subcategory which contains
the distinguished morphisms and is closed under tupling. Equivalently, a theory T $
is a subtheory of T if T $(n, p) is a subset of T(n, p), for each n, p�0, and the
inclusion T $(n, p) � T(n, p) is a theory morphism.

Definition 2.4. Suppose that T is a theory. A base morphism n � p in T is a
morphism ( f1 , ..., fn) , such that each morphism fi is a distinguished morphism
1 � p.

In a theory T, the base morphisms form the smallest subtheory of T. Base
morphisms will be denoted by Greek letters. In nontrivial theories, each base
morphism \: n � p is uniquely determined by a function \̂: [n] � [ p]

in } \= jp iff i\̂= j,
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for all i # [n] and j # [ p]. (A theory T is nontrivial if 12{22 iff T(1, 2) is not a
singleton set iff some home-set T(n, p) has at least 2 elements.) We will usually
identify a base morphism with the corresponding function and call a base morphism
injective, surjective, or bijective according to whether the corresponding function
has the appropriate property. A bijective base morphism is sometimes called a base
permutation. Note that the composite of two base morphisms is determined by the
composite of the corresponding functions. For example, the base morphism

{n :=(11 , ..., 11): n � 1 (4)

is surjective, for each n�1.

2.1. Pairing and Separated Sum

Suppose that T is a theory. Given integers n, m�0, let }: n � n+m and *: m �
n+m denote the base morphisms corresponding to the inclusion [n] � [n+m]
and the translated inclusion [m] � [n+m]. Then the diagram determined by the
morphisms } and * is a coproduct diagram. Thus, for each f : n � p and g: m � p,
there exists a unique morphism ( f, g): n+m � p such that

} } ( f, g)=f

* } ( f, g)=g.

The morphism ( f, g) is called the pairing of f and g. The pairing operation is
associative and the zero morphisms 0p act as identities

( f, (g, h))=(( f, g) , h)

( f, 0p)=f=(0p , f ) ,

for all f : n � p, g: m � p and h: k � p. Moreover,

( f, g) } h=( f } h, g } h) ,

for all f : n � p, g: m � p and h: p � q. Using these identities, it is possible to define
the tupling

( f1 , ..., fn): k � p

of any family of morphisms fi : ki � p, i # [n], n�0. Here k is the sum k1+ } } } +kn .
Another derived operation in theories is the operation of separated sum. Suppose

that f : n � p and g: m � q in the theory T. Let } and * be the base morphisms
defined above, and let }$: p � p+q and *$: q � p+q be defined similarly. Then we
define

f�g=( f } }$, g } *$): n+m � p+q.
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Note that f�g is the unique morphism n+m � p+q such that

} } ( f�g)=f } }$

* } ( f�g)=g } *$.

Separated sum satisfies the identities

f � (g�h)=( f�g)�h

f�00=f=00 �f

( f�g) } (h, k)=( f } h, g } k)

( f�g) } (h�k)=f } h�g } k,

whenever the morphisms f, g, h, and k have appropriate source and target.

2.2. Theories as Algebras

An algebraic theory may be viewed as an N_N-sorted universal algebra,
equipped with the operations of composition and tupling, and constants in . (Here,
N denotes the set of nonnegative integers.) As such, theories form a variety defined
by equations expressing the fact that composition is associative and the morphisms
1n =(1n , ..., nn) are identities. Moreover, 11=11 and

in } ( f1 , ..., fn) =f i

(1n } f, ..., nn } f ) =f,

for all fi : 1 � p, i # [n], and for all f : n � p. A theory morphism T � T $ is a
homomorphism of the corresponding many-sorted algebras.

3. CONWAY THEORIES

We start with a technical definition.
A preiteration theory is an algebraic theory T enriched with an iteration or

dagger operation

- : T(n, n+ p) � T(n, p)

f [ f -

defined for each n, p�0. No particular properties of iteration are required. However,
0-

p =0p , for each p�0, since 0p is the unique morphism 0 � p. A morphism .: T � T $
of preiteration theories is a theory morphism which preserves the dagger operation.

Definition 3.1. A Conway theory is a preiteration theory T in which iteration
satisfies the following identities.
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1. Scalar parameter identity

( f } (11 �g))-=f - } g,

all f : 1 � 1+ p, g: p � q.

2. Scalar composition identity

( f } ( g, 01�1p ) )-=f } ( (g } ( f, 01 �1p ) )-, 1p ) ,

all f, g: 1 � 1+ p.

3. Scalar double dagger identity

f --=( f } ({2�1p ))-,

all f : 1 � 2+ p. (Recall that {2=(11 , 11) is the unique base morphism 2 � 1.)

4. Scalar pairing identity

( f, g) -=( f - } (h-, 1p ) , h-) ,

all f : n � n+1+ p, g: 1 � n+1+ p, where

h=g } (f -, 11+p): 1 � 1+ p.

Suppose that T and T $ are Conway theories. A morphism T � T $ is a preiteration
theory morphism.

Remark 3.2. The term Conway theory is due to the fact the above identities
take in matrix theories over semirings, cf. [7, 4]. In such theories MatS equipped
with an iteration operation, if the parameter identity holds, the dagger operation
determines, and is determined by a star operation on the n by n matrices, or by a
star operation on the semiring S. The scalar double dagger identity corresponds to
the equation (a+b)*=(a*b)* a*, and the scalar composition identity to the equa-
tion (ab)*=1+a(ba)* b, all a, b # S. Semirings satisfying these two equations are
called Conway semirings, cf. [4, 22].

By the scalar pairing identity, the dagger operation in Conway theories is
uniquely determined by its restriction to the scalar morphisms 1 � 1+ p. Thus the
essential axioms are the first three, i.e., the scalar parameter, scalar composition,
and scalar double dagger identities.

The following identities hold in Conway theories.

1. Fixed point identity

f -=f } ( f -, 1p ) ,

all f : n � n+ p. When n=1, this identity is called the scalar fixed point identity.
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2. Left zero identity

(0n�f )-=f,

all f : n � p. When n=1, this identity is called the scalar left zero identity.

3. Right zero identity

( f �0q)-=f -�0q ,

all f : n � n+ p. When n=1, this identity is called the scalar right zero identity.

4. Parameter identity

( f } (1n �g))-=f - } g,

all f : n � n+ p, g: p � q.

5. Composition identity

( f } ( g, 0n�1p ) )-=f } ( (g } ( f, 0m�1p ) )-, 1p ) ,

all f : n � m+ p, g: m � n+ p.

6. Double dagger identity

f --=( f } ((1n , 1n ) �1p ))-,

all f : n � n+n+ p.

7. (Left) pairing identity

( f, g) -=( f - } (h-, 1p ) , h-) ,

all f : n � n+m+ p, g: m � n+m+ p, where

h=g } ( f -, 1m+ p): m � m+ p.

8. Right pairing identity

( f, g) -=(h-, (g } \)- } (h-, 1p )) ,

all f : n � n+m+ p, g: m � n+m+ p, where

\=(0m�1n , 1m�0n) �1p : n+m+ p � m+n+ p

h=f } (1n �0p , (g } \)-, 0n �1p ): n � n+ p.

9.

( f } (1n �0m �1p ), 0n �g) -=( f -, g-) , (5)

all f : n � n+ p, g: m � m+ p.
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10. Permutation identity

(? } f } (?&1�1p ))-=? } f -,

for all f : n � n+ p and for all base permutations ?: n � n. Here ?&1 denotes the
inverse of ?.

Remark 3.3. The pairing identity is sometimes called Bekic$ 's identity, see [35, 39].

The following theorem provides two equivalent axiomatizations of Conway
theories. For proofs and original references, see [4].

Theorem 3.4. A preiteration theory T is a Conway theory iff T satisfies either the
zero identities, the pairing identity and the permutation identity, or the parameter,
composition, and double dagger identities.

Below we will use the term Conway identities to refer either to the set of equa-
tions that hold in all Conway theories, or to a concrete equational axiomatization
of Conway theories.

Example 3.5. Suppose that A is a cpo (with least element). Let T denote the
subtheory of the theory PowA determined by the continuous functions A p � An,
n, p�0. If f : n � n+ p in T, i.e., f is a continuous function An+ p � An, then for
each value y # A p there is a least element x # An such that

x=f (x, y). (6)

Denoting this least fixed point x by f -( y), the resulting function f - : A p � An is
continuous, hence a morphism n � p in T. In fact, equipped with this operation,
T is an iteration theory. Moreover, an equation involving dagger holds in all itera-
tion theories iff it holds in all theories of continuous functions on cpo's. See [12].

We briefly explain the meaning of some Conway identities in the theory T. The
meaning of the fixed point identity should be clear,

f ( f -( y), y)=f -( y)

for all f : An+ p � An in T and y # A p. The fact that the parameter identity holds in
T means that for any f : An+ p � An and g: Aq � A p in T, and for any z # Aq, the
least solution of the equation

x=f (x, g(z))

can be obtained by applying f - to g(z), where f - is the least solution of the fixed
point equation (6). The pairing identity can be explained as follows. Suppose that
f : An+m+ p � An and g: An+m+ p � Am are in T. Consider the system of equations
in the variables x # An and y # Am

x=f (x, y, z) (7)

y=g(x, y, z), (8)
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where the parameter z is in A p. The least solution of this system can be computed
by successive elimination of the variables as follows. The least solution of the first
equation (7) is f -( y, z), a function of y and z. Substituting this for x in (8), we
obtain the equation

y=g( f -( y, z), y, z). (9)

Introducing the notation h( y, z) for the function on the right-hand side, the least
solution of (9) is h-(z). The pairing identity asserts that h-(z) is also the second
component of the least solution of the original system of equations (7, 8), and that
the first component is f -(h-(z), z). Note that the pairing identity is not symmetric.
For symmetric versions, see [4]. The permutation identity asserts that permuting
the rows of a system of equations has the expected effect, the least fixed point
solutions are permuted in the same way.

4. ITERATION THEORIES

Conway theories have many interesting properties, e.g., there is a general form of
Kleene's theorem which holds in all Conway theories, and the Conway identities
imply the soundness of the Floyd�Hoare logic and Cook's completeness theorem,
cf. [4]. Nevertheless the Conway axioms are too weak to capture all of the equa-
tional properties of iteration in computer science. A complete axiomatization of the
equational properties of iteration may be obtained by adding the commutative
identity to the Conway axioms.

Suppose that f =( f1 , ..., fk): k � n+ p, fi : 1 � n+ p, i # [k] in an algebraic
theory T. Suppose further that gi : n � m, for each i # [k]. We define

f & (g1 , ..., gk)=( f1 } (g1�1p ), ..., fk } (gk�1p )): k � m+ p.

Definition 4.1. The commutative identity is the equation

(({ } f )& (\1 , ..., \m))-={ } ( f } ({�1p ))-,

where f : n � m+ p, and where {: m � n is a surjective base morphism and the
morphisms \i : m � m are base with \i } {={, i # [m]. When n=1, this equation is
called the scalar commutative identity.

Definition 4.2. An iteration theory is a Conway theory satisfying the commutative
identity. A morphism of iteration theories is a preiteration theory morphism.

Example 4.3. We explain the meaning of the scalar commutative identity in the
theory T of Example 3.5. Suppose that f : Am+ p � A in T, and consider the system
of equations
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x1=f (x1\1
, ..., xm\1

, y)

b

xm=f (x1\m
, ..., xm\m

, y),

where y # A p and each \ i is a function [m] � [m]. (Since n=1, { is the unique
function [m] � [1], so that there is no extra condition on the functions \i .) By the
scalar commutative identity, the components of the least solution of this system are
all equal to the least solution of the single equation

x=f (x, ..., x, y)

obtained by identifying the first m variables.

In preiteration theories, the commutative identity is implied by a weak form of
the functorial implication.

Definition 4.4. Suppose that T is a preiteration theory and that C is a class of
morphisms in T. We say that T satisfies the functional implication for C if whenever
the square

h h� 1p

n ww�f n+p

m ww�
g

m+p

commutes, where h is a morphism in C, then so does the triangle

h g-

n ww�f -

p

m

A particular subcase is important here, the case that C is the class of all surjective
base morphisms. In this case, we call the functorial implication the weak functorial
implication.

Remark 4.5. The functorial implication was used by Eilenberg [9] and Plotkin
[35] in their characterization of the fixed point operation on continuous functions
over cpo's. In [29], a version of the functorial implication is part of the axioms
imposed on iteration.

The following facts are proved in [4], where original references may be found.

Lemma 4.6. If a preiteration theory T satisfies the weak functorial implication,
then the commutative identity holds in T.

Lemma 4.7. Suppose that T is a Conway theory. Then T satisfies the functorial
implication for all injective base morphisms. Moreover, if T satisfies the weak functorial
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implication, then T is an iteration theory and satisfies the functorial implication for
all base morphisms.

Lemma 4.8. Suppose that T is a Conway theory. If T satisfies the functorial implica-
tion for the base surjections {n : n � 1, n�1, then T satisfies the weak functorial
implication.

Conway theories and iteration theories are defined by equations. Thus both
Conway theories and iteration theories form a variety of preiteration theories. The
Conway theories satisfying the weak functorial implication form a quasi-variety
properly included in the class of iteration theories, cf. [5, 13]. Nevertheless the
Conway theories satisfying the weak functorial implication generate the variety of
iteration theories.

The structure of the free iteration theories was described in [12], see also
[2, 3, 11]. The description is based on regular trees that represent the behavior of
finite flowchart schemes. For an explicit description of the free Conway theories,
see [1].

5. VECTOR FORMS OF IDENTITIES

Suppose that T is a theory and k is a positive integer. Since each object nk, n�0
is the n-fold coproduct of object k with itself, the full subcategory spanned by these
objects is a theory that we denote by Tk. Formally, Tk has morphisms n � p the
T-morphisms nk � pk, i.e., Tk(n, p)=T(nk, pk). Suppose that f : n � p and g: p � q
in Tk. Their composite in Tk is the T-morphism f } g: nk � qk, so that composition
in Tk is the composition inherited from T. For each i # [n], n�0, the ith distinguished
morphism 1 � n in Tk is the T-morphism

0(i&1)k�1k �0(n&i)k ,

which we will denote by i (k)
n . The distinguished morphisms determine the tupling

operation. It follows that the tupling of the Tk-morphisms f1 , ..., fn : 1 � p is their
tupling ( f1 , ..., fn) in T.

Note that the identity morphism 1 (k)
n : n � n in Tk is the T-identity 1nk : nk � nk.

Moreover, the unique Tk-morphism 0 (k)
n : 0 � n is the T-morphism 0nk . Generaliz-

ing this notation, we will denote a base morphism n � p in Tk as \(k). Given a
function \̂: [n] � [ p], the corresponding base morphism in Tk is

\(k)=( (1\̂) (k)
p , ..., (n\̂) (k)

p ).

The morphism \(k) : n � p can also be described as the base T-morphism corre-
sponding to the following function [nk] � [ pk]. First, represent an integer in [nk]
as a pair (i, j) n, k=(i&1) k+ j, where i # [n] and j # [k]. The subscripts n, k will
sometimes be omitted, so that we write (i, j) , for short. Then \(k) : n � p is the
base T-morphism determined by the function

(i, j) n, k [ (i\̂, j) p, k ,
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for all i # [n], j # [k]. Note that this function maps the i th block of k integers in
[nk] to the (i\̂) th block in [ pk]. In particular,

{ (k)
n =(1k , ..., 1k ): n � 1 # Tk.

(Recall Eq. (4).) From now on, when the integer k is understood, we will just write \�
for \(k).

When T is a preiteration theory, Tk is also a preiteration theory. The iteration
operation in Tk is that inherited from T, so that for f : n � n+ p in Tk, the iterate
of f is the T-morphism f - : nk � pk.

Theorem 5.1. If T is a Conway theory, then so is Tk, for each k�1.

Proof. Immediate from Theorem 3.4. K

An equation or identity in the language of preiteration theories is an equation
t=t$ between sorted terms n � p built in the usual way from N_N sorted
variables and constants ip and 0p using the operations of composition, tupling and
iteration. (The constants 1n and the operations of pairing and separated sum as well
as constants for the base morphisms may be defined in terms of the other opera-
tions and constants.)

Suppose that T is a preiteration theory and that 8 is a set of equations. We write
T |=8 when each equation t=t$ in 8 holds in T, or is satisfied by T. If 8 is the
singleton [t=t$], we write T |=t=t$ for T |=8. Suppose that T |=8 implies
T |=t=t$, for all preiteration theories T. Then t=t$ is a logical consequence of 8,
denoted 8 |=t=t$.

Definition 5.2. Suppose that T is a preiteration theory and that t=t$ is an
equation. We say that the vector form of t=t$ holds in T, or is satisfied by T, if
Tk |=t=t$, for each k�1.

The above definition can be extended to sets of equations in the obvious way.
An alternative definition is also possible. For a given equation t=t$ and integer

k�1, let t� =t� $ denote the equation obtained from t=t$ by replacing each variable
of sort n � p by a variable of sort nk � pk, and each base morphism \ by \� . Then
the vector form of t=t$ holds in T iff T |=t� =t� $, for each k�1.

As an example, consider the scalar parameter identity

( f } (11 �g))-=f - } g, f : 1 � 1+ p, g: p � q.

For an integer k�1, its k th vector form is

( f } (1k �g))-=f - } g, f : k � k+ pk, g: pk � qk. (10)

When T is a Conway theory, the vector form of the scalar parameter identity holds
in T as do the vector forms of all of the defining identities. For any preiteration
theory T satisfying the right zero identity, Eq. (10) holds in T iff the parameter
identity does. (Note that the right zero identity is a particular subcase of the param-
eter identity.)
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Lemma 5.3. Suppose that Ax is some set of equations such that each preiteration
theory satisfying Ax satisfies the vector forms of the equations in Ax. Suppose that
Ax |=t=t$. Then for each preiteration theory T, if T |=Ax then T satisfies the vector
form of the equation t=t$.

Proof. Suppose that T |=Ax. Then Tk |=Ax, for each k�1. Since Ax |=t=t$,
Tk |=t=t$. K

Corollary 5.4. If an equation holds in all Conway theories, then so does its
vector form.

Proof. Immediate from Theorem 5.1 and Lemma 5.3. K

Sometimes instead of the theory Tk, we will work in a ``dual'' theory kT.
Suppose that T is a theory and k�1. The theory kT is defined as follows. For

each n, p�0,

kT(n, p)=T(kn, kp)=Tk(n, p).

The composition operation in kT agrees with that in Tk and hence with the com-
position operation in T. However, for each n�0 and i # [n], the i th distinguished
morphism 1 � n in kT is the base T-morphism i[k]

n corresponding to the map

[k] � [kn]

j [ ( j, i) k, n=( j&1) n+i.

More generally, when \ is a function [n] � [ p], the base morphism determined
by \ in kT is the base T-morphism \[k] corresponding to the map

[kn] � [kp]

(i, j) k, n [ (i, j\) k, n ,

so that

\[k]=\� } } } �\: kn � kp # T.

In particular, 1[k]
n =1kn=1 (k)

n and 0[k]
n =0kn=0 (k)

n , for all n�0. Moreover, {[k]
n is

the base T-morphism {n� } } } �{n : kn � k. (Recall Eq. (4).)
From now on, when the integer k is clear from the context, we will just write \̂

for \[k].

Lemma 5.5. The theories Tk and kT are isomorphic.

Proof. For each p, q�0, let ?p, q denote the base morphism given by the map

[ pq] � [qp]

(i, j) p, q [ ( j, i) q, p ,
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all i # [ p], j # [q]. Note that ?p, q is a base permutation with inverse ?&1
p, q=?q, p .

The required isomorphism .: Tk � kT is the theory morphism defined by

f : n � p # Tk [ ?k, n } f } ?p, k # kT, n, p�0.

Indeed, for each n, p�0, . induces a bijective function Tk(n, p) � kT(n, p).
Suppose that f : n � p and g: p � q in Tk. Since

?k, n } f } g } ?q, k=?k, n } f } ?p, k } ?k, p } g } ?q, k ,

. preserves composition. Also,

@̂n=j @w�
@� n (i, j) n, k @ww�

?n, k ( j, i) k, n ,

for all i # [n] and j # [k]. Thus . preserves the distinguished morphisms. K

One can use the above lemma to derive formulas for the tupling and separated
sum operations in the theory kT. Suppose that fi : 1 � p in kT, for all i # [n]. Then
( f1 , ..., fn) is a morphism n � p in kT, but this morphism is not the tupling of the
fi in the theory kT, determined by the coproduct structure given by the injections @̂n .
In fact, the tupling of the f i in kT is the morphism

[ f1 , ..., fn]=?k, n } ( f1 , ..., fn) .

Note that if fi=( fi, 1 , ..., fi, k) , where fi, j : 1 � kp in T, then

[ f1 , ..., fn]=( f1, 1 , ..., fn, 1 , ..., f1, k , ..., fn, k).

This fact may be generalized to tuplings of vector morphisms in kT in a straight-
forward way.

The separated sum operation in kT, that we denote by � , is also different from
the corresponding operation in Tk. To give the form of the �-operation, let us
introduce for each p, q, r�0 the base permutation $p, q, r : pq+ pr � p(q+r):

(i, j)p, q [ (i, j) p, q+r , all i # [ p], j # [q]

pq+(i, j)p, r [ (i, q+ j) p, q+r , all i # [ p], j # [r].

Using these base permutations, we have, for all f : n � p and g: m � q in kT,

f�g=$&1
k, n, m } ( f�g) } $k, p, q .

When T is a preiteration theory, so is each theory kT with the following opera-
tion �. If f : n � n+ p in kT, then f : kn � k(n+ p) in T, so that f } $ &1

k, n, p : kn �
kn+kp in T. We define

f �=( f } $&1
k, n, p)- : n � p # kT.
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Lemma 5.6. If the permutation and parameter identities hold in T, then for each
k�1, the preiteration theories Tk and kT are isomorphic.

Proof. We show that the theory morphism . defined in the proof of Lemma 5.5
preserves dagger. Let f : n � n+ p in Tk. Then, writing $ for $k, n, p ,

( f.)�=(?k, n } f } ?n+ p, k)�

=(?k, n } f } (?n, k �?p, k) } $)�

=(?k, n } f } (?n, k �?p, k) } $ } $&1)-

=(?k, n } f } (?n, k �?p, k))-

=?k, n } f - } ?p, k

=f -.,

by the permutation and parameter identities, and since (?n, k �?p, k) } $=?n+ p, k .
K

Using the isomorphism ., if the parameter and permutation identities hold in T,
then for each k�1, the theory Tk satisfies an identity iff kT does. Thus, we may
establish the vector form of an identity in T by proving that the identity holds in
all theories kT.

6. AUTOMATA AND SEMIGROUPS

Except for free semigroups, all semigroups will be assumed to be finite. The
product of the elements s, t in a semigroup will be written s b t, or just st.

We will use standard terminology. A subgroup of a semigroup S is a subsemi-
group of S which is a group. Following [8, 28], we say that a semigroup S divides
a semigroup S$, denoted S | S$, if S is a homomorphic image of a subsemigroup
of S$. It is known, see e.g. [8], that the division relation is transitive (and reflexive).
Further, a group G divides a semigroup S iff G is a homomorphic image of a sub-
group of S. A group G is called simple if it is nontrivial and has no proper nontrivial
normal subgroup.

A ( finite) automaton (A, X, b ) consists of the finite nonempty sets A and X and
a (right) action of X on A:

b : A_X � A

(a, x) [ a b x.

We will usually write ax for a b x and (A, X ) for (A, X, b). The action of X on A
may be extended to an action of the free semigroup X + such that

a(ux)=(au)x
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for all a # A, u # X+ and x # X. (We will represent X+ as the semigroup of all non-
empty words over the set X.) Suppose that C�A and u # X+. Then we will write
Cu to denote the set [cu: c # C]. The set AX is defined by AX=�x # X Ax.

Suppose that (A, X ) is an automaton. A letter x # X is a permutation letter (reset
letter, respectively) if the function

a [ ax, a # A

is a permutation map (constant map, respectively) on A. We call (A, X ) a permuta-
tion automaton (reset automaton, respectively) if each letter x # X is a permutation
letter (reset letter, respectively). Further, we call (A, X ) a permutation�reset automaton
if each x # X is either a permutation letter or a reset letter. For example, the automaton
U=([a1 , a2], [x1 , x2 , x3]) equipped with the action

ai xj =aj

aix3=ai

i, j # [2] is a permutation-reset automaton, called the two-state identity-reset
automaton.

Homomorphisms, subautomata, and congruences of automata are defined in the
usual way. The automaton (A, X ) is called a renaming of the automaton (A, Y ) if
there is a function .: X � Y such that

ax=a(x.),

for all a # A and x # X.
Suppose that (A, X ) is an automaton. Recall that each word u # X+ induces a

function A � A. Equipped with the operation of composition (which we write in
diagrammatic order), these functions form a semigroup denoted S(A, X ). We call
S(A, X ) the semigroup of the automaton (A, X ). When (A, X ) is a permutation
automaton, each element of S(A, X ) is a permutation of the set A, so that S(A, X )
is a group that we prefer to denote by G(A, X ). An automaton (A, X ) is called
aperiodic [8], if each subgroup of S(A, X ) is trivial. For example, each reset
automaton, or more generally, each definite automaton [8] is aperiodic. The semi-
group S(U) of the two-state identity-reset automaton will be important in Section 9.
Note that S(U) is a 3-element monoid whose nonidentity elements are right zeros.

Sometimes we will use the following extension of the notion of the semigroup of
an automaton. Suppose that (A, X ) is an automaton and C is a nonempty subset
of A. Then we denote by S(C ) the collection of all functions s: C � C such that
there is a function s$ # S(A, X ) with cs=cs$, for all c # C. Again, the set S(C ) is a
semigroup, and S(C ) | S(A, X ).

When (A, X ) is an automaton such that X=S is a semigroup and the action is
compatible with the semigroup operation, i.e.,

a(st)=(as) t,
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for all a # A and s, t # S, we call the automaton (A, S) a transformation semigroup.
(Note that we are not requiring that the action is faithful.) When S is a group with
unit e and

ae=a,

for all a # A, (A, S) is a transformation group. See [8]. Note that each transforma-
tion group is a permutation automaton.

For each semigroup S there is a corresponding transformation semigroup (S, S)
equipped with the natural self action (s, t) [ st. When S is a group, (S, S) is a
transformation group.

7. IDENTITIES ASSOCIATED WITH AUTOMATA AND SEMIGROUPS

Suppose that (A, X )=(A, X, b ) is a finite automaton such that A=[n] and
X=[m], for some integers n and m. In each theory T, we associate with (A, X ) the
base morphisms \(A, X )

i : m � n, i # [n] defined by

jm } \ (A, X )
i =(i b j)n , all j # [m], i.e.,

\ (A, X )
i =( (i b 1)n , (i b 2)n , ..., (i b m)n) .

From now on, we write just ij instead of i b j. The morphism (ij)n is the correspond-
ing base morphism 1 � n. The morphisms \ (A, X )

i , denoted sometimes just \i , are
called the base morphisms associated with the automaton (A, X ).

Let f =( f1 , ..., fn) be a morphism n � m+ p in a preiteration theory T. We
define

f v(A, X )=f & (\ (A, X )
1 , ..., \ (A, X )

n ): n � n+ p.

Thus,

f v(A, X )=( f1 } (\ (A, X )
1 �1p ), ..., fn } (\ (A, X )

n �1p )).

Further, we define, for each g: 1 � m+ p,

g(A, X )=({n } g) v(A, X )

=( g } (\ (A, X )
1 �1p ), ..., g } (\ (A, X )

n �1p )): n � n+ p.

Definition 7.1. The automaton identity C(A, X ) associated with (A, X ) is

g-
(A, X )={n } ( g } ({m�1p ))-, g: 1 � m+ p. (11)
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Note that when m�n, this identity is an instance of the scalar commutative
identity. Moreover, in preiteration theories satisfying the functorial implication for
injective morphisms, each automaton-identity is equivalent to an instance of the
scalar commutative identity.

In preiteration theories T satisfying the permutation identity, that we assume
from now on, it is possible to associate an identity with any automaton or semi-
group, not just with those defined on the sets [n]. In such theories, identities
associated with isomorphic automata or semigroups are equivalent.

Since any transformation semigroup is an automaton, the above definition
associates an identity C(A, S) with each transformation semigroup (A, S). When
(A, S) is the transformation semigroup (S, S) equipped with the natural self action,
we denote C(S, S) by C(S) and call this identity the semigroup identity associated
with S. Accordingly we write gS for g(S, S) and \S

i for \ (S, S)
i . When S is group, C(S)

is a group identity.
The above notation may be extended to classes of semigroups. When S is a class

of finite semigroups, C(S) consists of the identities C(S), S # S.

Example 7.2. Let U be the two-state identity-reset automaton, then C(U) is

( f } ((12 , 22 , 12) �1p ), f } ((12 , 22 , 22) �1p )) -

={2 } ( f } ({3�1p ))-, f : 1 � 3+ p.

Suppose that G is the group of order 3. Then C(G) is

( f, f } ((23 , 33 , 13) �1p ), f } ((33 , 13 , 23) �1p )) -={3 } ( f } ({3�1p ))-,

f : 1 � 3+ p.

Each automaton identity or semigroup identity has a vector form. Suppose that
(A, X ) is an automaton with A=[n] and X=[m]. Let us write \i for \ (A, X )

i ,
i # [n]. Recall that for each k�1, \� i is a base morphism m � n in Tk and a base
morphism mk � nk in T. When F=(F1 , ..., Fn): nk � mk+q, where k�1 and
Fi : k � mk+q for each i # [n], define

F v(A, X )=F& (\� 1 , ..., \� n)

=(F1 } (\� 1�1q ), ..., Fn } (\� n�1q )): nk � nk+q.

Moreover, let us denote

F(A, X )=({� n } F ) v (A, X )

=(F } (\� 1�1q ), ..., F } (\� n�1q )).

for all F : k � mk+q.
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The vector form of C(A, X ) is the identity:

F -
(A, X )={� n } (F } ({� m�19 p))-,

where F: k � mk+ pk. Note that if the right zero identity holds in T then T satisfies
the vector form of C(A, X ) iff

F -
(A, X )={� n } (F } ({� m�1q ))-,

for all F : k � mk+q in T.
Sometimes we will consider the ``dual'' vector form of the identity C(A, X ). Let

G=(G1 , ..., Gk): k � k(m+ p) in a preiteration theory T with Gi : 1 � k(m+ p),
i # [k]. Then, in kT,

G(A, X )=[G } (\̂1 �10 p), ..., G } (\̂n �10 p)]

so that in T,

G(A, X )=?k, n } (G } $&1 } (\̂1 �10 p) } $$, ..., G } $&1 } (\̂n �10 p) } $$)

=?k, n } ( (G } $&1) } (\̂1�10 p), ..., (G } $&1) } (\̂n�10 p)) } $$,

where $=$k, m, p and $$=$k, n, p . Thus, writing H=G } $&1 and Hi=Gi } $&1,
i # [k],

G(A, X )=?k, n } (H } (\̂1�10 p), ..., H } (\̂n �10 p)) } $$,

so that

G[
(A, X )=(?k, n } (H } (\̂1�10 p), ..., H } (\̂n�10 p)) )-

=( ({n } H1)& (\̂1 , ..., \̂n), ..., ({n } Hk) &(\̂1 , ..., \̂n)) -,

where the operation & is evaluated in the theory T. Also,

{̂ } (G } ({̂m�10 p))�={̂n } (G } $&1 } ({̂m�10 p) } $$)�

={̂n } (H } ({̂m�10 p))-.

Thus, the dual vector form of the identity C(A, X ),

G [
(A, X )={̂ } (G } ({̂�10 p))�

becomes

H -
(A, X )={̂n } (H } ({̂m�1kp))-, (12)
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where

H(A, X )=( ({n } H1)& (\̂1 , ..., \̂n), ..., ({n } Hk) &(\̂1 , ..., \̂n)).

Again, we may substitute q for kp.
We end this section with the following lemma, proved in [14].

Lemma 7.3. In Conway theories, the commutative identity is equivalent to the
vector forms of the identities associated with finite automata. Hence a Conway theory
T is an iteration theory iff T satisfies the vector form of each identity C(A, X ) associated
with a finite automaton (A, X ).

8. THE MAIN RESULT

The main result of the paper is the following theorem.

Theorem 8.1. Suppose that S is a class of finite semigroups. Then the Conway
identities and the semigroup identities C(S) form a complete axiomatization of itera-
tion theories iff each finite (simple) group is a divisor of some semigroup in S.

From Theorem 8.1, we immediately have the following corollary.

Corollary 8.2. The Conway identities and the group identities corresponding to
the finite (simple) groups form a complete axiomatization of iteration theories.

Corollary 8.3. The Conway identities and the scalar commutative identity are
a complete axiomatization of iteration theories.

Proof. Each group identity is an instance of the scalar commutative identity. K

Corollary 8.4 [13]. Iteration theories do not have a ``finite'' axiomatization.

9. THE KROHN�RHODES DECOMPOSITION

In this section we review a basic result of Krohn and Rhodes [8, 20, 28] for the
decomposition of automata using cascade composition. This result will play a
prominent role in our completeness argument. We start by defining the cascade
composition.

Suppose that (A, X ) and (B, Y ) are finite automata and

.: A_X � Y

(a, x) [ ax

is a given function. The cascade composition of (A, X ) and (B, Y ) with respect to
. is the automaton

(B, Y )_. (A, X )=(B_A, X ),
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equipped with the X-action

(b, a)x=(b ax, ax),

for all a # A, b # B and x # X.

Remark 9.1. Many authors define the cascade composition of the automata
(A, X ) and (B, Y ) in the opposite order writing (A, X )_. (B, Y ).

Recall that U denotes the two-state identity reset automaton.

Theorem 9.2. Krohn�Rhodes Decomposition Theorem, Part 1. Let K denote
a nonempty class of automata and let K� denote the least class of automata containing
K and closed under cascade composition, renaming, subautomata and homomorphic
images. If S is a simple group or one of the divisors of the semigroup of the autom-
aton U, and if S divides the semigroup of an automaton in K� , then S also divides the
semigroup of an automaton in K.

Theorem 9.3. Krohn�Rhodes Decomposition Theorem, Part 2. Suppose that
(A, X ) is an automaton. Let G denote the class of simple groups G such that
G | S(A, X ). Then (A, X ) is contained in the least class of automata containing U and
the automata (G, G) equipped with the natural self action, for all G # G, closed under
the cascade composition, renaming, subautomata, and homomorphic images.

Actually, we will make use of a variant of the Krohn�Rhodes Decomposition
Theorem proved in [15]. In order to state this result, we need some more definitions.

Suppose that # is a congruence of the automaton (A, X ). We call # a permuta-
tion-reset congruence if the following conditions hold:

v For any two (nonsingleton) #-equivalence classes C and C$, and for each
letter x # X with Cx�C$, either Cx=C$ or Cx is a singleton subset of C$.

v For any two distinct nonsingleton #-equivalence classes C and C$ there is
a word u # X+ with Cu=C$.

Thus, any two nonsingleton #-equivalence classes have equal number of elements.
Let G be a class of simple groups closed under division. We call a congruence #

on the automaton (A, X ) a G-congruence if for each #-equivalence class C, each
simple group divisor of S(C ) is in G. A permutation-reset G-congruence is a permu-
tation-reset congruence which is a G-congruence. Further, we call # an elementary
congruence if Cx is a singleton for each equivalence class C and letter x # X, and if
for each equivalence class C at most one element in C belongs to AX. A 1-elementary
congruence is an elementary congruence which has a single nonsingleton equivalence
class, and, moreover, this equivalence class has exactly two elements. Note that any
elementary congruence is a G-congruence, for any G.

Suppose that (A, X ) and (B, X ) are automata and . is a homomorphism (A, X )
� (B, X ). We call . a permutation-reset homomorphism or a G-homomorphism if
ker(.), the kernel of . has the appropriate property. Elementary and 1-elementary
homomorphisms are defined in the same way.
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Remark 9.4. For technical reasons, a permutation-reset congruence is termed a
simple regular congruence in [15].

Theorem 9.5 [15]. Suppose that (A, X ) is an automaton. Let G denote the class
of simple groups G such that G | S(A, X ). Then:

1. (A, X ) is contained in the least class of automata containing the two-state
identity-reset automaton U and the automata (G, G) equipped with the natural self
action, for all G # G, closed under the cascade composition, renaming, subautomata
and G-homomorphic images, or permutation-reset G-homomorphic images.

2. There is a sequence

(A1 , X ), ..., (Ak , X ), k�1

of automata such that (A1 , X ) is trivial, i.e., a one-state automaton, (Ak , X ) is
(A, X ), and for each i # [k&1], either (Ai , X ) is a homomorphic image of (Ai+1 , X )
under a surjective ( permutation-reset) G-homomorphism, or there is a surjective
( permutation-reset) G-homomorphism (Ai , X ) � (Ai+1 , X ).

In addition to Theorem 9.5, we will refer to the following lemma, which gives one
step in the proof of Theorem 9.5.

Lemma 9.6 [15]. Let G be a class of simple groups closed under division. Suppose
that (A, X ) and (B, X ) are finite automata and h is a surjective permutation-reset
G-homomorphism (A, X ) � (B, X ). Then there is a permutation-reset automaton
(C, Y ) and a cascade composition (C_B, X )=(C, Y )_. (B, X ) such that the
following conditions hold :

v (A, X ) is isomorphic to a subautomaton of (C_B, X ).

v There is a surjective elementary homomorphism (C_B, X ) � (A, X ).

v If G is a simple group with G | S(C, Y ), then G # G.

10. GROUP IDENTITIES

In this section, T denotes a preiteration theory satisfying at least the permutation
and parameter identities.

Assume that S is a semigroup on the set [n]. For each i # [n], denote the
morphism \S

i : n � n by just \i . Note that

\i } \j =\ji ,

for all i, j # [n], so that the structure of S is encoded in the compositional structure
of the base morphisms \i . Recall that for an integer k�1,

{̂n={n� } } } �{n : kn � k

\̂i =\i � } } } �\i : kn � kn,
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for all i # [n]. Below we will sometimes use these notations for different values of k.
Nevertheless, the correct value will always be clear from the context.

Definition 10.1. Suppose that g: kn � k$n+ p in T, where k, k$�1. We say
that g commutes with the base morphisms associated with S if

\̂i } g=g } (\̂i �1p ),

for all i # [n].

Note that the notation \̂i stands for a morphism kn � kn on the left hand side,
and for a morphism k$n � k$n on the right-hand side of (13).

Below, we give a characterization of the morphisms that commute with the base
morphisms associated with a group.

Lemma 10.2. Suppose that f : 1 � kn+ p in T, where k�1. If

g=({n } f )& (\̂1 , ..., \̂n): n � kn+ p, (14)

i.e.,

g=( f } (\̂1�1p ), ..., f } (\̂n�1p )) ,

then g commutes with the base morphisms associated with S. Conversely, if S is a
group (or a monoid), and if morphism g: n � kn+ p commutes with the base morphisms
associated with S, then g is determined by a morphism f : 1 � kn+ p as in (14).

Proof. Assuming (14), we have

jn } \i } g=(ij)n } g

=f } (\̂ij �1p )

=f } (\̂j �1p ) } (\̂ i �1p )

=jn } g } (\̂i �1p ),

for all i, j # [n].
Suppose now that S is a group and g: n � kn+ p commutes with the base

morphisms associated with S. Without loss of generality we may assume that the
unit element of S is the integer 1. Then,

in } g=1n } \ i } g

=1n } g } (\̂ i �1p ),

for all i # [n]. Thus, Eq. (14) holds for the morphism f =1n } g. K

For the rest of this section we assume that S is in fact a group. Henceforth we
denote S by G.
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Corollary 10.3. Suppose that g: kn � k$n+ p in T, where k, k$�1. Then g
commutes with the base morphisms associated with G iff there is a morphism f =
( f1 , ..., fk): k � k$n+ p such that

g=( ({n } f1)& R0 , ..., ({n } fk) &R0 ) ,

where R0 =(\̂1 , ..., \̂n).

Proof. Clearly, g commutes with the base morphisms associated with G iff
g=( g1 , ..., gk) for some morphisms gi : n � k$n+ p, i # [k] which commute with
the base morphisms associated with G. Hence the result follows from Lemma 10.2. K

Corollary 10.4. For any integer k�1, the kth vector form of the identity C(G)
holds in T iff

g-= {̂n } (10 n } g } ({̂n�1p ))-, (15)

for each morphism g: kn � kn+ p that commutes with the base morphisms associated
with G.

Proof. This follows from Corollary 10.3 and Eq. (12). K

Note that the morphism 10 n } g } ({̂n �1p ) can be constructed from g } ({̂n �1p ) as
follows. First, we divide the components of g } ({̂n�1p ) into k blocks of length n,
then we select the first component of each block. The morphism 10 n } g } ({̂n �1p ) is
the tupling of these components. The identity (15) asserts that the first n compo-
nents of g- are all equal to the first component of (10 n } g } ({̂n �1p ))-, the second n
components to the second component of (10 n } g } ({̂n�1p ))-, etc.

Lemma 10.5. If g: n � kn+ p commutes with the base morphisms associated
with G, where k�2, then so does the morphism g-: n � (k&1) n+ p.

Proof. Since G is a group, each \i (and each \̂i) is a base permutation. Thus,
for each i # [n],

\i } g-=(\ i } g } (\ &1
i �1(k&1) n+ p))-

=(g } (\̂i �1p ) } (\&1
i �1(k&1) n+ p))-

=(g } (\i � \̂i �1p ) } (\&1
i �1(k&1) n+ p))-

=(g } (1n � \̂ i �1p ))-

=g- } (\̂ i �1p ),

by the parameter and permutation identities, and since g commutes with the base
morphisms associated with G. K

Remark 10.6. Defining \[0]
i =00 , for all i # [n], the previous proof works even

for k=1. Thus, for any f : 1 � n+ p in a Conway theory and for any group G
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of order n, the components of f -
G are equal. It follows that T |=C(G) iff the

equation

1n } f -
G=( f } ({n�1p ))-

holds in T, for all f : 1 � n+ p.

The main result of this section is the following proposition, which asserts that in
conjunction with the Conway identities, any group identity implies its vector form.

Proposition 10.7. Suppose that T is a Conway theory satisfying C(G ). Then the
vector form of C(G ) holds in T.

Proof. We need to show that

f -
G={̂n } ( f } ({̂n �1p ))-, (16)

for all f =( f1 , ..., fk): k � kn+ p and k�1. Recall that

fG=( ({n } f1)& R0 , ..., ({n } fk) &R0 ) ,

where R0 =(\̂1 , ..., \̂n). See (12).
When k=1, (16) holds by assumption. We proceed by induction on k. When

k>1, we apply the pairing identity to compute f -
G and ( f } ({̂n�1p ))-. Hence we

define

g1=({n } f1)&R0 : n � kn+ p

g2=( ({n } f2)& R0 , ..., ({n } fk) &R0 ): (k&1) n � kn+ p

h1=f1 } ({̂n �1p ): 1 � k+ p

h2=( f2 , ..., fk) } ({̂n�1p ): k&1 � k+ p,

so that g1 is the tupling of the first n, and g2 is the tupling of the last (k&1)n
components of fG , moreover, h1 is the first component, and h2 is the tupling of the
last k&1 components of f } ({̂n�1p ). Thus,

fG=( g1 , g2)

f } ({̂n�1p )=(h1 , h2).

Note that since

fG } ({̂n�1p )={̂n } f } ({̂n �1p ),

we have

g1 } ({̂n �1p )={n } h1 : n � k+ p (17)

g2 } ({̂n �1p )={̂n } h2 : (k&1) n � k+ p. (18)
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Since by Corollary 10.3 fG commutes with the base morphisms associated with G,
so do the morphisms g1 and g2 , i.e.,

\ i } g1=g1 } (\̂i �1p ): n � kn+ p (19)

\̂ i } g2=g2 } (\̂i �1p ): (k&1) n � kn+ p, (20)

for all i # [n].
By the pairing identity,

f -
G=( g-

1 } (u-, 1p ) , u-) (21)

( f } ({̂n�1p ))-=(h-
1 } (v-, 1p ) , v-), (22)

where

u=g2 } ( g-
1 , 1(k&1) n+ p): (k&1) n � (k&1) n+ p

v=h2 } (h-
1 , 1k&1+p): k&1 � k&1+ p.

We show that g-
1 and u commute with the base morphisms associated with G.

Indeed, by (19) and Lemma 10.5,

\i } g-
1=g-

1 } (\̂i �1p ), (23)

for all i # [n]. Also, by (20) and (23),

\̂i } u=\̂i } g2 } ( g-
1 , 1(k&1) n+ p)

=g2 } (\̂i �1p ) } ( g-
1 , 1(k&1) n+ p)

=g2 } (\i } g-
1 , \̂i �1p )

=g2 } ( g-
1 } (\̂i �1p ), \̂ i �1p )

=g2 } ( g-
1 , 1(k&1) n+ p) } (\̂ i �1p )

=u } (\̂i �1p ),

for all i # [n]. Thus, by the induction assumption and Corollary 10.4,

u-= {̂n } (10 n } u } ({̂n �1p ))- : (k&1) n � p. (24)

We will show below that the morphism 10 n } u } ({̂n �1p ) appearing in the right-hand
side of (24) is in fact the morphism v defined above. Indeed, using the parameter
identity,

u } ({̂n �1p )=g2 } ( g-
1 , 1(k&1) n+ p) } ({̂n�1p )

=g2 } ( g-
1 } ({̂n�1p ), {̂n�1p )

=g2 } ( (g1 } (1n � {̂n�1p ))-, {̂n�1p ). (25)
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Since g1 commutes with the base morphism associated with G, so does
g1 } (1n � {̂n�1p ). Indeed, by (19),

\i } g1 } (1n � {̂n�1p )=g1 } (\̂ i �1p ) } (1n � {̂n�1p )

=g1 } (\ i � {̂n�1p )

=g1 } (1n � {̂n �1p ) } (\i �1k&1+p),

for all i # [n]. Thus, since T |=C(G),

(g1 } (1n � {̂n�1p ))-={n } (1n } g1 } (1n � {̂n �1p ) } ({n �1k&1+p))-

={n } (1n } g1 } ({̂n�1p ))-

={n } (1n } {n } h1)-

={n } h-
1 , (26)

by (17). Thus, substituting {n } h-
1 for (g1 } (1n � {̂n �1p ))- in (25),

u } ({̂n �1p )=g2 } ({n } h-
1 , {̂n�1p )

=g2 } ({̂n�1p ) } (h-
1 , 1k&1+ p )

={̂n } h2 } (h-
1 , 1k&1+ p)

={̂n } v,

by (18). Thus,

10 n } u } ({̂n�1p )=v,

so that

u-={̂n } v-, (27)

by (24). Thus, using (26),

g-
1 } (u-, 1p ) =g-

1 } ({̂n } v-, 1p )

=g-
1 } ({̂n�1p ) } (v-, 1p )

=(g1 } (1n � {̂n�1p ))- } (v-, 1p )

={n } h-
1 } (v-, 1p ). (28)

Equation (16) now follows from (27), (28), (21), and (22). K

Corollary 10.8. Suppose that G is some class of finite groups. Let Ax denote
the set consisting of the Conway identities and the group identities C(G). If t and t$
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are terms with Ax |=t=t$, then the vector form of t=t$ holds in all Conway theories
satisfying C(G).

Proof. Immediate from Theorem 5.1, Lemma 5.3, and Proposition 10.7. K

11. A FEW SIMPLE FACTS

In this section we assume that T is a preiteration theory which satisfies at least
the permutation identity.

Suppose that (A, X ) is an automaton and . is a given function Y � X, where Y
is a finite nonempty set. Define the action of Y on A by

ay=a( y.),

for all a # A, y # Y. Let (A, Y ) denote the resulting automaton.

Lemma 11.1. If T |=C(A, X ) then T |=C(A, Y ). If . is surjective and if
T |=C(A, Y ), then T |=C(A, X ).

Proof. Let A=[n], X=[m] and Y=[k], say. Thus . induces a base morphism
k � m in T. Let \i : m � n and \$i : k � n, i # [n] denote the base morphisms associated
with the automata (A, X ) and (A, Y ), respectively. Then

\$i=. } \ i , (29)

for all i # [n].
Let f : 1 � k+ p. By (29),

f(A, Y )=( f } (.�1p )) (A, X ) .

Thus, if T |=C(A, X ), then

f -
(A, Y )=( f } (.�1p ))-

(A, X )

={n } ( f } (.�1p ) } ({m�1p ))-

={n } ( f } ({k �1p ))-,

proving T |=C(A, Y ).
Suppose now that . is surjective. Then there exists an injective base morphism

:: m � k with : } .=1m . Let f : 1 � m+ p in T. Then, by (29),

f(A, X )=( f } (: } .�1p )) (A, X )

=( f } (:�1p )) (A, Y ) .

Thus, if T |=C(A, Y ), then it follows as above that T |=C(A, X ). K

Lemma 11.2. Suppose that (A, X ) is a subautomaton of (B, X ). If T satisfies the
functorial implication for injective base morphisms and T |=C(B, X ), then T |=C(A, X ).
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Proof. Let A=[n], B=[m] and X=[k], say. Let \i : k � n, i # [n] denote the
base morphisms associated with (A, X ), and let \$j : k � m, j # [m] denote the base
morphisms associated with (B, X ). Since (A, X ) is a subautomaton of (B, X ), we
have \$i=\i , for all i # [n]. Thus, if : denotes the base morphism corresponding to
the inclusion of [n] into [m], we have

f(A, X ) } (:�1p )=: } f(B, X ) ,

for all f : 1 � k+ p. Thus, if T satisfies the functorial implication for injective base
morphisms and if T |=C(B, X ), then

f -
(A, X )=: } f -

(B, X )

=: } {m } ( f } ({k �1p ))-

={n } ( f } ({k �1p ))-. K

Corollary 11.3. Suppose that S is a finite semigroup and S$ is a subsemigroup
of S. Suppose that T satisfies the functorial implication for base injections and that
T |=C(S). Then T |=C(S$).

Proof. Since S and S$ are semigroups, both (S, S) and (S$, S$), equipped with
the natural self action are transformation semigroups and hence automata. Let
(S, S$) denote the transformation semigroup obtained from (S, S) by restricting the
action of S to S$. Then, by Lemma 11.1, T |=C(S, S$), hence T |=C(S$, S$), by
Lemma 11.2. K

Suppose that (A, X ) and (B, X ) are given automata. The disjoint sum of (A, X )
and (B, X ) is the automaton (C, X )=(C, X, b ) defined on the disjoint union
C=A_+ B equipped with the X-action

c b x={ax
bx

if c=a # A
if c=b # B,

where ax and bx are taken in the automata (A, X ) and (B, X ), respectively.

Lemma 11.4. Suppose that the automaton (A, X ) is the disjoint sum of the automata
(A1 , X ) and (A2 , X ). Suppose that the identity (5) holds in T. If T |=C(Ai , X ), for
i=1, 2, then T |=C(A, X ).

Proof. Suppose that X=[k] and Ai=[ni], i=1, 2. We may represent A as the
set [n1+n2 ] such that (A1 , X ) is the subatomaton determined by the set [n1 ]. But
then,

f(A, X )=( f(A1 , X ) } (1n1
�0n2

�1p ), 0n1
� f(A2 , X )) .

Thus, using Eq. (5),

f -
(A, X )=( f -

(A1 , X ) , f -
(A2 , X )) .
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The result follows. (Note that the converse of this lemma also holds, if (5) and
C(A, X ) hold in T, then T |=C(A1 , X ) and T |=C(A2 , X ).) K

12. CASCADE COMPOSITION

In this section, T denotes a preiteration theory satisfying at least the permutation
and parameter identities.

Suppose that (A, X ) and (B, Y ) are finite automata and

.: A_X � Y

(a, x) [ ax

is a given function. Recall that the cascade composition of (A, X ) and (B, Y ) with
respect to . is the automaton

(B, Y )_. (A, X )=(B_A, X ),

equipped with the X-action

(b, a)x=(b ax, ax),

for all a # A, b # B and x # X. In the next lemma we assume that A=[n], B=[m],
X=[k] and Y=[r]. Moreover, we represent [m]_[n] as the set [mn] with
(i, j)=(i, j) m, n corresponding to the ordered pair (i, j ) # [m]_[n].

Below we will write \� to denote a base morphism in the theory Tn.

Lemma 12.1. Suppose that the vector form of C(B, Y ) holds in T. Then for all
f : n � k+ p,

(({� m } f ) v(B_A, X ))-={� m } ( f v(A, X))-. (30)

Proof. Using the above notation, the base morphisms associated with (B_A, X )
are the morphisms

\(i, j) : k � mn, i # [m], j # [n]

u [ (i( ju), ju) , u # [k].

Let us introduce the notations

}i =\ (B, Y )
i : r � m

*j =\ (A, X )
j : k � n,

for all i # [m], j # [n]. Then,

\(i, j)=_ j } }� i (31)

*j =_j } {� r , (32)
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where _j : k � rn is the base morphism corresponding to the function

u [ ( ju, ju) r, n , u # [k].

Indeed, we have

_j } }� i : u [ ( ju, ju) [ (i( ju), ju)

_j } {� r : u [ ( ju, ju) [ ju.

Suppose that f =( f1 , ..., fn): n � k+ p. Define

F=f & (_1 , ..., _n): n � rn+ p.

Then,

F(B, Y )=({� m } F )& (}� 1 , ..., }� m): mn � mn+ p.

See Section 7. For each (i, j) # [mn], (i, j) mn } F (B, Y ) , the (i, j) th component of
F(B, Y ) is the same morphism as the (i, j) th component of ({� m } f ) v(B_A, X).
Indeed,

(i, j) mn } F(B, Y )=jn } F } (}� i �1p )

=fj } (_j �1p ) } (}� i �1p )

=fj } (\(i, j) �1p )

=(i, j)mn } (({� m } f ) v(B_A, X )),

by (31). Thus,

F(B, Y )=(({� m } f ) v(B_A, X )). (33)

Also,

F } ({� r�1p )=f(A, X ) , (34)

by Eq. (32). But since the vector form of C(B, Y ) holds,

F -
(B, Y )={� m } (F } ({� r�1p ))-. (35)

Eq. (30) follows from (33), (34), and (35). K

Corollary 12.2. Under the assumptions of Lemma 12.1, if T satisfies the vector
form of C(B, Y ), then T |=C(B_A, X ) iff T |=C(A, X ).

163GROUP AXIOMS FOR ITERATION



Proof. Suppose that g: 1 � k+ p in T. Define f ={n } g: n � k+ p. Then,

g(B_A, X )=({mn } g) v(B_A, X )

=({� m } f ) v(B_A, X )

and

g(A, X )=f v (A, X ).

Thus, by Lemma 12.1,

g-
(B_A, X )={mn } (g } ({k �1p ))- (36)

iff

g-
(A, X )={n } (g } ({k�1p ))-. (37)

Indeed, if (36) holds, then, using Lemma 12.1,

g-
(A, X )=( f v(A, X ))-

=19 m } (({� m } f ) v(B_A, X ))-

=19 m } g-
(B_A, X )

=19 m } {mn } (g } ({k �1p ))-

={n } (g } ({k �1p ))-.

And if (37) holds, then

g-
(B_A, X )=(({� m } f ) v(B_A, X ))-

={� m } ( f v (A, X ))-

={� m } g-
(A, X )

={� m } {n } (g } ({k�1p ))-

={mn } (g } ({k�1p ))-. K

13. IDENTITIES ASSOCIATED WITH PERMUTATION AUTOMATA

In this section, T denotes a Conway theory.
Suppose that G is a finite group and H is a subgroup of G. Then G�H, the set

of right cosets modulo H equipped with the natural right action of G is a permuta-
tion automaton.

Proposition 13.1. For each finite group G and each subgroup H of G, T |=C(G)
iff T |=C(G�H, G) and T |=C(H ).
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Proof. Recall that both (G, G) and (H, H ), equipped with the natural self action
are transformation groups. It is known that (G, G) is isomorphic to a cascade
composition

(H, H )_. (G�H, G).

See, e.g., [8]. Thus, by Corollary 12.2 and Proposition 10.7, if T |=C(H) then
T |=C(G) iff T |=C(G�H, G). But if T |=C(G) then T |=C(H ), since H is a sub-
group of G. See Corollary 11.3. K

Corollary 13.2. Suppose that G is a finite group and N is a normal subgroup
of G. Then T |=C(G) iff T |=C(N ) and T |=C(G�N ).

Proof. By Proposition 13.1, T |=C(G) iff T |=C(N ) and T |=C(G�N, G). Let
.: G � G�N be the natural homomorphism. Since Ng1Ng2=Ng1g2 , for all g1 , g2 # G,
and since . is surjective, it follows from Lemma 11.1 that T |=C(G�N, G) iff
T |=C(G�N ). K

A transformation group (A, G) is strongly connected (or transitive), if for any
a, b # A there is a g # G with ag=b. For any transformation group (A, G) and a # A
we define Ha=[h # G: ah=a]. Note that Ha is a subgroup of G.

Corollary 13.3. Suppose that (A, G) is a strongly connected transformation
group. Let a0 # A. Then T |=C(G) iff T |=C(Ha0

) and T |=C(A, G).

Proof. (A, G) is isomorphic to the transformation group (G�Ha0
, G). K

Corollary 13.4. Suppose that (A, G) is a transformation group. Then T |=C(G)
iff T |=C(A, G) and T |=C(Ha), for each a # A.

Proof. Each transformation group (A, G) is the disjoint sum of its strongly
connected components. Hence the result follows from Corollary 13.3 and Lemma 11.4.

K

Proposition 13.5. Suppose that G is a finite group. Let G denote the class of
simple groups H with H | G. Then T |=C(G) iff T |=C(G).

Proof. We prove this fact by induction on the order n of G. The basis case that
n=1 is obvious. Let n>1 and assume that T |=C(G). If H # G then there is a sub-
group G$ of G such that H is a homomorphic image of G$. Hence there is a normal
subgroup N of G$ such that the groups H and G$�N are isomorphic. Since T |=C(G)
and since G$ and N are subgroups of G, T |=C(G$) and T |=C(N ). Thus, by
Corollary 13.2, T |=C(H).

Suppose now that T |=C(G). If G is trivial then so is the identity C(G). If G is
simple, then G # G and T |=C(G). If G is nontrivial and not simple, then it has a
nontrivial normal subgroup N. Each simple group divisor of N or G�N divides G
and is thus in G. Thus, by the induction assumption, T |=C(N ) and T |=C(G�N ).
But then T |=C(G). K

Corollary 13.6. Let (A, X ) be a permutation automaton and G=G(A, X ). Let
G denote the class of simple groups H with H | G. It T |=C(G) then T |=C(A, X ).
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Proof. If T |=C(G) then T |=C(G), by Proposition 13.5. The elements of the
group G are permutations A � A. Thus (A, G), equipped with the action ag= g(a),
all a # A and g # G, is a transformation group. Since T |=C(G), we have T |=C(A, G),
by Corollary 13.4. But then, T |=C(A, X ), by Lemma 11.1. K

14. IDENTITIES ASSOCIATED WITH PERMUTATION-RESET AUTOMATA

Suppose that (A, X ) and (A, Y ) are finite automata. We say that (A, Y ) is an
extension of (A, X ) if X�Y and each letter x # X induces equal functions A � A in
(A, X ) and (A, Y ). If in addition each letter y # Y&X is a reset letter of (A, Y ),
then (A, Y ) is a reset extension of (A, Y ).

Assume that T is a Conway theory.

Lemma 14.1 If (A, Y ) is a reset extension of (A, X ), then T |=C(A, Y ) iff
T |=C(A, X ).

Proof. By Lemma 11.1, if T |=C(A, Y ) then T |=C(A, X ). Moreover, it is
sufficient to prove the converse implication for the case that Y=X_+ A (disjoint
union), and each a # A induces the constant function A � A with value a. Thus, if
X=[k], A=[n] and Y=[k+n], say, and if f : 1 � k+n+ p in T, then

f(A, Y )=f(A, X ) } ((1n , 1n ) �1p ),

so that

f -
(A, Y )=f --

(A, X ) ,

by the double dagger identity. Thus, if T |=C(A, X ), then

f -
(A, Y )=( f -

(A, X ))
-

=({n } ( f } ({k �1n+p))-)-.

Let g denote the morphism ( f } ({k�1n+p))-. Then,

({n } g)-={n } (g } ({n�1p ))-,

by the composition identity. Thus,

f -
(A, Y )={n } (g } ({n�1p ))-

={n } (( f } ({k �1n+p))- } ({n�1p ))-

={n } ( f } ({k �{n�1p ))--

={n } ( f } ({k+n�1p ))-,

by the parameter and double dagger identities. K
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The above proof also works in the case that k=0. Thus we have:

Corollary 14.2. Each identity associated with any reset automaton holds in T.
Moreover, the vector form of any such identity holds in T.

Corollary 14.3. Suppose that (A, X ) is a permutation-reset automaton. Let G

denote the simple group divisors of S(A, X ). If T |=C(G) then T |=C(A, X ), moreover,
the vector form of C(A, X ) also holds in T.

Proof. The case that (A, X ) is a reset automaton is handled by the previous
corollary. Suppose that (A, X ) is a reset extension of a permutation automaton
(A, Y ). Then G is the class of all simple group divisors of G(A, Y ). Thus, if
T |=C(G), then T |=C(A, Y ) and T |=C(A, X ), by Lemma 14.1 and Corollary 13.6.
Further, the vector form of C(A, X ) holds in T, by Corollary 10.8. K

Corollary 14.4. The identity C(U) associated with the two-state identity-reset
automaton holds in any Conway theory.

15. PERMUTATION-RESET HOMOMORPHISMS

Lemma 15.1. Suppose that (A, X ) and (B, X ) are finite automata and { is a
surjective elementary homomorphism (A, X ) � (B, X ). Then, for any Conway theory T,
T |=C(A, X ) iff T |=C(B, X ).

Proof. Since each elementary homomorphism is the composite of a sequence of
1-elementary morphisms, we may assume that { is 1-elementary. Further, we may
assume without loss of generality that A=[n+2], B=[n+1] and X=[k], more-
over that the morphism n+2 � n+1 corresponding to { is the base morphism
{2�1n , and that the integer 1 is not in the set AX. It follows that if \1 , ..., \n+1

denote the base morphisms k � n+1 associated with (B, X ), then the base morphisms
associated with (A, X ) are \$1=01 �\1 , \$2=01�\1 , ..., \$n+2=01 �\n+1 . Thus, if
f : 1 � k+ p, then there exist morphisms g: 1 � n+1+ p and h: n � n+1+ p with

f(A, X )=(01�g, 01�g, 01�h)

f(B, Y )=( g, h).

By the left zero identity, (01�g)-= g. Also

(01�g) } ( g, 1n+1+p) =g.

Thus, by the pairing and fixed point identities,

(01 �g, 01 �g) -=( g } ( g-, 1n+p) , g-)

=( g-, g-).
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Define

h� =h } (g-, 1n+p)

=(01�h) } ( g-, g-, 1n+p).

Then,

f -
(A, X )=(( g-, g-) } (h� -, 1p ) , h� -)

={ } ( g- } (h� -, 1p ) , h� -)

={ } f -
(B, Y) ,

again by the pairing identity. It follows that

f -
(A, X )={n+2 } ( f } ({k �1p ))-

iff

f -
(B, Y )={n+1 } ( f } ({k�1p ))-. K

Proposition 15.2. Suppose that G is a class of simple groups closed under division
and T is a Conway theory with T |=C(G). Let (A, X ) and (B, X ) be finite automata and
suppose that h is a surjective permutation-reset G-homomorphism (A, X ) � (B, X ).
Then T |=C(A, X ) iff T |=C(B, X ).

Proof. By Lemma 9.6, there exists a permutation-reset automaton (C, Y ) and a
cascade composition (C_B, X )=(C, Y )_. (B, X ) such that the following condi-
tions hold:

v (A, X ) is isomorphic to a subautomaton of (C_B, X ).

v There is a surjective elementary homomorphism (C_B, X ) � (A, X ).

v If G is a simple group with G | S(C, Y ), then G # G.

By Corollary 14.3, the vector form of C(C, Y ) holds in T. Thus, by Corollary 12.2,
T |=C(B, X ) iff T |=C(C_B, X ). But (A, X ) is a subautomaton of (C_B, X ), so
if T |=C(B, X ) then T |=C(A, X ). See Lemma 11.2. Suppose now that T |=C(A, X ).
Then, since (A, X ) is a homomorphic image of (C_B, X ) under an elementary
homomorphism, we have T |=C(B, X ), by Lemma 15.1. K

Corollary 15.3. Suppose that the automaton (B, X ) is a quotient of (A, X )
under a G-homomorphism, for a class G of simple groups closed under division. Then
in any Conway theory T satisfying the group identities C(G), we have T |=C(A, X )
iff T |=C(B, X ).

Proof. Immediate from Proposition 15.2 and the fact, proved in [15], that if
(B, X ) is a quotient of (A, X ) under a G-homomorphism, then there is a sequence

(A, X )=(A0 , X ), (A1 , X ), ..., (Am , X )=(B, X )
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such that for each i # [m], either (Ai , X ) is a quotient of the automaton (Ai&1 , X )
under a permutation-reset G-homomorphism, or there is a surjective permutation-
reset G-homomorphism (Ai , X ) � (Ai&1 , X ). K

16. PROOF OF THE MAIN RESULTS

In this section we finally complete the proof of Theorem 8.1, restated here as
Corollary 16.7.

Theorem 16.1. Suppose that T is a Conway theory and (A, X ) is a finite automaton.
Suppose that T |=C(G) for all simple groups G with G | S(A, X ). Then T |=C(A, X ).
Moreover, T satisfies the vector form of the identity C(A, X ).

Proof. Let G denote the class of simple groups G with G | S(A, X ). By
Theorem 9.5, there is a sequence of automata (Ai , X ), i # [k] such that (A1 , X ) is
trivial, (Ak , X ) is (A, X ), and for each i # [k&1] either (Ai , X ) is a homomorphic
image of (Ai+1 , X ) under a surjective permutation-reset G-homomorphism, or
conversely. By Corollary 14.3, T |=C(B, Y ) for each permutation-reset automaton
(B, Y ) such that each simple group divisor of S(B, Y ) is in G. Thus, by Proposi-
tion 15.2, T |=C(Ai , X ) iff T |=C(Ai+1 , X ), for each i # [k&1]. But T |=C(A1 , X ),
since (A1 , X ) is trivial. The fact that T satisfies the vector form of C(A, X ) follows
from Corollary 10.8. K

Remark 16.2. In the above argument, we used part 2 of Theorem 9.5. There is
an alternative argument based on part 1, and Lemma 11.2, Proposition 15.2, and
Corollary 12.2. Note that C(U) holds in any Conway theory, by Corollary 14.4.

Corollary 16.3. The vector form of any identity associated with an aperiodic
automaton holds in all Conway theories.

For a full account of the identities that hold in Conway theories see [1].

Corollary 16.4. Suppose that S is a semigroup. Let G denote the class of simple
group divisors of S. If T is a Conway theory then T |=C(S) iff T |=C(G). Moreover,
in this case, T satisfies the vector form of the identity C(S).

Proof. If S does not have a unit element, let S1 denote the monoid obtained
from S by adding a unit, and let S1 be S if S is a monoid. Then (S 1, S), equipped
with the natural right action is a transformation semigroup and hence an autom-
aton. Moreover, the semigroup of (S1, S) is isomorphic to S. Thus, if T |=C(G),
then T |=C(S1, S), by Theorem 16.1. But then, since the transformation semigroup
(S, S) equipped with the natural self action is a subautomaton of (S1, S), we have
T |=C(S), by Lemma 11.2. Moreover, by our previous results, the vector form of
C(S) also holds in T.

Suppose now that T |=C(S). If G is a group in G, then G is a homomorphic
image of a subgroup H of S. But then, T |=C(H ), by Corollary 11.3, and T |=C(G),
by Proposition 13.5. K
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Corollary 16.5. Let (A, X ) be an automaton and S a class of finite semigroups
such that each simple group divisor of S(A, X ) divides one of the semigroups in S.
Then, if T is a Conway theory with T |=C(S), then T satisfies the vector form of
C(A, X ).

Proof. Immediate from Theorem 16.1 and Corollary 16.4. K

The following proposition can be extracted from [7], see also [26].

Proposition 16.6. Suppose that G is a class of simple groups closed under division.
If G is a simple group not in G, or if G is a group which has a simple group divisor
not included in G, then there is a Conway theory T with T |=C(G) but T |=3 C(G).

In fact, it is shown in [7] that there exists a Conway semiring [4, 7, 22] S such
that S and thus the matrix theory MatS over S satisfies the *-forms of the identities
in C(G) but does not satisfy the *-form of the identity C(G). But since S is a
Conway semiring, T=MatS is a Conway theory.

Corollary 16.7. Let S be a class of semigroups. Then the Conway identities
and the semigroup identities C(S) form a complete axiomatization of iteration
theories iff for each finite simple group G there is a semigroup S # S such that G | S.

Proof. First recall that each semigroup identity holds in all iteration theories.
Suppose that any simple group divides one of the semigroups in S. If T is a
Conway theory satisfying C(S), then, by Corollary 16.5, T satisfies the vector
forms of all of the identities associated by finite automata. Hence T is an iteration
theory, by Lemma 7.3.

For the converse direction, suppose that the Conway identities and the equations
C(S) give a complete axiomatization of iteration theories. Let G denote the simple
group divisors of the semigroups in S. By Corollary 16.4, if T is any Conway
theory, T |=C(S) iff T |=C(G). Thus, the Conway identities and the group iden-
tities C(G) are also complete. But then, G is the class of all finite simple groups, by
Proposition 16.6. K

Corollary 16.8. Suppose that S and S$ are two classes of finite semigroups.
Let V(S) denote the variety of Conway theories T such that T |=C(S), and define
V(S$) in the same way. Then V(S)�V(S$) iff each simple group divisor of any
semigroup in S$ divides one of the semigroups in S.

17. A CONJECTURE AND ITS CONSEQUENCES

Suppose that G is a finite group and X is a nonempty set of generators of G.
Then (G, X ), equipped with the natural action, is a permutation automaton and
thus has the associated identity C(G, X ).

Suppose the Conway identities and the identity C(G, X ) imply the group identity
C(G). Then, since under the Conway identities each group identity implies its own
vector form, it follows by Lemma 11.1 that under the Conway identities, the identity
C(G, X ) also implies its vector form. The converse direction is formalized by following
result:
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Theorem 17.1. Suppose that G is a finite group and X is a set of generators of G. If
T is a Conway theory satisfying the vector form of the identity C(G, X ), then the
group identity C(G) holds in T.

A proof of Theorem 17.1 may be found in [16]. The argument in [16] is separated
into two parts. The case that G is a cyclic group uses quasi-direct products of com-
mutative permutation automata, and the general case a construction from [19]
involving cascade compositions of an automaton with counters and definite automata.
It is shown that if G is a cyclic group of order m, then under the Conway identities, the
group identity C(G) is equivalent to the mth power identity

( f m)-=f -, f : n � n+ p.

The powers f k : n � n+ p of a morphism f : n � n+ p are defined by induction

f 0=1n �0p

f k+1=f } ( f k, 0n�1p ).

By Theorem 17.1, the following two conjectures are equivalent.

Conjecture 17.1. In Conway theories, each identity C(G, X ), associated with a
finite group G and a nonempty set X of generators of G, implies its vector form.

Conjecture 17.2. In Conway theories, each identity C(G, X ), associated with
a finite group G and a non-empty set X of generators of G, implies the group
identity C(G).

By Theorem 8.1, if any of the above conjectures holds, then so does the following:

Conjecture 17.3. Suppose that (Gi , Xi), i # I is a given collection of group�
generating set pairs. Then the Conway identities and the identities C(Gi , Xi), i # I
form a complete axiomatization of iteration theories iff each finite (simple) group
is the divisor of a group Gi0

, for some i0 # I.

The fact that this condition is necessary for completeness is known from
Theorem 8.1.

For each n�1, let Sn denote the symmetric group of degree n represented as the
group of all permutations [n] � [n]. When n�3, Sn has a 2-element generating
set X=[tn , cn], where tn is the transposition (12) and cn is the cyclic permu-
tation cn=(12...n). Moreover, S2 is isomorphic to the cyclic group of order 2. By
Theorem 8.1 we have:

Proposition 17.2. If Conjecture 17.1 or Conjecture 17.3 holds, then the Conway
identities and the equations C(Sn , Xn), n�3 give a complete axiomatization of
iteration theories.

The rest of this section is devoted to simplifying of the identities C(Sn , Xn). Given
the integer n�3, let H denote the subgroup of Sn determined by the permutations
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that fix the integer 1. Then for all g, g$ # Sn , g$ # Hg iff 1g=1g$. It follows that the
transformation groups (Sn �H, Sn) and ([n], Sn), both equipped with the natural
action, are isomorphic. Moreover, H is isomorphic to Sn&1 . Since the transforma-
tion group (Sn , Sn) is isomorphic to a cascade composition of (H, H ) and (Sn�H, Sn),
we have:

Lemma 17.3. There exists a cascade composition of (Sn&1 , Sn&1) and ([n], Xn)
which is isomorphic to (Sn , Xn).

Corollary 17.4. Suppose that T is a Conway theory satisfying the identities
C([n], Xn) and C(Sn&1). Then C(Sn , Xn) holds in T.

Corollary 17.5. If Conjecture 17.1 or Conjecture 17.3 is true, then the Conway
identities and the equations C([n], Xn), n�3 give a complete axiomatization of itera-
tion theories.

Proof. By the obvious induction argument noting that the identity C(S2) holds
in all Conway theories satisfying any one of the identities C([n], Xn), n�3. (Use
the fact that ([2], [tn]) is a subautomaton of ([n], [tn]).) K

Let us now define, for each n�3, the identity Sn :

( f } ({2�1p ) } ( f } (11 �0p , ( f -)n&2, 01�1p ) , 01�1p ) )-

=( f } ({2�1p ))-, f : 1 � 2+ p.

Lemma 17.6. For each n�3, and for any Conway theory T,

T |=Sn � T |=C([n], Xn).

From Lemma 17.6 and Corollary 17.5 we immediately have:

Theorem 17.7. If Conjecture 17.1 or Conjecture 17.3 is true, then the Conway
identities and the equations Sn , for n�3, form a complete axiomatization of iteration
theories.

Proof of Lemma 17.6. Let f : 1 � 2+ p is Conway theory, and let g denote the
morphism on the right-hand side of the equation defining Sn . Note that

f([n], Xn )=(01� f } ({2�0n&2�1p ), f } (11 �01 �11 �0n&3�1p ),

f } ((3n , 4n) �1p ), ..., f } (( (n&1)n , nn) �1p ), f } ((nn , 1n) �1p )).

We will show that

f -
([n], Xn)=( g, f } ( g, ( f -)n&2 } ( g, 1p ) , 1p ) , ( f -)n&2 } ( g, 1p ) , ..., f - } ( g, 1p )) .

(38)
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Indeed, by using only the Conway identities, one derives

f -
([n], Xn)=(01 �f } ({2�0n&2�1p ), f } (11 �01 �11 �0n&3 �1p ),

f - } (4n �1p ), ..., f - } ((n&1)n�1p ), f - } (1n�1p )) -.

Thus, again by the Conway identities,

f -
([n], Xn )=(01�f } ({2�0n&2�1p ), f } (11 �01�11 �0n&3�1p ),

( f -)n&2 } (1n �1p ), ..., f - } (1n�1p )) -

=( g, f } ( g, ( f -)n&2 } ( g, 1p ) , 1p ) , ( f -)n&2 } ( g, 1p ) , ..., f - } ( g, 1p )) .

Thus, if Sn holds in T, then

1n } f -
([n], Xn)=( f } ({2 �1p ))-= f --.

But then,

f - } ( g, 1p ) =f - } ( f --, 1p )

=f --

and by induction,

( f -) i } ( g, 1p )=f --,

for all i�1. Thus, also

f } ( g, ( f -)n&2 } ( g, 1p ) , 1p )=f } ( f --, f --, 1p )

=f } ({2�1p ) } ( ( f } ({2�1p ))-, 1p )

=( f } ({2�1p ))-

=f --.

Thus, if T |=Sn , then, by (38),

f -
([n], Xn)={n } ( f } ({2�1p ))-= f --,

proving T |=C([n], Xn). The converse implication is now obvious. K

We end this section with the following

Conjecture 17.4. The Conway identities and the equations Sn , n�3 form a
complete axiomatization of iteration theories.
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18. A SIMPLE +-LANGUAGE

In this section, we briefly outline how the completeness of the group identities for
iteration theories may be expressed in a simple algebraic language.

Suppose that 7=�n 7n is a signature containing a denumerable set 7n of n-ary
function symbols for each n�0. Suppose that X is a countably infinite set disjoint
from 7. The set of +-terms, denoted T7 , is defined to be the smallest set of expres-
sions satisfying the following:

v 70 _ X�T7 ,

v _ # 7n , t1 , ..., tn # T7 , n>0 O _(t1 , ..., tn) # T7 ,

v t # T7 , x # X O +x . t # T7 .

The variable x is bound in +x . t. We identify +-terms which differ only in their
bound variables (:-conversion). Hence, when needed, we may tacitly assume that
a variable occurring bound in a +-term is different from any other variable under
consideration.

The set of free variables of the term t is defined as usual. We will sometimes write
t#t[x1 , ..., xn] to indicate that the pairwise distinct variables xi , i # [n]=[1, ..., n],
may have a free occurrence, but no bound occurrence, in t. (Thus, # denotes syntactic
equality. Note that writing t[x1 , ..., xn] we do not mean that all free variables of t
appear on the list x1 , ..., xn .) Further, if t#t[x1 , ..., xn] and ti , i # [n] are +-terms,
we let

t[t1 �x1 , ..., tn �xn]

denote the term obtained by substituting the term t i for the variable xi in t, for each
i # [n]. By our convention about the bound variables, no free variable may become
bound as the result of the substitution. Thus, if t#_(x1 , ..., xn), the term _(t1 , ..., tn)
is t[t1�x1 , ..., tn �xn].

Note the following fact about substitution. Suppose that t#t[x, y1 , ..., ym] # T7

and t$1 , ..., t$m # T7 . Then, if x does not occur free in any t$j ,

(+x . t)[t$1 �y1 , ..., t$m�ym]#+x . (t[t$1 �y1 , ..., t$m �ym]).

Suppose that

ti #ti[x1 , ..., xn], i # [n], n�1

are +-terms. We define the term

+[x1 , ..., xn] .[t1 , ..., tn]

by induction on n. When n=1, this term is +x . t1[x1]. Assuming n>1, we define:

+[x1 , ..., xn] .[t1 , ..., tn]#+[x1 , ..., xn&1] .[t1 [+xn . tn �xn], ..., tn&1[+xn . tn �xn]].

Note that this definition is based on the right pairing identity.

174 Z. E� SIK



+-terms are commonly interpreted in continuous or regular 7-algebras [21, 23, 37],
or iterative 7-algebras [33, 38], or more generally in iteration algebras [4]. The
completeness of the Conway identities and the group axioms for iteration theories
may be translated into a sound and complete deductive system for proving that two
terms denote equal functions under all such interpretations. In addition to the usual
axioms and rules for substitution and for manipulating equations, this formal
system has the following axioms:

v Double Iteration Axiom

+z . t[z�x, z�y]=+x .+y .t,

for all terms t#t[x, y] # T7 , where z is a new variable.

v Composition Axiom

+x . t[t$�x]=t[+x . t$[t�x]�x],

for all t[x], t$[x] # T7 .

v Group Axioms

For each finite group G on a set [n], and for each +-term t#t[x1 ...., xn],

+[x1 , ..., xn] .[t[x11 �x1 , ..., x1n �xn], ..., t[xn1 �x1 , ..., xnn �xn]]=+y . t[ y�x1 , ..., y�xn],

where y is a new variable and for any i, j # [n], ij stands for the product of i and
j in the group G.

By (39), we do not need an axiom corresponding to the scalar parameter identity,
this axiom is implicit in the syntax.

19. A WEAK FORM OF THE FIXED POINT INDUCTION

In this section, consider ordered preiteration theories, i.e., preiteration theories T
equipped with a partial order such that the theory operations are monotonic. When
T also satisfies the Conway identities, we call T an ordered Conway theory.

Suppose that T is an ordered preiteration theory. We say that T satisfies the weak
Park induction principle cf. [34, 39], if

f } ( g, 1p )= g O f -�g,

for all f : n � n+ p and g: n � p.

Theorem 19.1. Any ordered Conway theory satisfying the weak Park induction
principle is an iteration theory.

Proof. Suppose that T is an ordered Conway theory which satisfies the weak
Park induction principle. By Corollary 8.2, we need to show that T satisfies the
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group identities. But let G be a finite group on the set [n], and let f : 1 � n+ p
in T. Define g= f } ({n�1p ). Then the square below commutes:

{n {n�1p

n ww�
fG n+p

(40)

1 ww�g 1+p

Thus,

fG } ({n } g-, 1p ) =fG } ({n�1p ) } ( g-, 1p )

={n } g } ( g-, 1p )

={n } g-,

by (40) and the (scalar) fixed point identity. Thus,

f -
G�{n } g-,

since the weak Park induction principle holds in T.
In order to prove that {n } g-� f -

G , note that the components of f -
G are pairwise

equal. See Remark 10.6. Thus, if : denotes the distinguished morphism 1n , then
f -

G={n } : } fG
- and

g } (: } f -
G , 1p )=: } {n } g } (: } f -

G , 1p )

=: } fG } ({n�1p ) } (: } f -
G , 1p )

=: } fG } ({n } : } f -
G , 1p )

=: } fG } ( f -
G , 1p )

=: } f -
G .

Thus,

g-�: } f -
G , (41)

so that

{n } g-�{n } : } f -
G

=f -
G . K

Remark 19.2. In the above proof, we used very little of the assumption that the
theory operations preserve the partial order. Also, the assumption that T is a Conway
theory may be weakened, since the composition identity follows from the fixed point
identity and the weak Park induction principle.
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Corollary 19.3. Iteration theories are the variety of preiteration theories generated
by the unordered reducts of the ordered Conway theories satisfying the weak Park
induction principle. Thus an equation holds in all iteration theories iff it holds in all
Conway theories satisfying the weak Park induction principle.

Proof. This follows from Theorem 19.1 and the fact that each free iteration
theory may be turned into an ordered theory satisfying the weak Park induction
principle. K

There is a variant of the Park induction principle which involves the implication

f } ( g, 1p )�g O f -�g, f : n � n+ p, g: n � p,

or this implication just in case n=1. See [14] for more results. A 2-categorical
generalization can be found in [18].

20. APPLICATIONS

As shown in [4], the bisimilarity equivalence classes of finite state processes with
multiple entries and exits over a set A of action symbols form an iteration theory
BFPA . In addition to the iteration theory structure, BFPA is equipped with an
additive structure satisfying:

( f+g)+h=f +(g+h) (42)

f +g=g+ f (43)

f +=np=f (44)

( f +g) } k=f } k+ g } k (45)

(12+22)-=11 , (46)

where f, g, h: n � p, k: p � q, and where =np is an abbreviation for (1n �0p)-.
(Alternatively, instead of the addition operation, we may consider a constant
+: 1 � 2 and require a few axioms involving the constant +, or we may take the
above axioms only for n=1. The fact that the additive structure is idempotent is
a consequence of these axioms.) In fact, it is shown in [4] that each theory BFPA

is freely generated by the set A in the variety of enriched iteration theories
axiomatized by the iteration theory identities and the axioms (42)�(46). Thus, the
Conway identities, the group identities, and Eqs. (42)�(46) give a complete axioma-
tization of finite state process behaviors. Moreover, if Conjecture 17.1 is true, then
the set consisting of the Conway identities, the equations Sn , n�3, and the axioms
(42)�(46) are also complete.

As a second application, consider language equivalence t on finite state processes,
or finite state process behaviors. The quotient theory BFPA�t may be represented as
the matrix theory RegA over the *-semiring of the regular sets over A (See Remark 3.2).
Now it is proved in [4] that the star forms of the axioms for finite state process
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behaviors and their duals give a complete axiomatization of the equational theory
of the regular sets. (Hence, Corollary 8.4 and Sewell's result [36] that finite state
process behaviors do not have a finite axiomatization follow from Redko's result
[7] that the regular sets (on one letter) do not have a finite axiomatization.) But
the set consisting of the Conway theory axioms and the group identities is self dual,
so we end up with a system consisting of the Conway identities, the group identities
and a finite number of natural equations involving the additive structure. The com-
pleteness of this system is the result of Krob [26]. As a corollary, we also obtain
that language equivalence t is the finest congruence on finite state process behaviors
such that in the quotient BFPA �t composition distributes over finite sums on the left.
Although this result is expected, no (direct) proof seems to be known. Also, it does
not follow from other axiomatizations, such as Milner's [31]. In fact, a large part
of the analysis carried out in the present paper seems to be necessary in order to
establish this result. By Theorem 17.1 and the above discussion, Conjecture 17.1 for
the regular sets is equivalent to Krob's conjecture [26] that, under the Conway
semiring identities and the equation 1*=1, for any finite group G and set X of
generators of G, the star form of the identity with (G, X ) implies the star form of
the identity C(G). For each n�3, the star form of the identity Sn is

[(x+ y)(x+ y(x*y)n&2)]* _1+(x+ y) :
n&2

j=0

( yx*) j&=(x+ y)*. (47)

The completeness of the Conway semiring identities in conjunction with the equa-
tion 1*=1 and the identities (47) with respect to the equational theory of the
regular languages was conjectured by Conway, see [7]. Thus, by Theorem 17.7, if
Conjecture 17.1 is true, then so is Conway's.

Finally, we note that it follows from the completeness of the Conway and group
identities for iteration theories that each iteration semiring is a symmetric iteration
semiring. This solves an open problem in [4].

21. FURTHER RESULTS

In [17], we give a concrete description of the free theories in the class of Conway
theories satisfying the semigroup identities C(S), for any class S of finite semi-
groups. Proposition 16.6 also follows from this concrete description. We also prove
a converse of Theorem 16.1: For any class G of simple groups closed under division,
and for any automaton (A, X ), if Ax |=C(A, X ) holds for the set Ax of axioms
consisting of the Conway identities and the group identities C(G), then any simple
group divisor of S(A, X ) belongs to G. Moreover, we prove that if (Ai , Xi), i # I is
a given set of finite automata and (A, X ) is a given automaton, and if Ax |=C(A, X )
holds for the set Ax consisting of the Conway identities and the identities C(Ai , Xi),
i # I, then any simple group divisor of S(A, X ) divides the semigroup of at least one
of the automata (Ai , Xi). Thus, if the Conway identities and some subcollection
C(Ai , Xi) of the identities associated with a given set of finite automata (Ai , Xi),
i # I, is complete for the equational theory of iteration theories, then for any finite
simple group G there is some i0 # I with G | S(Ai0

, Xi0
). Further, we show that if
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G is an effectively given set of simple groups closed under division, then it is
decidable if an equation holds in the variety of Conway theories satisfying the
group identities C(G).
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