
Discrete Applied Mathematics 43 (1993) 97-101

North-Holland

97

Note

Tree-width, path-width, and
cutwidth*

Ephraim Korach** and Nir Solel***

Department of Computer Science, Technion - Israel Institute of Technology, Hafa 32000, Israel

Received 24 September 1990

Revised 25 September 1992

Abstract

Korach, E. and N. Solel, Tree-width, path-width, and cutwidth, Discrete Applied Mathematics 43

(1993) 977101.

Let tw(G), pw(C), c(G), d(G) denote, respectively, the tree-width, path-width, cutwidth and the maxi-

mum degree of a graph G on n vertices. It is known that c(G)?tw(C). We prove that

c(G)=O(tw(G)~d(G)~log n), and if ({X, : iEl},T=(I,A)) is a tree decomposition of G with tree-width&

then c(G)<(k+l)~d(G)c(T). In case that a tree decomposition is given, or that the tree-width is bounded

by a constant, efficient algorithms for finding a numbering with cutwidth within the upper bounds are

implicit in the proofs. We obtain the above results by showing that pw(G)=O(logntw(G)), and

pw(G)((k+l)c(T).

1. Introduction

Given a graph G=(V,E), 1 VI = n, a numbering of G is a one-to-one mapping

L,: V-(1,..., n}. The cutwidth of a numbering L, is max,,,,. 1 {(u, u) E E:

LG(U) sP<LG@)) 1.

The cutwidth c(G) of G is the minimum cutwidth over all the numberings. The

cut of a graph at p, 1 rp < n, under a numbering LG is the set of edges {(u, u) E E:

L&u)sP< LG(u)). The problem of finding the cutwidth of a graph is also known

as the min-cut linear arrangement problem. The degree of a graph G = (V, E), denoted

Correspondence to: Dr. E. Korach, Ben-Gurion University of the Nev, Beer-Sheva 84105, Israel

* This research was partially supported by Technion V.P.R. Fund - Coleman Cohen Research Fund.

** First author’s current address: Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.

*** Second author’s current address: National Semiconducter Design Center, Herzelia, Israel.

0166-218X/93/$06.00 0 1993 - Elsevier Science Publishers B.V. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81988896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

98 E. Korach, N. Sole1

by d(G) is the maximum degree of a vertex in V. Finding the cutwidth of a graph
is NP-hard (the corresponding decision problem is NP-complete [7]). The problem
remains NP-complete on series-parallel graphs, i.e., graphs having tree-width 52
[ll], and thus we do not expect to find a polynomial algorithm that finds the cut-
width of an arbitrary graph with bounded tree-width. The problem is solvable in
polynomial time on trees: First, in [8] an approximation algorithm for arbitrary
trees is given, and also an exact algorithm for complete k-ary trees. For graphs with
d(G) 2 3 an O(n log d(G)-2n) algorithm is given in [5], and in [15] the problem is
solved in O(n log n) time on an arbitrary tree. In [9], for fixed k, an 0(&t)
algorithm is given, which determines whether for an arbitrary graph G, c(G) 5 k,
and also characterizations for graphs with cutwidth 2 and 3 are given.

The tree-width of a graph G, denoted by tw(G), is defined as follows [13]: A tree
decomposition of a graph G = (V, E) is a pair (X, T) where T= (I, A) is a tree, and
X= {Xi: ie:I) is a family of subsets of V, such that:

(1.1) UiclXj==V.
(1.2) Every edge of G has both its ends in some Xi (ill).
(1.3) For all i, j, k E I, if j lies on the path from i to k in T, then Xi n X, c Xj.

The tree-width of a tree decomposition is maxi,, IX; (- 1. The tree-width of G is
the minimum tree-width taken over all possible tree decompositions of G. The path-
width of a graph G, denoted by pw(G), is defined in a similar way [12], but the tree
in the above definition is a path.

In [6] it is shown that c(G)(pw(G). n(G), and in [2] it is proved that for any
graph G, c(G) ?tw(G). An important application of the min-cut linear arrangement
problem is in VLSI layout design. The problem is also related to the search number,
the bandwidth and the topological bandwidth of a graph (see e.g. [6,9,15]).

Deciding the tree-width of a graph is NP-hard [l], however for a given constant
k it was shown in [l] that deciding whether a graph G has tree-widths k and con-
structing an appropriate tree decomposition can be done in 0(nk’2) time, and in
[4] an 0(n2) nonconstructive algorithm for the problem is given. Moreover, for
k = 2 and k = 3 the decision and construction problems can be solved in O(n) time
(see [4]). Some known families of graphs with bounded tree-width are: trees and
forests (tw(G) 5 l), series-parallel graphs (tw(G) 5 2), grid d *n @w(G) i_ d), d-
outerplanar graphs (tw(G)c3d- 1) and many others (see e.g. [2]).

The aim of this note is to prove upper bounds on the cutwidth as a function of
the tree-width. These bounds are stated in Corollaries 7-9. We achieve these bounds
using results of [6], and by proving some connections between tree-width, path-width
and cutwidth. The proofs yield efficient algorithms for numbering G with cutwidth
within the bounds, In some of them the algorithm from [15] is used as a subroutine.

2. Results

Before presenting our results, we quote three lemmas that we use.

Tree-width, path-width, and cutwidth 99

Lemma 1 [6]. c(G)~pw(G)*d(G).

Lemma 2 [5]. The number of vertices in the smallest degree-3 tree with cutwidth c
is 3’-l+ 1.

Lemma 3 [2, Theorem 5.41. For every graph G, c(G)?pw(G).

Lemma 4. Let G = (V,E) be a graph, and let ({Xi: ie I), T= (I, A)) be a tree
decomposition of G with tree-width = k. Then pw(G)_c (k+ 1). c(T).

Proof. We follow the method used in the proof of [2, Theorem 5.41. Let LT be a

numbering of T with cutwidth = c(T). Let the subsets in the path decomposition

(Y,P) of G be defined as follows: yP= U{Xi:L,(i)Sp, L,(j)>p and (i,j)EA
(i.e., the edge (i,j) of T is in the c&t at p)} U {XL;lo,,}, for each 11~5 IZ).

The above definition of subsets defines a legal path decomposition: Conditions

(1.1) and (1.2) in the definition of a path decomposition are met since every vertex

and every edge in G are contained in at least one subset Xi. Condition (1.3) is met

since for all u E V, all the subsets Xi that contain u induce a connected subtree in

T, and therefore u will be in a connected subpath in the path decomposition. Note

that for a connected graph G, if no edge incident to Lo(w) =p is included in the cut

at p then the size of the cut at p - 1 is larger than the size of the cut at p. Therefore

each set Y, is the union of at most c(T) subsets, and thus its size is at most

(k+ 1). c(T). 0

Theorem 5. For any forest F on n vertices, pw(F) = O(log n).

We present two different algorithmic proofs for the above theorem. The first

proof is direct, but the constants achieved in the second proof are better. There are

graphs for which the algorithm in the first proof may achieve a better path decom-

position, and other graphs for which the second algorithm is better.

Proofs of Theorem 5. Proof I: Find a minimum separating set of vertices in F (a

singleton, or the empty set) such that its removal separates F into two parts, each

one with no more than 2/3n vertices. This separating set will be added to all subsets

Xi in the path decomposition. Continue this process recursively with each one of

the two forests, i.e., in each forest find such a separating set, remove it from the

forest, and add it to all subsets in the path decomposition in the corresponding

forest.

Proof II: Let (X, T) be a tree decomposition of F. Transform T to a new tree,

T’ with maximum vertex degree of three, and no more than 2n vertices (for ex-

istence, and a simple linear algorithm, see [lo]). From Lemma 2 it follows that a

degree-three tree with at most 2n vertices, has cutwidth of at most log n/log 3 +

l/log 3 + 1. Finally, define the subsets Y, of the path decomposition as in the proof

100 E. Korach, N. Sole1

of Lemma 4. As shown there, the resulting path decomposition has path-width
which is no more than 2. (log n/log 3 + l/log 3 + 1). q

Remarks. (1) The time complexity of the algorithms in Proof I and II is O(n log n)
(in Proof II finding an optimal numbering for T’ takes O(n log n) [15], and all the
other parts of the algorithm take linear time). We do not know whether the problem
of finding the path-width of a tree is polynomial, neither if it is NP-complete.

(2) The path-width of the path decomposition achieved by the algorithm in Proof
I, in the worst case, is bounded above by log n/log (3/2), where in the algorithm of
Proof II the upper bound on the path-width is 2. (log n/log 3 + l/log 3 + l), i.e., in
the worst case, the bound on the path-width achieved by the second algorithm is
better.

(3) For a star graph, the algorithm in I achieves an optimal path decomposition
(with path-width = I), while the algorithm in II might result in a worse path decom-
position. On the other hand, for the path graph, the algorithm in I always achieves
a path decomposition with path-width logarithmic in n, while the algorithm in II,
for the “natural” tree decomposition of the path graph, produces an optimal path
decomposition (with path-width = 1).

(4) In [12] the tree Y, is defined and shown to have path-width = r(13. + 1)/21.
Therefore, the upper bound in Theorem 5 is tight, since Y, contains 3 - 2” -2
vertices.

Theorem 6. For any graph G on n vertices, pw(G) = O(log n. tw(G)).

Proof. Let ({Xi: ill), T= (Z,A)) be a tree decomposition of G. Find a path de-
composition ((Yi: j E J}, P = (.I, B)) of T, with path-width = O(log n). The path
decomposition ({Zj : Jo .I>, P= (J, B)) of G is the following: For each j E J, Zj =
U{Xi: i E Yj}. One can see that this defines a legal path decomposition and by
Theorem 5 its path-width is O(log n + tw(G)). 0

Corollary 7. For any graph G on n vertices, c(G) = O(log n. tw(G) . A(G)).

Proof. Follows from Theorem 6 and Lemma 1. Cl

From Corollary 7 we have the following:

Corollary 8. Let G be a graph on n vertices, where tw(G) and d(G) are bounded
by constants. Then c(G) = O(log n).

Remark. From Lemma 2, for every n, there exists a degree-three tree (which has
tree-width= 1) whose cutwidth = Llog 3.log(n - l)] + 1 (see [5]) and thus in the

worst case the cutwidth of graphs with bounded tree-width and bounded degree is

Q(log n). Therefore the upper bound in Corollary 8 is tight.

Tree-width, path-width, and cutwidth 101

Corollary 9. Let (X, T) be a tree decomposition of a graph G with tree-width = k.
Then c(G)sc(T). (k+ l).d(G).

Proof. Follows from Lemmas 1 and 4. q

Complexity aspects: All the proofs we have given are algorithmic. Achieving a
numbering with cutwidth within the bound in Lemma 1 (if a path decomposition
of the graph is given) can be done in linear time (see [6]). Therefore, for a graph
G with constant tree-width, finding a numbering with cutwidth satisfying the bound
given in Corollary 7 can be done in polynomial time (since finding an appropriate
tree decomposition, in that case, takes polynomial time). For a graph G, given
together with a tree decomposition (X, T) with tree-width = k, obtaining a number-
ing with cutwidth satisfying the bound in Corollary 9 takes O(n log n) time (since
finding a numbering for T with minimum cutwidth takes O(n log n) time [15]).

References

[l] S. Amborg, D. Corneil and A. Proskurovski, Complexity of finding embeddings in a K-tree, SIAM

J. Algebraic Discrete Methods 8 (1987) 277-284.

[2] H.L. Bodlaender, Classes of graphs with bounded tree-width, Bulletin of EATCS (1988) 116-128.

[3] H.L. Bodlaender, Dynamic programming on graphs with bounded tree-width, in: T. Lepisto and

A. Salomaa, eds., ICALP 1988, Lecture Notes in Computer Science 317 (Springer, Berlin, 1988).

[4] H.L. Bodlaender, Improved self-reduction algorithms for graphs with bounded tree-width, in: M.

Nagl, ed., WC 1989, Lecture Notes in Computer Science 411 (Springer, Berlin, 1989).

[5] M.J. Chung, F. Makedon, I.H. Sudborough and T. Turner, Polynomial algorithms for the min-cut

linear arrangement problem on degree restricted trees, SIAM J. Comput. 14 (1985) 158-177.

[6] F.R.K. Chung and P.D. Seymour, Graphs with small bandwidth and cutwidth, Discrete Math. 75

(1989) 113-I 19.

[7] M.R. Carey and D.S. Johnson, Computers and Intractability (Freeman, New York, 1979).

[S] T. Lengauer, Upper and lower bounds on the complexity of the min cut linear arrangement problem

on trees, SIAM J. Algebraic Discrete Methods 3 (1982) 99-l 13.

[9] F. Makedon and I.H. Sudborough, On minimizing width in linear layouts, Discrete Appl. Math.

23 (1989) 243-265.

[lo] J. Matousek and R. Thomas, On the complexity of finding iso- and other morphisms for partial

k-trees, Manuscript (1988).

[ll] B. Monien and I.H. Sudborough, Min-cut is NP-complete for edge weighted trees, in: ICALP 1986,

Lecture Notes in Computer Science 226 (Springer, Berlin, 1986).

[12] N. Robertson and P.D. Seymour, Graph minors I. Excluding a forest, J. Combin. Theory Ser. B

35 (1983) 39-61.

[13] N. Robertson and P.D. Seymour, Graph minors II. Algorithmic aspects of tree width, J.

Algorithms 7 (1986) 309-322.

[14] N. Robertson and P.D. Seymour, Graph minors IV. Tree-width and well-quasi-ordering, J. Com-

bin. Theory Ser. B 48 (1990) 227-254.

[15] M. Yannakakis, A polynomial algorithm for the min cut linear arrangement of trees, J. ACM 32

(1985) 950-989.

