Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/disc

General neighbour-distinguishing index via chromatic number *

Mirko Horňák*, Roman Soták

Institute of Mathematics, P.J. Šafárik University, Jesenná 5, 040 01 Košice, Slovakia

ARTICLE INFO

ABSTRACT

Article history: Received 25 June 2008 Accepted 17 November 2009 Available online 27 November 2009

Keywords: Colour set Neighbour-distinguishing edge colouring General neighbour-distinguishing index Chromatic number An edge colouring of a graph *G* without isolated edges is neighbour-distinguishing if any two adjacent vertices have distinct sets consisting of colours of their incident edges. The general neighbour-distinguishing index of *G* is the minimum number gndi(*G*) of colours in a neighbour-distinguishing edge colouring of *G*. Győri et al. [E. Győri, M. Horňák, C. Palmer, M. Woźniak, General neighbour-distinguishing index of a graph, Discrete Math. 308 (2008) 827–831] proved that gndi($G \in \{2, 3\}$ provided *G* is bipartite and gave a complete characterisation of bipartite graphs according to their general neighbour-distinguishing index. The aim of this paper is to prove that if $\chi(G) \ge 3$, then $\lceil \log_2 \chi(G) \rceil + 1 \le \text{gndi}(G) \le \lfloor \log_2 \chi(G) \rfloor + 2$. Therefore, if $\log_2 \chi(G) \notin \mathbb{Z}$, then gndi($G) = \lceil \log_2 \chi(G) \rceil + 1$. © 2009 Elsevier B.V. All rights reserved.

All graphs we are dealing with in this paper are simple, finite and nonoriented. Let *G* be a graph and let *k* be a positive integer. A *k*-edge-colouring of *G* is a mapping $\varphi : E(G) \rightarrow \{1, ..., k\}$. The colour set of a vertex $x \in V(G)$ with respect to φ is the set

$$S_{\varphi}(x) := \{\varphi(xy) : xy \in E(G)\}.$$

The colouring φ is *neighbour-distinguishing* provided $S_{\varphi}(x) \neq S_{\varphi}(y)$ whenever $xy \in E(G)$. The notion of the colour set can be naturally extended to *partial* edge colourings of *G* in which some edges may be uncoloured.

Clearly, a neighbour-distinguishing colouring of *G* does exist if and only if *G* has no isolated edges. In such a case the *neighbour-distinguishing index* of *G* is the minimum *k* such that there is a proper *k*-edge-colouring of *G* that is neighbour-distinguishing; let ndi(*G*) denote the neighbour-distinguishing index of *G*. Evidently, $\chi'(G)$ is a trivial lower bound for ndi(*G*). The invariant has been introduced by Zhang et al. in the paper [6]. The authors conjecture that if *G* is a connected graph, $G \notin \{K_2, C_5\}$, then ndi(*G*) $\leq \Delta(G) + 2$. The conjecture is known to be true for bipartite graphs and for graphs with maximum degree at most three; see Balister et al. [1]. In Edwards et al. [2] it was proved that if *G* is a plane graph with $\Delta(G) \geq 12$, then even ndi(*G*) $\leq \Delta(G) + 1$. According to Hatami [5], ndi(*G*) $\leq \Delta(G) + 300$ for any graph *G* satisfying $\Delta(G) > 10^{20}$.

Here we are interested in a generalised version of the problem in which we admit also edge colourings that are not proper. The corresponding invariant (first investigated by Győri et al. in [3]) is the general neighbour-distinguishing index of a graph G, in symbols gndi(G). Evidently, if G has connected components G_1, \ldots, G_l , then

 $gndi(G) = max(gndi(G_i) : i = 1, ..., l).$

Therefore, we shall restrict our attention to connected graphs distinct from K_2 .

In [3] bipartite graphs are characterised from the point of view of their general neighbour-distinguishing index. Namely, if *G* is bipartite, then $2 \le \text{gndi}(G) \le 3$; furthermore, gndi(G) = 2 if and only if there is a bipartition $\{X_1 \cup X_2, Y\}$ of V(G) such that $X_1 \cap X_2 = \emptyset$ and any vertex of *Y* has at least one neighbour in both X_1 and X_2 . If $\chi(G) \ge 3$, in [3] it is shown that $\text{gndi}(G) \le 2\lceil \log_2 \chi(G) \rceil + 1$.

 ^{*} This work was supported by Science and Technology Assistance Agency under the contract No. APVV-0007-07 and by the Slovak grant VEGA 1/3004/06.
* Corresponding author.

E-mail addresses: mirko.hornak@upjs.sk (M. Horňák), roman.sotak@upjs.sk (R. Soták).

⁰⁰¹²⁻³⁶⁵X/ $\$ - see front matter $\$ 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2009.11.018

Győri and Palmer in [4] improved the upper bound for the general neighbour-distinguishing index of *G* to $3\lceil \frac{1}{2} \log_2 \chi(G) \rceil$. They have also proved that if $\chi(G) \ge 5$, then

gndi(G) $\leq \lceil \log_2(\chi(G) - 3) \rceil + 5.$

The aim of the present paper is to show that if $\chi(G) \ge 3$, then

 $\lceil \log_2 \chi(G) \rceil + 1 \le \text{gndi}(G) \le \lfloor \log_2 \chi(G) \rfloor + 2.$

Let p, q be integers. We shall denote as [p, q] the *integer interval* bounded by p and q, i.e., the set $\{z \in \mathbb{Z} : p \le z \le q\}$. Analogously, we define $[p, \infty) := \{z \in \mathbb{Z} : z \ge p\}$. For $q \in [2, \infty)$ and $m \in \mathbb{Z}$ let $(m)_q$ be the (unique) integer in [0, q-1] satisfying $(m)_q \equiv m \pmod{q}$. If $k \in [1, \infty)$, a proper k-vertex-colouring of G can be viewed as a decomposition $\mathcal{V} = \{V_i : i \in [1, k]\}$ of the set V(G) in which all sets V_1, \ldots, V_k are independent. Without loss of generality we may assume that $|V_i| \le |V_j|$ whenever $i, j \in [1, k]$, i < j. The nonincreasing sequence $(|V_k|, \ldots, |V_1|)$ is then called the *colour frequency sequence* of \mathcal{V} .

Theorem 1. If $G \neq K_2$ is a connected graph, then $gndi(G) \ge \lceil \log_2 \chi(G) \rceil + 1$.

Proof. Put k := gndi(G) and consider a neighbour-distinguishing colouring $\varphi : E(G) \to [1, k]$. For $A \subseteq [1, k]$ let $\overline{A} := [1, k] - A$ and $V_A := \{x \in V(G) : S_{\varphi}(x) = A\}$. Clearly, V_A is an independent set of vertices of G. Moreover, if $x \in V_A$ and $y \in V_{\overline{A}}$, then $\emptyset = A \cap \overline{A} = S_{\varphi}(x) \cap S_{\varphi}(y)$, and so $xy \notin E(G)$ (notice that $xy \in E(G)$ implies $\varphi(xy) \in S_{\varphi}(x) \cap S_{\varphi}(y)$). Thus, $\{V_A \cup V_{\overline{A}} : A \subseteq [1, k]\}$ is a proper vertex colouring of G using at most $\frac{1}{2} \cdot 2^k = 2^{k-1}$ colours, which leads to $\chi(G) \leq 2^{k-1}$, gndi $(G) = k \geq \log_2 \chi(G) + 1$, and the desired inequality follows.

Theorem 2. If *G* is a connected graph with $\chi(G) \ge 3$, then $\text{gndi}(G) \le \lfloor \log_2 \chi(G) \rfloor + 2$.

Proof. Let $\chi := \chi(G)$ and let $\{V_i : i \in [1, \chi]\}$ be a proper vertex colouring for which the colour frequency sequence $(|V_{\chi}|, ..., |V_1|)$ of length χ (i.e., a shortest one) is lexicographically maximal. Then

$$\forall i \in [1, \chi - 1] \forall j \in [i + 1, \chi] \forall x_i \in V_i \exists x_i \in V_i x_i x_i \in E(G).$$

Indeed, provided a vertex x_i of V_i with $i \in [1, \chi - 1]$ has no neighbour in some V_j with $j \in [i + 1, \chi]$, the proper vertex colouring

 $\{V_l : l \in [1, \chi] - \{i, j\}\} \cup \{V_j \cup \{x_i\}, V_i - \{x_i\}\}$

would have the colour frequency sequence that is lexicographically greater than $(|V_{\chi}|, \ldots, |V_1|)$, a contradiction.

If *k* is the integer determined by the inequalities $2^k \le \chi < 2^{k+1}$, then $k \le \log_2 \chi < k+1$ and $k = \lfloor \log_2 \chi \rfloor \ge 1$. Our theorem will be proved by finding a neighbour-distinguishing colouring $\varphi : E(G) \rightarrow [1, k+2]$. With

 $\mathcal{A} := \{A \subseteq [1, k+2] : k+2 \in A\} - \{\{1, k+2\}, \{1, 2, k+2\}\} \cup \{[1, k+1]\}$

we have $|\mathcal{A}| = 2^{k+1} - 1 \ge \chi$, hence there is an injection $f : [1, \chi] \to \mathcal{A}$ satisfying

 $f(\chi - j) = \{j, k + 2\}, \quad j \in [2, k + 1],$ $f(\chi - 1) = [1, k + 1],$ $f(\chi) = \{k + 2\}.$

Thus, $|f(i)| \ge 2$ for any $i \in [1, \chi - 2]$. For $i \in [1, \chi]$ and $x \in V_i$ put

$$A_x := f(i).$$

We shall subsequently define partial colourings

 $\varphi_j : E(G) \to [1, k+2], \quad j = 1, 2, 3, 4, 5, 6,$

in such a way that φ_j is a continuation of φ_{j-1} , j = 2, 3, 4, 5, 6; the colouring $\varphi := \varphi_6$ will have the required properties. Any edge of *G* is incident with vertices $x \in V_i$ and $y \in V_i$ where $i \in [1, \chi - 1]$ and $j \in [i + 1, \chi]$. Thus, we can define

$$(i, j) \neq (\chi - 1, \chi) \Rightarrow \varphi_1(xy) := \min(A_{\chi} \cap A_{\gamma}).$$

If $j \neq \chi - 1$, then $k + 2 \in A_x \cap A_y$. On the other hand, the assumption $j = \chi - 1$ yields $|A_x| \ge 2$, and so $A_x \cap A_y = A_x \cap [1, k + 1] \neq \emptyset$. Therefore, the partial colouring φ_1 is correctly defined and

$$\forall z \in V(G) \qquad S_{\varphi_1}(z) \subseteq A_z.$$

Let us show that

 $\forall i \in [1, \chi - 2] \ \forall x \in V_i \quad S_{\varphi_1}(x) = A_x.$

$$S_{\omega_1}(y) = \{k+2\} \Rightarrow \varphi_2(xy) := 1.$$

Let us denote

$$\begin{split} V^0_{\chi-1} &:= \{ x \in V_{\chi-1} : S_{\varphi_2}(x) = \emptyset \}, \\ V^1_{\chi-1} &:= \{ x \in V_{\chi-1} : S_{\varphi_2}(x) \neq \emptyset \}. \end{split}$$

Further, for $t_0, t_1 \in \{0, 1\}$ let $V_{\chi}^{t_0 t_1}$ be the set of all those vertices $y \in V_{\chi}$ for which the statement "y has a neighbour in $V_{\chi-1}^{i}$ " has the truth value $t_i, i = 0, 1$. The mapping φ_3 colours edges xy with $y \in V_{\chi}^{11}$:

$$\varphi_3(xy) \coloneqq 1, \qquad S_{\varphi_2}(x) \neq \emptyset, \\ \varphi_3(xy) \coloneqq k+2, \qquad S_{\varphi_2}(x) = \emptyset.$$

The mapping φ_4 is defined in several steps. First, for $y \in V_{\chi}^{01}$ let $N^-(y)$ be the set of all those neighbours x of y for which the edge xy is not coloured under φ_3 . Put $\psi_0 := \varphi_3$ and, provided ψ_j is already determined, let ψ_{j+1} be a continuation of ψ_j colouring edges incident with a fixed vertex $y \in V_{\chi}^{01}$. The mapping ψ_{j+1} works according to the following rules:

If there is minimal $i \in \{1, 2\}$ such that $S_{\psi_i}(x) \neq \{i\}$ for every $x \in N^-(y)$, put

$$\psi_{i+1}(xy) := i, \quad x \in N^{-}(y).$$

If there are $x_1, x_2, x_3 \in N^-(y)$ satisfying $S_{\psi_i}(x_1) = \{1\}, S_{\psi_i}(x_2) = \{2\}$ and $S_{\psi_i}(x_3) = \{1, 2\}$, proceed as follows:

$$\begin{split} S_{\psi_j}(x) &\neq \{1, 2\} \Rightarrow \psi_{j+1}(xy) := 1, \\ S_{\psi_j}(x) &= \{1, 2\} \Rightarrow \psi_{j+1}(xy) := k+2. \end{split}$$

If none of the above assumptions is fulfilled, define $\varphi_4 := \psi_i$.

If a vertex $y \in V_{\chi}^{01}$ is incident with an edge xy that is not coloured under φ_4 , there are $x_1, x_2 \in N^-(y)$ with $S_{\varphi_4}(x_i) = \{i\}$, $i = 1, 2, \text{ and } S_{\varphi_4}(x) \neq \{1, 2\}$ for every $x \in N^-(y)$. This allows us to define:

$$\begin{split} S_{\varphi_4}(x) &= \{1\} \Rightarrow \varphi_5(xy) \coloneqq 1, \\ S_{\varphi_4}(x) &\neq \{1\} \Rightarrow \varphi_5(xy) \coloneqq 2. \end{split}$$

Now consider the set

$$W \coloneqq V_{\chi}^{10} \cup V_{\chi-1}^{0}$$

From the definition of the colouring φ_5 it is clear that any path joining a vertex $w \in W$ to a vertex $y \in W_0 := V_{\chi}^{11}$ has all its internal vertices in W. From the connectedness of G we see that $\{W_l : l \in [1, \infty)\}$ with

$$W_l := \{ w \in W : \min(d_G(w, z) : z \in W_0) = l \},\$$

where $d_G(w, z)$ is the distance between x and z in G, is a decomposition of the set W. Therefore, if $uv \in E(G)$ is an edge for which $\varphi_5(uv)$ is not determined, there is $m \in [1, \infty)$ such that $u \in W_m$ and $v \in W_{m+1}$. To define $\varphi_6(uv)$ it is useful to introduce an auxiliary name 0 for the colour k + 2. Under that assumption we proceed in the following way:

$$(\exists m \in [1, \infty) (u \in W_m \land v \in W_{m+1})) \Rightarrow \varphi_6(uv) := (-m)_3;$$

notice that if $u \in W_0$ and $v \in W_1$, then $\varphi_6(uv) = \varphi_3(uv) = k + 2 = (-0)_3$, and so the above definition is valid also for m = 0.

Let us now prove that $\varphi := \varphi_6$ is a neighbour-distinguishing colouring. For that purpose let $xy \in E(G)$ be an edge with $x \in V_i$ and $y \in V_j$ where i < j.

If $j \le \chi - 2$, then $S_{\varphi_1}(x) = S_{\varphi_1}(x) = f(i) \ne f(j) = S_{\varphi_1}(y) = S_{\varphi}(y)$ (recall that f is an injection).

If $j = \chi - 1$, then $i \le \chi - 2$ and $y \in V_{\chi-1}^1 = V_{\chi-1} - W$. Therefore, the set $S_{\varphi}(x) = S_{\varphi_1}(x) \in A$ contains k + 2, but is distinct from $\{1, 2, k+2\}$. On the other hand, if the set $S_{\varphi}(y) = S_{\varphi_5}(y)$ contains k + 2, then $S_{\varphi}(y) = \{1, 2, k+2\} \neq S_{\varphi}(x)$.

If $j = \chi$ and $i \le \chi - 2$, then $y \in V_{\chi} - W$ and $S_{\varphi}(y) = S_{\varphi_2}(y) \in \{\{k+2\}, \{1, k+2\}\}$, while $S_{\varphi}(x) = S_{\varphi_1}(x) \in A - \{\{k+2\}\}$, and so $S_{\varphi}(x) \ne S_{\varphi}(y)$.

It remains to consider the case $i = \chi - 1$ and $j = \chi$.

First suppose that $x \in V_{\chi-1} - W$ which implies $S_{\varphi}(x) = S_{\varphi_5}(x) \neq \{1, k+2\}$. If $y \in V_{\chi}^{11}$, then $S_{\varphi}(y) = S_{\varphi_3}(y) = \{1, k+2\} \neq S_{\varphi}(x)$. Henceforth we may assume that $y \in V_{\chi} - (V_{\chi}^{11} \cup W)$ and $S_{\varphi}(y) = S_{\varphi_5}(y) \in \{\{1\}, \{2\}, \{1, 2\}, \{1, k+2\}\}$. If there is

 $l \in \{1, 2\}$ such that $S_{\varphi}(y) = \{l\}$, then $S_{\varphi}(x) = S_{\varphi_5}(x)$, $|S_{\varphi_5}(x)| \ge 2$ and $S_{\varphi}(x) \ne S_{\varphi}(y)$. On the other hand, $S_{\varphi}(y) = \{1, 2\}$ implies $S_{\varphi}(x) \ne \{1, 2\}$ because of the definition of φ_5 .

If $x \in W$, then $y \in W_0 \cup W$ and there are two possibilities. If $x \in W_{2l-1}$ and $y \in W_{2l}$ for some $l \in [1, \infty)$, then $S_{\varphi}(x) = S_{\varphi_6}(x) = \{(1-2l)_3, (2-2l)_3\}$ and $S_{\varphi}(y) = S_{\varphi_6}(y)$ is either $\{(-2l)_3, (1-2l)_3\}$ (if y has a neighbour in W_{2l+1}) or $\{(1-2l)_3\}$ (otherwise), in both cases $S_{\varphi}(x) \neq S_{\varphi}(y)$. Similarly, if there is $m \in [0, \infty)$ such that $x \in W_{2m+1}$ and $y \in W_{2m}$, then $S_{\varphi}(y) = \{(-2m)_3, (1-2m)_3\}$, $S_{\varphi}(x) \in \{\{(-2m)_3\}, (-2m)_3\}$, and hence $S_{\varphi}(x) \neq S_{\varphi}(y)$.

Corollary 3. If *G* is a connected graph with $\chi(G) \ge 3$ and $\chi(G)$ is not an integer power of two, then $gndi(G) = \lceil \log_2 \chi(G) \rceil + 1$.

If $\chi(G) = 2^k$ with $k \in \mathbb{Z}$, Theorems 1 and 2 yield gndi $(G) \in [k+1, k+2]$. In the case k = 1 both possibilities gndi(G) = 2 and gndi(G) = 3 can apply. (In [3] there are classified bipartite graphs with respect to the general neighbour-distinguishing index.) Provided k = 2, the first upper bound for gndi(G) given by [4] is $3\lceil \frac{1}{2} \log_2 4\rceil = 3 = k + 1$ so that the upper bound of Theorem 2 is not attained. This leads to the following natural question:

Problem 1. Does there exist $k \in [3, \infty)$ and a connected graph *G* such that $\chi(G) = 2^k$ and gndi(G) = k + 2?

References

- [1] P.N. Balister, E. Győri, J. Lehel, R.H. Schelp, Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math. 21 (2007) 237–250.
- [2] K. Edwards, M. Horňák, M. Woźniak, On the neighbour-distinguishing index of a graph, Graphs Combin. 22 (2006) 341–350.
- [3] E. Győri, M. Horňák, C. Palmer, M. Woźniak, General neighbour-distinguishing index of a graph, Discrete Math. 308 (2008) 827-831.
- [4] E. Győri, C. Palmer, Edge-derived vertex colorings, manuscript.
- [5] H. Hatami, Δ + 300 is a bound on the adjacent vertex distinguishing edge chromatic number, J. Comb. Theory Ser. B 95 (2005) 246–256.
- [6] Z. Zhang, L. Liu, J. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002) 623–626.