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a b s t r a c t

An edge colouring of a graph G without isolated edges is neighbour-distinguishing if any
two adjacent vertices have distinct sets consisting of colours of their incident edges. The
general neighbour-distinguishing index of G is the minimum number gndi(G) of colours
in a neighbour-distinguishing edge colouring of G. Győri et al. [E. Győri, M. Horňák, C.
Palmer,M.Woźniak, General neighbour-distinguishing index of a graph, DiscreteMath. 308
(2008) 827–831] proved that gndi(G) ∈ {2, 3} provided G is bipartite and gave a complete
characterisation of bipartite graphs according to their general neighbour-distinguishing
index. The aim of this paper is to prove that if χ(G) ≥ 3, then dlog2 χ(G)e+1 ≤ gndi(G) ≤
blog2 χ(G)c + 2. Therefore, if log2 χ(G) 6∈ Z, then gndi(G) = dlog2 χ(G)e + 1.

© 2009 Elsevier B.V. All rights reserved.

All graphs we are dealing with in this paper are simple, finite and nonoriented. Let G be a graph and let k be a positive
integer. A k-edge-colouring of G is a mapping ϕ : E(G)→ {1, . . . , k}. The colour set of a vertex x ∈ V (G)with respect to ϕ is
the set

Sϕ(x) := {ϕ(xy) : xy ∈ E(G)}.

The colouring ϕ is neighbour-distinguishing provided Sϕ(x) 6= Sϕ(y)whenever xy ∈ E(G). The notion of the colour set can be
naturally extended to partial edge colourings of G in which some edges may be uncoloured.
Clearly, a neighbour-distinguishing colouring of G does exist if and only if G has no isolated edges. In such a case the

neighbour-distinguishing index of G is the minimum k such that there is a proper k-edge-colouring of G that is neighbour-
distinguishing; let ndi(G)denote the neighbour-distinguishing index ofG. Evidently,χ ′(G) is a trivial lower bound for ndi(G).
The invariant has been introduced by Zhang et al. in the paper [6]. The authors conjecture that if G is a connected graph,
G 6∈ {K2, C5}, then ndi(G) ≤ 1(G)+2. The conjecture is known to be true for bipartite graphs and for graphs withmaximum
degree at most three; see Balister et al. [1]. In Edwards et al. [2] it was proved that if G is a plane graph with 1(G) ≥ 12,
then even ndi(G) ≤ 1(G)+ 1. According to Hatami [5], ndi(G) ≤ 1(G)+ 300 for any graph G satisfying1(G) > 1020.
Here we are interested in a generalised version of the problem in which we admit also edge colourings that are not

proper. The corresponding invariant (first investigated by Győri et al. in [3]) is the general neighbour-distinguishing index of
a graph G, in symbols gndi(G). Evidently, if G has connected components G1, . . . ,Gl, then

gndi(G) = max(gndi(Gi) : i = 1, . . . , l).

Therefore, we shall restrict our attention to connected graphs distinct from K2.
In [3] bipartite graphs are characterised from the point of view of their general neighbour-distinguishing index. Namely,

if G is bipartite, then 2 ≤ gndi(G) ≤ 3; furthermore, gndi(G) = 2 if and only if there is a bipartition {X1 ∪ X2, Y } of V (G)
such that X1 ∩ X2 = ∅ and any vertex of Y has at least one neighbour in both X1 and X2. If χ(G) ≥ 3, in [3] it is shown that
gndi(G) ≤ 2dlog2 χ(G)e + 1.
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Győri and Palmer in [4] improved the upper bound for the general neighbour-distinguishing index ofG to 3d 12 log2 χ(G)e.
They have also proved that if χ(G) ≥ 5, then

gndi(G) ≤ dlog2(χ(G)− 3)e + 5.

The aim of the present paper is to show that if χ(G) ≥ 3, then

dlog2 χ(G)e + 1 ≤ gndi(G) ≤ blog2 χ(G)c + 2.

Let p, q be integers. We shall denote as [p, q] the integer interval bounded by p and q, i.e., the set {z ∈ Z : p ≤ z ≤ q}.
Analogously, we define [p,∞) := {z ∈ Z : z ≥ p}. For q ∈ [2,∞) and m ∈ Z let (m)q be the (unique) integer in
[0, q − 1] satisfying (m)q ≡ m(mod q). If k ∈ [1,∞), a proper k-vertex-colouring of G can be viewed as a decomposition
V = {Vi : i ∈ [1, k]} of the set V (G) in which all sets V1, . . . , Vk are independent. Without loss of generality wemay assume
that |Vi| ≤ |Vj| whenever i, j ∈ [1, k], i < j. The nonincreasing sequence (|Vk|, . . . , |V1|) is then called the colour frequency
sequence of V .

Theorem 1. If G 6= K2 is a connected graph, then gndi(G) ≥ dlog2 χ(G)e + 1.

Proof. Put k := gndi(G) and consider a neighbour-distinguishing colouring ϕ : E(G) → [1, k]. For A ⊆ [1, k] let
Ā := [1, k] − A and VA := {x ∈ V (G) : Sϕ(x) = A}. Clearly, VA is an independent set of vertices of G. Moreover, if x ∈ VA
and y ∈ VĀ, then ∅ = A ∩ Ā = Sϕ(x) ∩ Sϕ(y), and so xy 6∈ E(G) (notice that xy ∈ E(G) implies ϕ(xy) ∈ Sϕ(x) ∩ Sϕ(y)). Thus,
{VA ∪ VĀ : A ⊆ [1, k]} is a proper vertex colouring of G using at most

1
2 · 2

k
= 2k−1 colours, which leads to χ(G) ≤ 2k−1,

gndi(G) = k ≥ log2 χ(G)+ 1, and the desired inequality follows. �

Theorem 2. If G is a connected graph with χ(G) ≥ 3, then gndi(G) ≤ blog2 χ(G)c + 2.

Proof. Let χ := χ(G) and let {Vi : i ∈ [1, χ]} be a proper vertex colouring for which the colour frequency sequence
(|Vχ |, . . . , |V1|) of length χ (i.e., a shortest one) is lexicographically maximal. Then

∀i ∈ [1, χ − 1] ∀j ∈ [i+ 1, χ] ∀xi ∈ Vi ∃xj ∈ Vj xixj ∈ E(G).

Indeed, provided a vertex xi of Vi with i ∈ [1, χ − 1] has no neighbour in some Vj with j ∈ [i + 1, χ], the proper vertex
colouring

{Vl : l ∈ [1, χ] − {i, j}} ∪ {Vj ∪ {xi}, Vi − {xi}}

would have the colour frequency sequence that is lexicographically greater than (|Vχ |, . . . , |V1|), a contradiction.
If k is the integer determined by the inequalities 2k ≤ χ < 2k+1, then k ≤ log2 χ < k + 1 and k = blog2 χc ≥ 1. Our

theorem will be proved by finding a neighbour-distinguishing colouring ϕ : E(G)→ [1, k+ 2]. With

A := {A ⊆ [1, k+ 2] : k+ 2 ∈ A} − {{1, k+ 2}, {1, 2, k+ 2}} ∪ {[1, k+ 1]}

we have |A| = 2k+1 − 1 ≥ χ , hence there is an injection f : [1, χ] → A satisfying

f (χ − j) = {j, k+ 2}, j ∈ [2, k+ 1],
f (χ − 1) = [1, k+ 1],
f (χ) = {k+ 2}.

Thus, |f (i)| ≥ 2 for any i ∈ [1, χ − 2]. For i ∈ [1, χ] and x ∈ Vi put

Ax := f (i).

We shall subsequently define partial colourings

ϕj : E(G)→ [1, k+ 2], j = 1, 2, 3, 4, 5, 6,

in such a way that ϕj is a continuation of ϕj−1, j = 2, 3, 4, 5, 6; the colouring ϕ := ϕ6 will have the required properties.
Any edge of G is incident with vertices x ∈ Vi and y ∈ Vj where i ∈ [1, χ − 1] and j ∈ [i+ 1, χ]. Thus, we can define

(i, j) 6= (χ − 1, χ)⇒ ϕ1(xy) := min(Ax ∩ Ay).

If j 6= χ − 1, then k + 2 ∈ Ax ∩ Ay. On the other hand, the assumption j = χ − 1 yields |Ax| ≥ 2, and so
Ax ∩ Ay = Ax ∩ [1, k+ 1] 6= ∅. Therefore, the partial colouring ϕ1 is correctly defined and

∀z ∈ V (G) Sϕ1(z) ⊆ Az .

Let us show that

∀i ∈ [1, χ − 2] ∀x ∈ Vi Sϕ1(x) = Ax.
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First, k + 2 ∈ Sϕ1(x), since ϕ1(xy) = k + 2 for any edge xy with y ∈ Vχ . Further, assume that i ∈ [1, χ − k − 2]. If 1 ∈ Ax,
then 1 ∈ Sϕ1(x) as ϕ1(xy) = 1 for any edge xy with y ∈ Vχ−1. If j ∈ [2, k + 1] ∩ Ax, then j ∈ Sϕ1(x) because ϕ1(xy) = j
provided y ∈ Vχ−j. Finally, i = χ − j, j ∈ [2, k+ 1], leads to j ∈ Sϕ1(x) ∩ Ax for ϕ1(xy) = jwhenever y ∈ Vχ−1.
It remains to define colours of edges xywith x ∈ Vχ−1 and y ∈ Vχ . The colouring ϕ2 is determined by

Sϕ1(y) = {k+ 2} ⇒ ϕ2(xy) := 1.

Let us denote

V 0χ−1 := {x ∈ Vχ−1 : Sϕ2(x) = ∅},

V 1χ−1 := {x ∈ Vχ−1 : Sϕ2(x) 6= ∅}.

Further, for t0, t1 ∈ {0, 1} let V
t0t1
χ be the set of all those vertices y ∈ Vχ for which the statement ‘‘y has a neighbour in V iχ−1’’

has the truth value ti, i = 0, 1. The mapping ϕ3 colours edges xywith y ∈ V 11χ :

ϕ3(xy) := 1, Sϕ2(x) 6= ∅,
ϕ3(xy) := k+ 2, Sϕ2(x) = ∅.

The mapping ϕ4 is defined in several steps. First, for y ∈ V 01χ let N
−(y) be the set of all those neighbours x of y for which

the edge xy is not coloured under ϕ3. Put ψ0 := ϕ3 and, provided ψj is already determined, let ψj+1 be a continuation of ψj
colouring edges incident with a fixed vertex y ∈ V 01χ . The mapping ψj+1 works according to the following rules:
If there is minimal i ∈ {1, 2} such that Sψj(x) 6= {i} for every x ∈ N

−(y), put

ψj+1(xy) := i, x ∈ N−(y).

If there are x1, x2, x3 ∈ N−(y) satisfying Sψj(x1) = {1}, Sψj(x2) = {2} and Sψj(x3) = {1, 2}, proceed as follows:

Sψj(x) 6= {1, 2} ⇒ ψj+1(xy) := 1,
Sψj(x) = {1, 2} ⇒ ψj+1(xy) := k+ 2.

If none of the above assumptions is fulfilled, define ϕ4 := ψj.
If a vertex y ∈ V 01χ is incident with an edge xy that is not coloured under ϕ4, there are x1, x2 ∈ N

−(y)with Sϕ4(xi) = {i},
i = 1, 2, and Sϕ4(x) 6= {1, 2} for every x ∈ N

−(y). This allows us to define:

Sϕ4(x) = {1} ⇒ ϕ5(xy) := 1,
Sϕ4(x) 6= {1} ⇒ ϕ5(xy) := 2.

Now consider the set

W := V 10χ ∪ V
0
χ−1.

From the definition of the colouring ϕ5 it is clear that any path joining a vertexw ∈ W to a vertex y ∈ W0 := V 11χ has all its
internal vertices inW . From the connectedness of Gwe see that {Wl : l ∈ [1,∞)}with

Wl := {w ∈ W : min(dG(w, z) : z ∈ W0) = l},

where dG(w, z) is the distance between x and z in G, is a decomposition of the set W . Therefore, if uv ∈ E(G) is an edge
for which ϕ5(uv) is not determined, there is m ∈ [1,∞) such that u ∈ Wm and v ∈ Wm+1. To define ϕ6(uv) it is useful to
introduce an auxiliary name 0 for the colour k+ 2. Under that assumption we proceed in the following way:

(∃m ∈ [1,∞) (u ∈ Wm ∧ v ∈ Wm+1))⇒ ϕ6(uv) := (−m)3;

notice that if u ∈ W0 and v ∈ W1, then ϕ6(uv) = ϕ3(uv) = k + 2 = (−0)3, and so the above definition is valid also for
m = 0.
Let us now prove that ϕ := ϕ6 is a neighbour-distinguishing colouring. For that purpose let xy ∈ E(G) be an edge with

x ∈ Vi and y ∈ Vj where i < j.
If j ≤ χ − 2, then Sϕ(x) = Sϕ1(x) = f (i) 6= f (j) = Sϕ1(y) = Sϕ(y) (recall that f is an injection).
If j = χ − 1, then i ≤ χ − 2 and y ∈ V 1χ−1 = Vχ−1 −W . Therefore, the set Sϕ(x) = Sϕ1(x) ∈ A contains k + 2, but is

distinct from {1, 2, k+ 2}. On the other hand, if the set Sϕ(y) = Sϕ5(y) contains k+ 2, then Sϕ(y) = {1, 2, k+ 2} 6= Sϕ(x).
If j = χ and i ≤ χ−2, then y ∈ Vχ −W and Sϕ(y) = Sϕ2(y) ∈ {{k+2}, {1, k+2}}, while Sϕ(x) = Sϕ1(x) ∈ A−{{k+2}},

and so Sϕ(x) 6= Sϕ(y).
It remains to consider the case i = χ − 1 and j = χ .
First suppose that x ∈ Vχ−1−W which implies Sϕ(x) = Sϕ5(x) 6= {1, k+2}. If y ∈ V

11
χ , then Sϕ(y) = Sϕ3(y) = {1, k+2} 6=

Sϕ(x). Henceforth we may assume that y ∈ Vχ − (V 11χ ∪W ) and Sϕ(y) = Sϕ5(y) ∈ {{1}, {2}, {1, 2}, {1, k + 2}}. If there is
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l ∈ {1, 2} such that Sϕ(y) = {l}, then Sϕ(x) = Sϕ5(x), |Sϕ5(x)| ≥ 2 and Sϕ(x) 6= Sϕ(y). On the other hand, Sϕ(y) = {1, 2}
implies Sϕ(x) 6= {1, 2} because of the definition of ϕ5.
If x ∈ W , then y ∈ W0 ∪ W and there are two possibilities. If x ∈ W2l−1 and y ∈ W2l for some l ∈ [1,∞), then

Sϕ(x) = Sϕ6(x) = {(1 − 2l)3, (2 − 2l)3} and Sϕ(y) = Sϕ6(y) is either {(−2l)3, (1 − 2l)3} (if y has a neighbour inW2l+1) or
{(1 − 2l)3} (otherwise), in both cases Sϕ(x) 6= Sϕ(y). Similarly, if there is m ∈ [0,∞) such that x ∈ W2m+1 and y ∈ W2m,
then Sϕ(y) = {(−2m)3, (1− 2m)3}, Sϕ(x) ∈ {{(−2m)3}, {(−2m)3, (2− 2m)3}}, and hence Sϕ(x) 6= Sϕ(y). �

Corollary 3. If G is a connected graph with χ(G) ≥ 3 and χ(G) is not an integer power of two, then gndi(G) = dlog2 χ(G)e +
1. �

If χ(G) = 2k with k ∈ Z, Theorems 1 and 2 yield gndi(G) ∈ [k+1, k+2]. In the case k = 1 both possibilities gndi(G) = 2
and gndi(G) = 3 can apply. (In [3] there are classified bipartite graphs with respect to the general neighbour-distinguishing
index.) Provided k = 2, the first upper bound for gndi(G) given by [4] is 3d 12 log2 4e = 3 = k + 1 so that the upper bound
of Theorem 2 is not attained. This leads to the following natural question:

Problem 1. Does there exist k ∈ [3,∞) and a connected graph G such that χ(G) = 2k and gndi(G) = k+ 2?
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