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All graphs we are dealing with in this paper are simple, finite and nonoriented. Let G be a graph and let k be a positive
integer. A k-edge-colouring of G is a mapping ¢ : E(G) — {1, ..., k}. The colour set of a vertex x € V(G) with respect to ¢ is
the set

Se(x) == {ep(xy) : xy € E(G)}.

The colouring ¢ is neighbour-distinguishing provided S, (x) # S, (y) whenever xy € E(G). The notion of the colour set can be
naturally extended to partial edge colourings of G in which some edges may be uncoloured.

Clearly, a neighbour-distinguishing colouring of G does exist if and only if G has no isolated edges. In such a case the
neighbour-distinguishing index of G is the minimum k such that there is a proper k-edge-colouring of G that is neighbour-
distinguishing; let ndi(G) denote the neighbour-distinguishing index of G. Evidently, x’(G) is a trivial lower bound for ndi(G).
The invariant has been introduced by Zhang et al. in the paper [6]. The authors conjecture that if G is a connected graph,
G ¢ {Ky, G5}, then ndi(G) < A(G)+2.The conjecture is known to be true for bipartite graphs and for graphs with maximum
degree at most three; see Balister et al. [1]. In Edwards et al. [2] it was proved that if G is a plane graph with A(G) > 12,
then even ndi(G) < A(G) + 1. According to Hatami [5], ndi(G) < A(G) + 300 for any graph G satisfying A(G) > 10%°.

Here we are interested in a generalised version of the problem in which we admit also edge colourings that are not
proper. The corresponding invariant (first investigated by Gyéri et al. in [3]) is the general neighbour-distinguishing index of
a graph G, in symbols gndi(G). Evidently, if G has connected components Gy, ..., G;, then

gndi(G) = max(gndi(G;) :i=1,...,1]).

Therefore, we shall restrict our attention to connected graphs distinct from K.

In [3] bipartite graphs are characterised from the point of view of their general neighbour-distinguishing index. Namely,
if G is bipartite, then 2 < gndi(G) < 3; furthermore, gndi(G) = 2 if and only if there is a bipartition {X; U X5, Y} of V(G)
such that X; N X, = ¥ and any vertex of Y has at least one neighbour in both X; and X,. If x (G) > 3, in [3] it is shown that
gndi(G) < 2[log, x ()] + 1.
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Gyori and Palmer in [4] improved the upper bound for the general neighbour-distinguishing index of G to 3 (% log, x (G)7.
They have also proved that if x (G) > 5, then

gndi(G) < [log, (x (G) —3)T +5.
The aim of the present paper is to show that if x (G) > 3, then
[log, x (G)] + 1 = gndi(G) < [log, x (G)] + 2.

Let p, q be integers. We shall denote as [p, q] the integer interval bounded by p and q, i.e., theset{z € Z : p < z < q}.
Analogously, we define [p,00) = {z € Z : z > p}. Forq € [2,00) and m € Z let (m), be the (unique) integer in
[0, g — 1] satisfying (m), = m(mod q). If k € [1, 00), a proper k-vertex-colouring of G can be viewed as a decomposition
Vv ={V; :i € [1, k]} of the set V(G) in which all sets V1, ..., V, are independent. Without loss of generality we may assume
that |V;| < |V;| wheneveri,j € [1, k], i < j. The nonincreasing sequence (|Vi/|, ..., |Vi|) is then called the colour frequency
sequence of V.

Theorem 1. If G # K; is a connected graph, then gndi(G) > [log, x(G)] + 1.

Proof. Put k := gndi(G) and consider a neighbour-distinguishing colouring ¢ : E(G) — [1,k]. For A C [1,k] let
A:=[1,k]-Aand V, = {x € V(G) : S,(x) = A}. Clearly, V4 is an independent set of vertices of G. Moreover, if x € V4
andy € V3, thend = AN A= Se(x) N'S,(¥), and so xy & E(G) (notice that xy € E(G) implies g(xy) € S, (x) NS, (¥)). Thus,
{VaUV; : A C [1,k]} is a proper vertex colouring of G using at most 1 - 2¢ = 2¥=1 colours, which leads to x (G) < 271,
gndi(G) = k > log, x(G) + 1, and the desired inequality follows. ®

Theorem 2. If G is a connected graph with x (G) > 3, then gndi(G) < [log, x(G)] + 2.

Proof. Let x := x(G) and let {V; : i € [1, x]} be a proper vertex colouring for which the colour frequency sequence
(IVyl, ..., [Vq]) of length x (i.e., a shortest one) is lexicographically maximal. Then

Vie [1,)( —1]Vj€ [i—l—l,x]‘v’xieV,»ExjerxiijE(G).

Indeed, provided a vertex x; of V; withi € [1, x — 1] has no neighbour in some V; with j € [i + 1, x], the proper vertex
colouring

Vilell, x]—{i,j}} U{V; U {xi}, Vi — {xi}}

would have the colour frequency sequence that is lexicographically greater than (|V,|, ..., [V1]), a contradiction.

If k is the integer determined by the inequalities 2¥ < x < 2! thenk < log, x < k+ 1and k = [log, x| > 1.Our
theorem will be proved by finding a neighbour-distinguishing colouring ¢ : E(G) — [1, k + 2]. With

A={AC[1,k+2]:k+2ec A} —{{1,k+2},{1,2, k+2}}U{[1, k+ 1]}
we have |4| = 21 — 1 > y, hence there is an injection f : [1, x] — s satisfying
fx=D=104k+2}, jel2,k+1],

f(x—1=[1,k+1],
FOO) ={k+2}.

Thus, |f(i)] > 2foranyi € [1, x — 2]. Fori € [1, x]and x € V; put
Ay = f ().

We shall subsequently define partial colourings
¢ :E(G) = [1,k+2], j=1,2,3,4,5,6,

in such a way that ¢; is a continuation of ¢;_1,j = 2, 3, 4, 5, 6; the colouring ¢ := ¢ will have the required properties.
Any edge of G is incident with vertices x € V;andy € V; wherei € [1, x — 1]andj € [i + 1, x]. Thus, we can define

1,)) # (x — 1, x) = @1(xy) = min(A, N A)).

Ifj # x — 1, then k + 2 € Ay N Ay. On the other hand, the assumption j = x — 1 yields [A] > 2, and so
AcNAy, = AN [1, k4 1] # @. Therefore, the partial colouring ¢; is correctly defined and

Vz € V(G) S (2) CA;.
Let us show that

Vie[l,x —21VxeVi S, (x) =As.
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First, k 4+ 2 € S,, (x), since @1 (xy) = k + 2 for any edge xy with y € V,. Further, assume thati € [1, x —k —2].1f 1 € A,,
then 1 € Sy, (x) as ¢1(xy) = 1 for any edge xy withy € V,_;.Ifj € [2,k + 1] N Ay, thenj € S,, (x) because ¢ (xy) = j
providedy € V,_;. Finally,i = x —j,j € [2,k+ 1],leads toj € S, (x) N A, for ¢;(xy) = j whenevery € V, _;.

It remains to define colours of edges xy withx € V,_; and y € V,.. The colouring ¢, is determined by

S ) = {k+2} = pa(xy) = 1.
Let us denote

VY ={x € Vy1:S,x) =0},

V) =1{x € Vy_1:S,(x) # ).

Further, for ty, t; € {0, 1} let V;O“ be the set of all those verticesy € V,, for which the statement “y has a neighbour in V)i(_f'
has the truth value t;, i = 0, 1. The mapping @5 colours edges xy withy € V;l:

p3(xy) =1, Sy, (%) # Y,
o3(xy) =k + 2, Se, (X) = 0.

The mapping ¢, is defined in several steps. First, fory € Vf(” let N~ (y) be the set of all those neighbours x of y for which
the edge xy is not coloured under ¢s. Put v/ := ¢3 and, provided v; is already determined, let y;,; be a continuation of v;
colouring edges incident with a fixed vertex y € V)‘(”. The mapping ;1 works according to the following rules:

If there is minimal i € {1, 2} such that Sy, (x) # {i} for every x € N™(y), put

Yiri(xy) =i, x €N (y).
If there are x4, x5, X3 € N~ (y) satisfying Sy, (x1) = {1}, Sy; (x) = {2} and Sy; (x3) = {1, 2}, proceed as follows:

Sy () # {1, 2} = Ya@xy) =1,
Sy; (0 ={1,2} = Yj(xy) ==k +2.

If none of the above assumptions is fulfilled, define ¢4 = ;.
Ifavertexy € V)‘()l is incident with an edge xy that is not coloured under ¢4, there are x1, X, € N~ (y) with S, (x;) = {i},
i=1,2,andS,, (x) # {1, 2} for every x € N~ (y). This allows us to define:

Ses(¥) = {1} = o5 (xy) =1,
Sps(¥) # {1} = o5(xy) = 2.
Now consider the set
710 0
we=VvuUv) .

From the definition of the colouring s it is clear that any path joining a vertex w € W to a vertexy € Wy := V;l has all its
internal vertices in W. From the connectedness of G we see that {W, : [ € [1, co)} with

W, ={w e W :min(dg(w, z) : z € Wy) =1},

where dg(w, z) is the distance between x and z in G, is a decomposition of the set W. Therefore, if uv € E(G) is an edge
for which ¢s(uv) is not determined, there is m € [1, co) such that u € W, and v € W,,,1. To define gg(uv) it is useful to
introduce an auxiliary name 0 for the colour k + 2. Under that assumption we proceed in the following way:

(Am € [1,00) (u € Win A v € Wiy1)) = @s(uv) = (—m)s;

notice that if u € Wy and v € Wy, then ¢g(uv) = ¢3(uv) = k + 2 = (—0)3, and so the above definition is valid also for
m=0.

Let us now prove that ¢ = ¢ is a neighbour-distinguishing colouring. For that purpose let xy € E(G) be an edge with
x e Viandy € V; wherei < j.

Ifj < x —2,thenS,(x) =S, (x) = f (i) # f() = Sy, ¥) = S, (y) (recall that f is an injection).

Ifj=x —1theni < xy —2andy € V;_1 = V,_1 — W. Therefore, the set S,(x) = S,, (X) € A contains k + 2, but is
distinct from {1, 2, k + 2}. On the other hand, if the set S, (y) = S, (¥) contains k + 2, then S, (y) = {1, 2, k + 2} # S, (x).

Ifj=xandi < x—2,theny € V, —Wand S,(y) = S,, ¥) € {{k+2}, {1, k+2}}, while S,(x) = S, (x) € A—{{k+2}},
and 5o S, (x) # S, ().

It remains to consider the casei = x — landj = .

First suppose thatx € V,_y—W whichimplies S, (x) = S, (x) # {1, k+2}.1fy € V]!, then S, (y) = S,,(y) = {1, k+2} #
Sy (x). Henceforth we may assume thaty € V, — (V;] UW)andS,(y) = S, () € {{1}, {2}, {1, 2}, {1, k + 2}}. If there is
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I € {1,2} such that S,(y) = {I}, then S, (X) = Sy, (%), |Sps (X)| > 2 and S,(x) # S,(y). On the other hand, S,(y) = {1, 2}
implies S, (x) # {1, 2} because of the definition of ¢s.

Ifx € W,theny € Wy U W and there are two possibilities. If x € W,_; andy € W, for some | € [1, c0), then
Se(X) = Sps(¥) = {(1 — 2D)3, (2 — 2D3} and S, (¥) = Sy (¥) is either {(—2)3, (1 — 2I)3} (if y has a neighbour in Wy;1) or
{(1 — 2D)3} (otherwise), in both cases S, (x) # S, (y). Similarly, if there is m € [0, co) such thatx € W11 andy € Wy,
then S, (y) = {(=2m)3, (1 —2m)3}, S, (x) € {{(—=2m)3}, {(—=2m)3, (2 — 2m)3}}, and hence Sy, (x) # S,(y). W

Corollary 3. If G is a connected graph with x (G) > 3 and x (G) is not an integer power of two, then gndi(G) = [log, x (G)] +
1. m

If x (G) = 2* with k € Z, Theorems 1 and 2 yield gndi(G) € [k+ 1, k+2].In the case k = 1 both possibilities gndi(G) = 2
and gndi(G) = 3 can apply. (In [3] there are classified bipartite graphs with respect to the general neighbour-distinguishing
index.) Provided k = 2, the first upper bound for gndi(G) given by [4] is 3 (% log, 4] = 3 = k + 1 so that the upper bound
of Theorem 2 is not attained. This leads to the following natural question:

Problem 1. Does there exist k € [3, oo) and a connected graph G such that x (G) = 2 and gndi(G) = k + 2?
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