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Abstract

Let G be a graph of order n and maximum degree ∆(G) and let γt (G) denote the minimum cardinality of a total dominating set
of a graph G. A graph G with no isolated vertex is the total domination vertex critical if for any vertex v of G that is not adjacent to
a vertex of degree one, the total domination number of G − v is less than the total domination number of G. We call these graphs
γt -critical. For any γt -critical graph G, it can be shown that n ≤ ∆(G)(γt (G) − 1) + 1. In this paper, we prove that: Let G be a
connected γt -critical graph of order n (n ≥ 3), then n = ∆(G)(γt (G)− 1)+ 1 if and only if G is regular and, for each v ∈ V (G),
there is an A ⊆ V (G)− {v} such that N (v)∩ A = ∅, the subgraph induced by A is 1-regular, and every vertex in V (G)− A− {v}
has exactly one neighbor in A.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The graphs considered in this paper are finite, undirected, and simple (no loops or multiple edges). For notation
and terminology not presented here, we in general follow [1]. In what follows, let G = (V (G), E(G)) be a graph with
vertex set V (G) and edge set E(G).

Let v be a vertex of G, the open neighborhood of v is N (v) = {u ∈ V (G) | uv ∈ E(G)} and the
closed neighborhood of v is N [v] = N (v) ∪ {v}. For a subset S of vertices, we define the open neighborhood
N (S) =

⋃
v∈S N (v), and the closed neighborhood N [S] =

⋃
v∈S N [v]. Let NS(v) = N (v)∩ S, and dS(v) = |NS(v)|.

The degree dG(v) of a vertex v in G is the number of edges of G incident with v, and the vertex v is called a vertex
of degree k if dG(v) = k. An edge e ∈ E(G) is called a pendant edge if e is incident with a vertex of degree 1. If A
is another subset of V (G) disjoint from S, we let E(A, S) = {uv ∈ E(G) | u ∈ A and v ∈ S}, e(A, S) = |E(A, S)|,
and let 〈A〉 denote the subgraph of G induced by A.

The set S ⊆ V (G) is a dominating set of G if N [S] = V (G), and a total dominating set if N (S) = V (G). The
minimum cardinality among all total dominating sets of G is the total domination number of G, denoted by γt (G). A
total dominating set with cardinality γt (G) we call a γt -set.

I Supported by National Natural Science Foundation of China (10371048, 10571071,10671081).
∗ Corresponding author.

E-mail addresses: wcxiang@mail.ccnu.edu.cn (C. Wang), hu zhiq@yahoo.com.cn (Z. Hu), xwli email@yahoo.ca (X. Li).

0012-365X/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2008.01.015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81988882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/disc
mailto:wcxiang@mail.ccnu.edu.cn
mailto:hu_zhiq@yahoo.com.cn
mailto:xwli_email@yahoo.ca
http://dx.doi.org/10.1016/j.disc.2008.01.015


992 C. Wang et al. / Discrete Mathematics 309 (2009) 991–996

Let S ⊆ V (G) and let G − S denote the graph obtained from G by deleting all the vertices of S together with all
the edges with at least one endvertex in S. When S = {x}, we simplify this notation to G − x . A vertex v ∈ V (G) is
called γt -critical if γt (G − v) < γt (G). Let D1(G) = {v ∈ V (G) | dG(v) = 1} and W (G) = N (D1(G)). A graph
G is said to be total domination vertex critical, or γt -critical if each vertex of V (G)−W (G) is critical. G is called a
k-γt -critical graph if G is γt -critical, and γt = k. For example, the 5-cycle is 3-γt -critical. Throughout this paper, we
let n = |V (G)| denote the order of G.

We organize this paper as follows. In Section 2, we define a family of graphs, and study a few properties of the
graphs defined. In Section 3, we give our main theorem. Finally, in Section 4 we propose two open problems.

2. The properties of the class of graphs

Note that a graph is γt -critical if and only if each component is γt -critical, so we only need to consider connected
graphs. Furthermore, K2 is 2-γt -critical, indicated by Goddard et al. [2]. We define that K1 is 1-γt -critical.

Definition 2.1. We define a family of graphs Ψ as follows:
(1) K1, K2 ∈ Ψ .
(2) Let G be a connected graph with at least 3 vertices. G ∈ Ψ if and only if both the following two conditions

hold:
(i) G is a regular graph;
(ii) For any v ∈ V (G), there exists an A ⊆ V (G) − v such that N (v) ∩ A = ∅, 〈A〉 is 1-regular, dA(y) = 1 for

each y ∈ V (G)− A − {v}.

Here is an example showing that such a graph exists in Ψ . Let G be a cycle of length 9. Suppose G = C9 =

v0v1 · · · v8v0 and v = v8. Then G − v is a path and A = {v1, v2, v5, v6}, V (G)− A − {v} = {v0, v3, v4, v7}.
The following proposition is useful when we construct a graph in Ψ .

Proposition 2.2. Let G ∈ Ψ . If G is a connected graph of order n (n ≥ 3). Then n is odd and G is k-regular, where
k is even.

Proof. Since G ∈ Ψ , by Definition 2.1, G is k-regular and, for any v ∈ V (G), there is an A ⊆ V (G) − v such that
N (v) ∩ A = ∅ and 〈A〉 is 1-regular, and dA(y) = 1 for any y ∈ V (G − v)− A. Let |A| = m. Since 〈A〉 is 1-regular,
we have that m is even. Since G is k-regular, 〈A〉 is 1-regular and dA(y) = 1 for any y ∈ V (G − v)− A, we have that
|V (G − v) − A| = m(k − 1). Since |V (G)| = |A| + |V (G − v) − A| + |{v}|, n = m + m(k − 1) + 1 = mk + 1.
Thus, n is odd. Since 2|E(G)| =

∑
v∈V (G) d(v), which implies that kn is even, we have that k is even. �

The following proposition characterize the cycles in Ψ .

Proposition 2.3. A cycle G = Cn is in Ψ if and only if n ≡ 1(mod 4).

Proof. “⇒” Assume that G = Cn is in Ψ . Let v ∈ V (G). By Definition 2.1, there exists A ⊆ V (G − v) such that
N (v)∩ A = ∅ and 〈A〉 is 1-regular, dA(y) = 1 for any y ∈ V (G − v)− A. Since 〈A〉 is 1-regular, we have that |A| is
even, suppose |A| = 2m. Since G is 2-regular, 〈A〉 is 1-regular and dA(y) = 1 for any y ∈ V (G − v) − A, we have
that |V (G − v)− A| = |A| = 2m. Thus, |V (G)| = 4m + 1. Since G is a cycle, G is isomorphic to a cycle of length
4m + 1. Thus, n ≡ 1(mod 4).

“⇐” Assume that G = Cn and n ≡ 1(mod 4). By symmetry, choose v = 0 and 〈A〉 = {(2, 3), (6, 7), . . . , (4m −
2, 4m − 1)}. It is easy to check that G ∈ Ψ . �

Let H be a group and S be a generating subset of H such that the identity element 1 6∈ S and x−1
∈ S for each

x ∈ S. A Cayley graph G(H ; S) on group H is defined to be the graph with the elements of H as its vertices and
edges joining h and hs for all h ∈ H and s ∈ S. S is called the connection set.

When k ≥ 4, we construct a Cayley graph as follows. Let H be a cyclic group Z33. Then, we have that
Cayley graph G(H ; S) with connection set S = {6, 27} is in Ψ . By symmetry, we choose v = 0 and 〈A〉 =
{(2, 8), (11, 12), (21, 22), (25, 31)}. It is easy to check that G(H ; S) ∈ Ψ .
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3. Main theorem and its proof

To prove our main theorem, we need some necessary results also on γt -critical graphs.

Observation 3.1 ([2]). If G is a γt -critical graph, then γt (G−v) = γt −1 for any v ∈ V (G)−W (G). Furthermore,
each γt (G − v)-set contains no neighbor of v.

A corona of a graph H , denoted by cor(H), is the graph obtained from H by adding a pendant edge to each vertex
of H . Goddard et al. [2] characterized the γt -critical graphs with at least one vertex of degree 1 as follows.

Theorem 3.2 ([2]). Let G be a connected graph with at least 3 vertices and at least one vertex of degree 1. Then, G
is k-γt -critical if and only if G = cor(H) for some connected graph H with k vertices and δ(H) ≥ 2.

The next lemma plays a key role in the proof of our main theorem.

Lemma 3.3. Let G be a connected γt -critical graph of order n (n ≥ 3). If n = ∆(G)(γt (G) − 1) + 1, then the
following results hold:
(i) δ(G) ≥ 2;
(ii) For any v ∈ V , there is an A ⊆ V (G − v) such that A is a γt (G − v)-set and N (v)∩ A = ∅. Moreover, 〈A〉 is

1-regular, dG(x) = ∆(G) for any x ∈ A and dA(y) = 1 for any y ∈ V (G)− A − {v}.

Proof. (i) Suppose, to the contrary, that δ(G) = 1. Let G be a k-γt -critical graph. By Theorem 3.2, G = cor(H)
for some connected graph H with k vertices and δ(H) ≥ 2, which implies that k ≥ 3. Furthermore, we have that
n = 2k and 3 ≤ ∆(G) ≤ k, from which we obtain 1 + 1

∆(G)−2 ≤ 2 and k > 1 + 1
∆(G)−2 . Therefore we have that

2k < ∆(G)(k − 1)+ 1 and n < ∆(G)(k − 1)+ 1, which contradicts n = ∆(G)(γt (G)− 1)+ 1. Thus, δ(G) ≥ 2.
(ii) Since δ(G) ≥ 2, we have that W (G) = ∅. Let G be a k-γt -critical graph, by Observation 3.1, γt (G−v) = k−1

for any v ∈ V (G). Let A be a γt (G − v)-set of G − v and let B = V (G − v)− A, by Observation 3.1, we have that
N (v)∩ A = ∅. So we have that |A| = k − 1 and |B| = n− k. Since A is a γt (G − v)-set, we have that dA(x) ≥ 1 for
any x ∈ A and dA(y) ≥ 1 for any y ∈ B, which means that each vertex of A has at most ∆(G) − 1 neighbors in B
and each vertex of B has at least one neighbor in A. Hence,

n − k ≤ e(A, B) ≤ (k − 1)(∆(G)− 1). (1)

That is,

n ≤ ∆(G)(γt (G)− 1)+ 1. (2)

The equality n = ∆(G)(γt (G) − 1) + 1 holds if and only if both the equalities of (1) hold. So we have that
n− k = e(A, B) = (k− 1)(∆(G)− 1), which means that each vertex of A has exactly ∆(G)− 1 neighbors in B, and
each vertex of B has exactly one neighbor in A. Therefore, there exists a partition of V (G)−v for any v ∈ V , i.e., there
exist A ⊆ V (G) − v and B = V (G − v) − A, such that A is a γt (G − v)-set and N (v) ∩ A = ∅. Moreover, 〈A〉 is
1-regular, dG(x) = ∆(G) for any x ∈ A and dA(y) = 1 for any y ∈ B. This completes the proof of Lemma 3.3. �

Let f be a map from set A to set B. We say that f is injective if f (a) 6= f (a′) for every pair a 6= a′ ∈ A. We say
that f is surjective if there exists x in A such that f (x) = y for every y in B.

In the following, we give the main theorem of this paper.

Theorem 3.4. Let G be a connected γt -critical graph of order n. Then n = ∆(G)(γt (G) − 1) + 1 if and only if
G ∈ Ψ .

Proof. It is easy to check that when n = 1 or 2, Theorem 3.4 is true. So we may assume that G is a graph with at least
three vertices.

“⇒” Assume that n = ∆(G)(γt (G)− 1)+ 1 and γt (G) = k. We will show that G ∈ Ψ .
By Lemma 3.3, for any v ∈ V (G), there is an A ⊆ V (G − v) such that A is a γt (G − v)-set and N (v) ∩ A = ∅.

Let B = V (G)− A − {v}. Moreover, 〈A〉 is 1-regular, dG(x) = ∆(G) for any x ∈ A and dA(y) = 1 for any y ∈ B.
Now we only need to prove that δ(G) = ∆(G), which implies that G is ∆(G)-regular.
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Fig. 1.

Suppose, to the contrary, that there exists a vertex v ∈ V (G) such that dG(v) = δ(G) < ∆(G). Consider
the subgraph G − v. By Lemma 3.3, δ(G) ≥ 2, so W (G) = ∅. By Lemma 3.3, there is an A ⊆ V (G − v)
such that A is a γt (G − v)-set and N (v) ∩ A = ∅, 〈A〉 is 1-regular. Suppose A = {x1, x2, . . . , xk−1}, and
E(〈A〉) = {x1x2, x3x4, . . . , xk−2xk−1}, and Bi = NB(xi ) for each 1 ≤ i ≤ k − 1, then B is the disjoint union
of Bi , 1 ≤ i ≤ k − 1. (See Fig. 1).

We consider the subgraph G − x1. Since G is a k-γt (G)-critical graph, by Observation 3.1, we have that
γt (G − x1) = k − 1. By Lemma 3.3, we obtain:

(♣) {There is an A′ ⊆ V (G)− x1 such that N (x1) ∩ A′ = ∅ and, A′ is a γt (G − x1)-set with |A′| = k − 1. 〈A′〉 is
1-regular, dG(u) = ∆(G) for any u ∈ A′.Let B ′ = V (G − x1)− A′, then dA′(y) = 1 for any y ∈ B ′.}

Claim 1. A′ ∩ A 6= ∅.

Proof. Suppose, to the contrary, A′ ∩ A = ∅. Then the following two results hold:
(a) A′ ⊆ ∪k−1

i=2 Bi .
Proof. Since V (G) = A ∪ B ∪ {v} = A′ ∪ B ′ ∪ {x1} and A ∩ B = ∅ and A′ ∩ B ′ = ∅, v 6∈ A, v 6∈ B and, x1 6∈ A′,

x1 6∈ B ′, then A ⊆ B ′∪{x1} and A′ ⊆ B∪{v}, which give A−x1 ⊆ B ′ and A′−v ⊆ B. Since dG(v) = δ(G) < ∆(G),
then v 6∈ A′, therefore A′ ⊆ B. Since N (x1) ∩ A′ = ∅, that is, (x2 ∪ B1) ⊆ B ′. Therefore A′ ⊆ ∪k−1

i=2 Bi .
(b) |A′ ∩ Bi | ≤ 1(2 ≤ i ≤ k − 1).
Proof. Suppose, to the contrary, that there exist some j , 2 ≤ j ≤ k−1 such that |B j ∩A′| ≥ 2. Since B j = NB(x j ),

then |NB(x j ) ∩ A′| ≥ 2. Since x j ∈ A and A − x1 ⊆ B ′, then x j ∈ B ′. Thus dA′(x j ) ≥ 2. But by (♣), dA′(x j ) = 1
(2 ≤ j ≤ k − 1). This is a contradiction.

By (a) and (b), |A′| ≤ k − 2. This contradicts the fact that A′ is a γt (G − x1)-set with |A′| = k − 1. �

If there exists x ∈ A′ − A, then x 6∈ A. Therefore, x ∈ B. By Lemma 3.3, there exists a unique vertex z ∈ A such
that xz ∈ E(G). If z ∈ A ∩ A′, then there exists a unique vertex z1 ∈ A − A′ such that z1z ∈ E(〈A〉) since 〈A〉 is
1-regular. Let f : A′ − A→ A − A′ be defined by (See Fig. 2)

f (x) =

{
z if x ∈ A′ − A, NA(x) = {z}, and z 6∈ A′ ∩ A;
z1 if x ∈ A′ − A, NA(x) = {z}, z ∈ A′ ∩ A, and NA(z) = {z1}.

Claim 2. f is well defined.

Proof. Firstly, we prove that f (x) ∈ A − A′. Consider the two Cases:
Case (1). x ∈ A′ − A, NA(x) = {z}, and z 6∈ A′ ∩ A.
By the definition of f , f (x) = z. Since NA(x) = {z}, then z ∈ A. Since z 6∈ A′ ∩ A, then z 6∈ A′. Therefore,

z ∈ A − A′, that is, f (x) ∈ A − A′.
Case (2). x ∈ A′ − A, NA(x) = {z}, z ∈ A′ ∩ A, and NA(z) = {z1}

By the definition of f , f (x) = z1. Since NA(z) = {z1}, then z1 ∈ A. If z1 ∈ A′, then z, z1 ∈ A′ ∩ A since
z ∈ A′ ∩ A. Thus, x, z, z1 ∈ A′ and {x, z1} ⊆ NA′(z), that is, dA′(z) ≥ 2, which contradicts the fact that 〈A′〉 is
1-regular. Therefore, z1 6∈ A′, that is, z1 ∈ A − A′.
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Fig. 2.

Fig. 3.

By Case (1) and Case (2), f (x) ∈ A − A′.
Secondly, by Lemma 3.3, for each x ∈ B, there exists a unique vertex z ∈ A such that xz ∈ E(G). Note that 〈A〉

is 1-regular. Thus, f (x) is unique for each vertex x ∈ A′ − A.
This completes the proof of Claim 2. �

Claim 3. f is injective.

Proof. For two vertices x, x ′ ∈ A′ − A, x 6= x ′. Suppose f (x) = z, f (x ′) = z′. We will show that z 6= z′. Suppose,
to the contrary, z = z′. By the definition of f , z ∈ A − A′. Thus, z ∈ B ′. We have the following cases:

Case (1). x ∈ A′ − A, NA(x) = {z}, and z 6∈ A′ ∩ A.
Subcase (1.1). x ′ ∈ A′ − A, NA(x ′) = {z′}, and z′ 6∈ A′ ∩ A. (See Fig. 3(a)). Since NA(x) = {z}, NA(x ′) = {z′},

xz, x ′z′ ∈ E(G). Therefore {x, x ′} ⊆ NA′(z), that is, dA′(z) ≥ 2. This contradicts (♣).
Subcase (1.2). x ′ ∈ A′ − A, NA(x ′) = {z′1}, z′1 ∈ A′ ∩ A, and NA(z′1) = {z

′
}. (See Fig. 3(b)). Since NA(x) = {z},

xz ∈ E(G). Since z′1 ∈ A ∩ A′ and NA(z′1) = {z
′
}, {z′1, x} ⊆ NA′(z). Thus dA′(z) ≥ 2. This contradicts (♣).

Case(2). x ∈ A′ − A, NA(x) = {z1}, z1 ∈ A′ ∩ A, and NA(z1) = {z}.
Subcase (2.1). x ′ ∈ A′−A, NA(x ′) = {z′}, and z′ 6∈ A′∩A. (See Fig. 3(c)). Since NA(z1) = {z} and NA(x ′) = {z′},

z1z, x ′z′ ∈ E(G). Since z1 ∈ A′ ∩ A, {z1, x ′} ⊆ NA′(z). Thus, dA′(z) ≥ 2. This contradicts (♣).
Subcase (2.2). x ′ ∈ A′ − A, NA(x ′) = {z′1}, z′1 ∈ A′ ∩ A, and NA(z′1) = {z

′
}. (See Fig. 3(d).) Then z1z ∈ E(G)

and z′1z′ ∈ E(G). If z1 6= z′1, then dA(z) ≥ 2 since z1, z′1 ∈ A′ ∩ A. This contradicts the fact that 〈A〉 is 1-regular. If
z1 = z′1, then dA′(z1) ≥ 2 since NA(x) = {z1} and NA(x ′) = {z′1}. This contradicts the fact that 〈A′〉 is 1-regular.

This completes the proof of Claim 3. �

Claim 4. f is not surjective.

Proof. By (♣), N (x1) ∩ A′ = ∅, then x1 has no neighbor in A′. Furthermore, x1 has no neighbor in A′ − A. Since
x1x2 ∈ E(〈A〉), x2 ∈ A ∩ B ′. Thus, x2 6∈ A′ ∩ A, xx2 6∈ E(〈A′〉) for each x ∈ A′ − A. Note that x1 ∈ A − A′. Thus,
f (x) 6= x1 for each x ∈ A′ − A. Hence f is not surjective. �

From Claim 2 to Claim 4, it follows that |A′ − A| < |A − A′|, which contradicts the fact that |A| = |A′| = k − 1.
The contradiction shows that G is ∆(G)-regular. Thus we obtain G ∈ Ψ .

“⇐” Assume that G is a k-γt -critical graph with n vertices and G ∈ Ψ . We will show that n = ∆(G)(γt (G)−1)+1.
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Since G ∈ Ψ , then G is ∆(G)-regular and ∆(G) ≥ 2. Moreover, for any v ∈ V (G), there exists an A ⊆ V (G−v)
such that N (v) ∩ A = ∅ and 〈A〉 is 1-regular, and let B = V (G − v) − A, then dA(y) = 1 for any y ∈ B, which
means that dA(x) = 1 for any x ∈ V (G − v). So we have that

n − |A| − 1 = e(A, B) = |A|(∆(G)− 1),

that is,

n = ∆(G)|A| + 1. (3)

Since dA(x) = 1 for any x ∈ V (G − v), A is a total dominating set of G − v. By Observation 3.1, we have that

|A| ≥ γt (G − v) = γt (G)− 1. (4)

By (3) and (4), we obtain

n ≥ ∆(G)(γt (G)− 1)+ 1. (5)

On the other hand, since G is a k-γt -critical graph, by Observation 3.1, we have that γt (G − v) = k − 1 for any
v ∈ V (G). Let A′ be a γt (G−v)-set of G−v and B ′ = V (G−v)− A′. So we have that |A′| = k−1 and |B ′| = n−k.
Since A′ is a γt (G − v)-set, we have that dA′(x) ≥ 1 for any x ∈ A′ and dA′(y) ≥ 1 for any y ∈ B ′, which means that
each vertex of A′ has at most ∆(G)− 1 neighbors in B ′ and each vertex of B ′ has at least one neighbor in A′. Hence,

n − k ≤ e(A′, B ′) ≤ (k − 1)(∆(G)− 1). (6)

that is,

n ≤ ∆(G)(γt (G)− 1)+ 1. (7)

By (5) and (7), we have that n = ∆(G)(γt (G)− 1)+ 1.
This completes the proof of Theorem 3.4. �

4. Open problems

We close with two open problems.

1. Does there exists a graph in Ψ which is not a Cayley graph?
2. Motivated by Propositions 2.2 and 2.3, we propose the problem: Characterize 2k-regular graphs in Ψ , for each

k ≥ 2?
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