Note

A constructive characterization of total domination vertex critical graphs ${ }^{\text {h }}$

Chunxiang Wang*, Zhiquan Hu, Xiangwen Li
Department of Mathematics, Huazhong Normal University, Wuhan, 430079, PR China

Received 18 April 2006; received in revised form 7 January 2008; accepted 10 January 2008
Available online 15 February 2008

Abstract

Let G be a graph of order n and maximum degree $\Delta(G)$ and let $\gamma_{t}(G)$ denote the minimum cardinality of a total dominating set of a graph G. A graph G with no isolated vertex is the total domination vertex critical if for any vertex v of G that is not adjacent to a vertex of degree one, the total domination number of $G-v$ is less than the total domination number of G. We call these graphs γ_{t}-critical. For any γ_{t}-critical graph G, it can be shown that $n \leq \Delta(G)\left(\gamma_{t}(G)-1\right)+1$. In this paper, we prove that: Let G be a connected γ_{t}-critical graph of order $n(n \geq 3)$, then $n=\Delta(G)\left(\gamma_{t}(G)-1\right)+1$ if and only if G is regular and, for each $v \in V(G)$, there is an $A \subseteq V(G)-\{v\}$ such that $N(v) \cap A=\emptyset$, the subgraph induced by A is 1-regular, and every vertex in $V(G)-A-\{v\}$ has exactly one neighbor in A.

(C) 2008 Elsevier B.V. All rights reserved.

Keywords: Total domination set; Total domination number; Vertex critical graphs; Cayley graphs; Corona

1. Introduction

The graphs considered in this paper are finite, undirected, and simple (no loops or multiple edges). For notation and terminology not presented here, we in general follow [1]. In what follows, let $G=(V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$.

Let v be a vertex of G, the open neighborhood of v is $N(v)=\{u \in V(G) \mid u v \in E(G)\}$ and the closed neighborhood of v is $N[v]=N(v) \cup\{v\}$. For a subset S of vertices, we define the open neighborhood $N(S)=\bigcup_{v \in S} N(v)$, and the closed neighborhood $N[S]=\bigcup_{v \in S} N[v]$. Let $N_{S}(v)=N(v) \cap S$, and $d_{S}(v)=\left|N_{S}(v)\right|$. The degree $d_{G}(v)$ of a vertex v in G is the number of edges of G incident with v, and the vertex v is called a vertex of degree k if $d_{G}(v)=k$. An edge $e \in E(G)$ is called a pendant edge if e is incident with a vertex of degree 1 . If A is another subset of $V(G)$ disjoint from S, we let $E(A, S)=\{u v \in E(G) \mid u \in A$ and $v \in S\}, e(A, S)=|E(A, S)|$, and let $\langle A\rangle$ denote the subgraph of G induced by A.

The set $S \subseteq V(G)$ is a dominating set of G if $N[S]=V(G)$, and a total dominating set if $N(S)=V(G)$. The minimum cardinality among all total dominating sets of G is the total domination number of G, denoted by $\gamma_{t}(G)$. A total dominating set with cardinality $\gamma_{t}(G)$ we call a γ_{t}-set.

[^0]Let $S \subseteq V(G)$ and let $G-S$ denote the graph obtained from G by deleting all the vertices of S together with all the edges with at least one endvertex in S. When $S=\{x\}$, we simplify this notation to $G-x$. A vertex $v \in V(G)$ is called γ_{t}-critical if $\gamma_{t}(G-v)<\gamma_{t}(G)$. Let $D_{1}(G)=\left\{v \in V(G) \mid d_{G}(v)=1\right\}$ and $W(G)=N\left(D_{1}(G)\right)$. A graph G is said to be total domination vertex critical, or γ_{t}-critical if each vertex of $V(G)-W(G)$ is critical. G is called a $k-\gamma_{t}$-critical graph if G is γ_{t}-critical, and $\gamma_{t}=k$. For example, the 5 -cycle is $3-\gamma_{t}$-critical. Throughout this paper, we let $n=|V(G)|$ denote the order of G.

We organize this paper as follows. In Section 2, we define a family of graphs, and study a few properties of the graphs defined. In Section 3, we give our main theorem. Finally, in Section 4 we propose two open problems.

2. The properties of the class of graphs

Note that a graph is γ_{t}-critical if and only if each component is γ_{t}-critical, so we only need to consider connected graphs. Furthermore, K_{2} is $2-\gamma_{t}$-critical, indicated by Goddard et al. [2]. We define that K_{1} is $1-\gamma_{t}$-critical.

Definition 2.1. We define a family of graphs Ψ as follows:
(1) $K_{1}, K_{2} \in \Psi$.
(2) Let G be a connected graph with at least 3 vertices. $G \in \Psi$ if and only if both the following two conditions hold:
(i) G is a regular graph;
(ii) For any $v \in V(G)$, there exists an $A \subseteq V(G)-v$ such that $N(v) \cap A=\emptyset,\langle A\rangle$ is 1-regular, $d_{A}(y)=1$ for each $y \in V(G)-A-\{v\}$.

Here is an example showing that such a graph exists in Ψ. Let G be a cycle of length 9 . Suppose $G=C_{9}=$ $v_{0} v_{1} \cdots v_{8} v_{0}$ and $v=v_{8}$. Then $G-v$ is a path and $A=\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}, V(G)-A-\{v\}=\left\{v_{0}, v_{3}, v_{4}, v_{7}\right\}$.

The following proposition is useful when we construct a graph in Ψ.
Proposition 2.2. Let $G \in \Psi$. If G is a connected graph of order $n(n \geq 3)$. Then n is odd and G is k-regular, where k is even.

Proof. Since $G \in \Psi$, by Definition 2.1, G is k-regular and, for any $v \in V(G)$, there is an $A \subseteq V(G)-v$ such that $N(v) \cap A=\emptyset$ and $\langle A\rangle$ is 1-regular, and $d_{A}(y)=1$ for any $y \in V(G-v)-A$. Let $|A|=m$. Since $\langle A\rangle$ is 1-regular, we have that m is even. Since G is k-regular, $\langle A\rangle$ is 1 -regular and $d_{A}(y)=1$ for any $y \in V(G-v)-A$, we have that $|V(G-v)-A|=m(k-1)$. Since $|V(G)|=|A|+|V(G-v)-A|+|\{v\}|, n=m+m(k-1)+1=m k+1$. Thus, n is odd. Since $2|E(G)|=\sum_{v \in V(G)} d(v)$, which implies that $k n$ is even, we have that k is even.

The following proposition characterize the cycles in Ψ.
Proposition 2.3. A cycle $G=C_{n}$ is in Ψ if and only if $n \equiv 1(\bmod 4)$.
Proof. " \Rightarrow " Assume that $G=C_{n}$ is in Ψ. Let $v \in V(G)$. By Definition 2.1, there exists $A \subseteq V(G-v)$ such that $N(v) \cap A=\emptyset$ and $\langle A\rangle$ is 1-regular, $d_{A}(y)=1$ for any $y \in V(G-v)-A$. Since $\langle A\rangle$ is 1-regular, we have that $|A|$ is even, suppose $|A|=2 m$. Since G is 2-regular, $\langle A\rangle$ is 1-regular and $d_{A}(y)=1$ for any $y \in V(G-v)-A$, we have that $|V(G-v)-A|=|A|=2 m$. Thus, $|V(G)|=4 m+1$. Since G is a cycle, G is isomorphic to a cycle of length $4 m+1$. Thus, $n \equiv 1(\bmod 4)$.
$" \Leftarrow "$ Assume that $G=C_{n}$ and $n \equiv 1(\bmod 4)$. By symmetry, choose $v=0$ and $\langle A\rangle=\{(2,3),(6,7), \ldots,(4 m-$ $2,4 m-1)\}$. It is easy to check that $G \in \Psi$.

Let H be a group and S be a generating subset of H such that the identity element $1 \notin S$ and $x^{-1} \in S$ for each $x \in S$. A Cayley graph $G(H ; S)$ on group H is defined to be the graph with the elements of H as its vertices and edges joining h and $h s$ for all $h \in H$ and $s \in S . S$ is called the connection set.

When $k \geq 4$, we construct a Cayley graph as follows. Let H be a cyclic group Z_{33}. Then, we have that Cayley graph $G(H ; S)$ with connection set $S=\{6,27\}$ is in Ψ. By symmetry, we choose $v=0$ and $\langle A\rangle=$ $\{(2,8),(11,12),(21,22),(25,31)\}$. It is easy to check that $G(H ; S) \in \Psi$.

3. Main theorem and its proof

To prove our main theorem, we need some necessary results also on γ_{t}-critical graphs.
Observation 3.1 ([2]). If G is a γ_{t}-critical graph, then $\gamma_{t}(G-v)=\gamma_{t}-1$ for any $v \in V(G)-W(G)$. Furthermore, each $\gamma_{t}(G-v)$-set contains no neighbor of v.

A corona of a graph H, denoted by $\operatorname{cor}(H)$, is the graph obtained from H by adding a pendant edge to each vertex of H. Goddard et al. [2] characterized the γ_{t}-critical graphs with at least one vertex of degree 1 as follows.

Theorem 3.2 ([2]). Let G be a connected graph with at least 3 vertices and at least one vertex of degree 1. Then, G is $k-\gamma_{t}$-critical if and only if $G=\operatorname{cor}(H)$ for some connected graph H with k vertices and $\delta(H) \geq 2$.

The next lemma plays a key role in the proof of our main theorem.
Lemma 3.3. Let G be a connected γ_{t}-critical graph of order $n(n \geq 3)$. If $n=\Delta(G)\left(\gamma_{t}(G)-1\right)+1$, then the following results hold:
(i) $\delta(G) \geq 2$;
(ii) For any $v \in V$, there is an $A \subseteq V(G-v)$ such that A is a $\gamma_{t}(G-v)$-set and $N(v) \cap A=\emptyset$. Moreover, $\langle A\rangle$ is 1 -regular, $d_{G}(x)=\Delta(G)$ for any $x \in A$ and $d_{A}(y)=1$ for any $y \in V(G)-A-\{v\}$.

Proof. (i) Suppose, to the contrary, that $\delta(G)=1$. Let G be a $k-\gamma_{t}$-critical graph. By Theorem 3.2, $G=\operatorname{cor}(H)$ for some connected graph H with k vertices and $\delta(H) \geq 2$, which implies that $k \geq 3$. Furthermore, we have that $n=2 k$ and $3 \leq \Delta(G) \leq k$, from which we obtain $1+\frac{1}{\Delta(G)-2} \leq 2$ and $k>1+\frac{1}{\Delta(G)-2}$. Therefore we have that $2 k<\Delta(G)(k-1)+1$ and $n<\Delta(G)(k-1)+1$, which contradicts $n=\Delta(G)\left(\gamma_{t}(G)-1\right)+1$. Thus, $\delta(G) \geq 2$.
(ii) Since $\delta(G) \geq 2$, we have that $W(G)=\emptyset$. Let G be a $k-\gamma_{t}$-critical graph, by Observation 3.1, $\gamma_{t}(G-v)=k-1$ for any $v \in V(G)$. Let A be a $\gamma_{t}(G-v)$-set of $G-v$ and let $B=V(G-v)-A$, by Observation 3.1, we have that $N(v) \cap A=\emptyset$. So we have that $|A|=k-1$ and $|B|=n-k$. Since A is a $\gamma_{t}(G-v)$-set, we have that $d_{A}(x) \geq 1$ for any $x \in A$ and $d_{A}(y) \geq 1$ for any $y \in B$, which means that each vertex of A has at most $\Delta(G)-1$ neighbors in B and each vertex of B has at least one neighbor in A. Hence,

$$
\begin{equation*}
n-k \leq e(A, B) \leq(k-1)(\Delta(G)-1) \tag{1}
\end{equation*}
$$

That is,

$$
\begin{equation*}
n \leq \Delta(G)\left(\gamma_{t}(G)-1\right)+1 . \tag{2}
\end{equation*}
$$

The equality $n=\Delta(G)\left(\gamma_{t}(G)-1\right)+1$ holds if and only if both the equalities of (1) hold. So we have that $n-k=e(A, B)=(k-1)(\Delta(G)-1)$, which means that each vertex of A has exactly $\Delta(G)-1$ neighbors in B, and each vertex of B has exactly one neighbor in A. Therefore, there exists a partition of $V(G)-v$ for any $v \in V$, i.e., there exist $A \subseteq V(G)-v$ and $B=V(G-v)-A$, such that A is a $\gamma_{t}(G-v)$-set and $N(v) \cap A=\emptyset$. Moreover, $\langle A\rangle$ is 1 -regular, $d_{G}(x)=\Delta(G)$ for any $x \in A$ and $d_{A}(y)=1$ for any $y \in B$. This completes the proof of Lemma 3.3.

Let f be a map from set A to set B. We say that f is injective if $f(a) \neq f\left(a^{\prime}\right)$ for every pair $a \neq a^{\prime} \in A$. We say that f is surjective if there exists x in A such that $f(x)=y$ for every y in B.

In the following, we give the main theorem of this paper.
Theorem 3.4. Let G be a connected γ_{t}-critical graph of order n. Then $n=\Delta(G)\left(\gamma_{t}(G)-1\right)+1$ if and only if $G \in \Psi$.

Proof. It is easy to check that when $n=1$ or 2 , Theorem 3.4 is true. So we may assume that G is a graph with at least three vertices.
" \Rightarrow " Assume that $n=\Delta(G)\left(\gamma_{t}(G)-1\right)+1$ and $\gamma_{t}(G)=k$. We will show that $G \in \Psi$.
By Lemma 3.3, for any $v \in V(G)$, there is an $A \subseteq V(G-v)$ such that A is a $\gamma_{t}(G-v)$-set and $N(v) \cap A=\emptyset$. Let $B=V(G)-A-\{v\}$. Moreover, $\langle A\rangle$ is 1 -regular, $d_{G}(x)=\Delta(G)$ for any $x \in A$ and $d_{A}(y)=1$ for any $y \in B$.

Now we only need to prove that $\delta(G)=\Delta(G)$, which implies that G is $\Delta(G)$-regular.

Partition of $V(G)-v$
Fig. 1.
Suppose, to the contrary, that there exists a vertex $v \in V(G)$ such that $d_{G}(v)=\delta(G)<\Delta(G)$. Consider the subgraph $G-v$. By Lemma 3.3, $\delta(G) \geq 2$, so $W(G)=\emptyset$. By Lemma 3.3, there is an $A \subseteq V(G-v)$ such that A is a $\gamma_{t}(G-v)$-set and $N(v) \cap A=\emptyset,\langle A\rangle$ is 1-regular. Suppose $A=\left\{x_{1}, x_{2}, \ldots, x_{k-1}\right\}$, and $E(\langle A\rangle)=\left\{x_{1} x_{2}, x_{3} x_{4}, \ldots, x_{k-2} x_{k-1}\right\}$, and $B_{i}=N_{B}\left(x_{i}\right)$ for each $1 \leq i \leq k-1$, then B is the disjoint union of $B_{i}, 1 \leq i \leq k-1$. (See Fig. 1).

We consider the subgraph $G-x_{1}$. Since G is a $k-\gamma_{t}(G)$-critical graph, by Observation 3.1, we have that $\gamma_{t}\left(G-x_{1}\right)=k-1$. By Lemma 3.3, we obtain:
(@) $\left\{\right.$ There is an $A^{\prime} \subseteq V(G)-x_{1}$ such that $N\left(x_{1}\right) \cap A^{\prime}=\emptyset$ and, A^{\prime} is a $\gamma_{t}\left(G-x_{1}\right)$-set with $\left|A^{\prime}\right|=k-1 .\left\langle A^{\prime}\right\rangle$ is 1 -regular, $d_{G}(u)=\Delta(G)$ for any $u \in A^{\prime}$. Let $B^{\prime}=V\left(G-x_{1}\right)-A^{\prime}$, then $d_{A^{\prime}}(y)=1$ for any $y \in B^{\prime}$.\}

Claim 1. $A^{\prime} \cap A \neq \emptyset$.
Proof. Suppose, to the contrary, $A^{\prime} \cap A=\emptyset$. Then the following two results hold:
(a) $A^{\prime} \subseteq \cup_{i=2}^{k-1} B_{i}$.

Proof. Since $V(G)=A \cup B \cup\{v\}=A^{\prime} \cup B^{\prime} \cup\left\{x_{1}\right\}$ and $A \cap B=\emptyset$ and $A^{\prime} \cap B^{\prime}=\emptyset, v \notin A, v \notin B$ and, $x_{1} \notin A^{\prime}$, $x_{1} \notin B^{\prime}$, then $A \subseteq B^{\prime} \cup\left\{x_{1}\right\}$ and $A^{\prime} \subseteq B \cup\{v\}$, which give $A-x_{1} \subseteq B^{\prime}$ and $A^{\prime}-v \subseteq B$. Since $d_{G}(v)=\delta(G)<\Delta(G)$, then $v \notin A^{\prime}$, therefore $A^{\prime} \subseteq B$. Since $N\left(x_{1}\right) \cap A^{\prime}=\emptyset$, that is, $\left(x_{2} \cup B_{1}\right) \subseteq B^{\prime}$. Therefore $A^{\prime} \subseteq \cup_{i=2}^{k-1} B_{i}$.
(b) $\left|A^{\prime} \cap B_{i}\right| \leq 1(2 \leq i \leq k-1)$.

Proof. Suppose, to the contrary, that there exist some $j, 2 \leq j \leq k-1$ such that $\left|B_{j} \cap A^{\prime}\right| \geq 2$. Since $B_{j}=N_{B}\left(x_{j}\right)$, then $\left|N_{B}\left(x_{j}\right) \cap A^{\prime}\right| \geq 2$. Since $x_{j} \in A$ and $A-x_{1} \subseteq B^{\prime}$, then $x_{j} \in B^{\prime}$. Thus $d_{A^{\prime}}\left(x_{j}\right) \geq 2$. But by (\&), $d_{A^{\prime}}\left(x_{j}\right)=1$ ($2 \leq j \leq k-1$). This is a contradiction.

By (a) and (b), $\left|A^{\prime}\right| \leq k-2$. This contradicts the fact that A^{\prime} is a $\gamma_{t}\left(G-x_{1}\right)$-set with $\left|A^{\prime}\right|=k-1$.
If there exists $x \in A^{\prime}-A$, then $x \notin A$. Therefore, $x \in B$. By Lemma 3.3, there exists a unique vertex $z \in A$ such that $x z \in E(G)$. If $z \in A \cap A^{\prime}$, then there exists a unique vertex $z_{1} \in A-A^{\prime}$ such that $z_{1} z \in E(\langle A\rangle)$ since $\langle A\rangle$ is 1-regular. Let $f: A^{\prime}-A \rightarrow A-A^{\prime}$ be defined by (See Fig. 2)

$$
f(x)= \begin{cases}z & \text { if } x \in A^{\prime}-A, N_{A}(x)=\{z\}, \text { and } z \notin A^{\prime} \cap A ; \\ z_{1} & \text { if } x \in A^{\prime}-A, N_{A}(x)=\{z\}, z \in A^{\prime} \cap A, \text { and } N_{A}(z)=\left\{z_{1}\right\} .\end{cases}
$$

Claim 2. f is well defined.
Proof. Firstly, we prove that $f(x) \in A-A^{\prime}$. Consider the two Cases:
Case (1). $x \in A^{\prime}-A, N_{A}(x)=\{z\}$, and $z \notin A^{\prime} \cap A$.
By the definition of $f, f(x)=z$. Since $N_{A}(x)=\{z\}$, then $z \in A$. Since $z \notin A^{\prime} \cap A$, then $z \notin A^{\prime}$. Therefore, $z \in A-A^{\prime}$, that is, $f(x) \in A-A^{\prime}$.

Case (2). $x \in A^{\prime}-A, N_{A}(x)=\{z\}, z \in A^{\prime} \cap A$, and $N_{A}(z)=\left\{z_{1}\right\}$
By the definition of $f, f(x)=z_{1}$. Since $N_{A}(z)=\left\{z_{1}\right\}$, then $z_{1} \in A$. If $z_{1} \in A^{\prime}$, then $z, z_{1} \in A^{\prime} \cap A$ since $z \in A^{\prime} \cap A$. Thus, $x, z, z_{1} \in A^{\prime}$ and $\left\{x, z_{1}\right\} \subseteq N_{A^{\prime}}(z)$, that is, $d_{A^{\prime}}(z) \geq 2$, which contradicts the fact that $\left\langle A^{\prime}\right\rangle$ is 1 -regular. Therefore, $z_{1} \notin A^{\prime}$, that is, $z_{1} \in A-A^{\prime}$.

Fig. 2.

Fig. 3.
By Case (1) and Case (2), $f(x) \in A-A^{\prime}$.
Secondly, by Lemma 3.3, for each $x \in B$, there exists a unique vertex $z \in A$ such that $x z \in E(G)$. Note that $\langle A\rangle$ is 1 -regular. Thus, $f(x)$ is unique for each vertex $x \in A^{\prime}-A$.

This completes the proof of Claim 2.
Claim 3. f is injective.
Proof. For two vertices $x, x^{\prime} \in A^{\prime}-A, x \neq x^{\prime}$. Suppose $f(x)=z, f\left(x^{\prime}\right)=z^{\prime}$. We will show that $z \neq z^{\prime}$. Suppose, to the contrary, $z=z^{\prime}$. By the definition of $f, z \in A-A^{\prime}$. Thus, $z \in B^{\prime}$. We have the following cases:

Case (1). $x \in A^{\prime}-A, N_{A}(x)=\{z\}$, and $z \notin A^{\prime} \cap A$.
Subcase (1.1). $x^{\prime} \in A^{\prime}-A, N_{A}\left(x^{\prime}\right)=\left\{z^{\prime}\right\}$, and $z^{\prime} \notin A^{\prime} \cap A$. (See Fig. 3(a)). Since $N_{A}(x)=\{z\}, N_{A}\left(x^{\prime}\right)=\left\{z^{\prime}\right\}$, $x z, x^{\prime} z^{\prime} \in E(G)$. Therefore $\left\{x, x^{\prime}\right\} \subseteq N_{A^{\prime}}(z)$, that is, $d_{A^{\prime}}(z) \geq 2$. This contradicts (\&).

Subcase (1.2). $x^{\prime} \in A^{\prime}-A, N_{A}\left(x^{\prime}\right)=\left\{z_{1}^{\prime}\right\}, z_{1}^{\prime} \in A^{\prime} \cap A$, and $N_{A}\left(z_{1}^{\prime}\right)=\left\{z^{\prime}\right\}$. (See Fig. 3(b)). Since $N_{A}(x)=\{z\}$, $x z \in E(G)$. Since $z_{1}^{\prime} \in A \cap A^{\prime}$ and $N_{A}\left(z_{1}^{\prime}\right)=\left\{z^{\prime}\right\},\left\{z_{1}^{\prime}, x\right\} \subseteq N_{A^{\prime}}(z)$. Thus $d_{A^{\prime}}(z) \geq 2$. This contradicts (\&).

Case(2). $x \in A^{\prime}-A, N_{A}(x)=\left\{z_{1}\right\}, z_{1} \in A^{\prime} \cap A$, and $N_{A}\left(z_{1}\right)=\{z\}$.
Subcase (2.1). $x^{\prime} \in A^{\prime}-A, N_{A}\left(x^{\prime}\right)=\left\{z^{\prime}\right\}$, and $z^{\prime} \notin A^{\prime} \cap A$. (See Fig. 3(c)). Since $N_{A}\left(z_{1}\right)=\{z\}$ and $N_{A}\left(x^{\prime}\right)=\left\{z^{\prime}\right\}$, $z_{1} z, x^{\prime} z^{\prime} \in E(G)$. Since $z_{1} \in A^{\prime} \cap A,\left\{z_{1}, x^{\prime}\right\} \subseteq N_{A^{\prime}}(z)$. Thus, $d_{A^{\prime}}(z) \geq 2$. This contradicts (@).

Subcase (2.2). $x^{\prime} \in A^{\prime}-A, N_{A}\left(x^{\prime}\right)=\left\{z_{1}^{\prime}\right\}, z_{1}^{\prime} \in A^{\prime} \cap A$, and $N_{A}\left(z_{1}^{\prime}\right)=\left\{z^{\prime}\right\}$. (See Fig. 3(d).) Then $z_{1} z \in E(G)$ and $z_{1}^{\prime} z^{\prime} \in E(G)$. If $z_{1} \neq z_{1}^{\prime}$, then $d_{A}(z) \geq 2$ since $z_{1}, z_{1}^{\prime} \in A^{\prime} \cap A$. This contradicts the fact that $\langle A\rangle$ is 1 -regular. If $z_{1}=z_{1}^{\prime}$, then $d_{A^{\prime}}\left(z_{1}\right) \geq 2$ since $N_{A}(x)=\left\{z_{1}\right\}$ and $N_{A}\left(x^{\prime}\right)=\left\{z_{1}^{\prime}\right\}$. This contradicts the fact that $\left\langle A^{\prime}\right\rangle$ is 1-regular.

This completes the proof of Claim 3.
Claim 4. f is not surjective.
Proof. By (\&), $N\left(x_{1}\right) \cap A^{\prime}=\emptyset$, then x_{1} has no neighbor in A^{\prime}. Furthermore, x_{1} has no neighbor in $A^{\prime}-A$. Since $x_{1} x_{2} \in E(\langle A\rangle), x_{2} \in A \cap B^{\prime}$. Thus, $x_{2} \notin A^{\prime} \cap A, x x_{2} \notin E\left(\left\langle A^{\prime}\right\rangle\right)$ for each $x \in A^{\prime}-A$. Note that $x_{1} \in A-A^{\prime}$. Thus, $f(x) \neq x_{1}$ for each $x \in A^{\prime}-A$. Hence f is not surjective.

From Claim 2 to Claim 4, it follows that $\left|A^{\prime}-A\right|<\left|A-A^{\prime}\right|$, which contradicts the fact that $|A|=\left|A^{\prime}\right|=k-1$. The contradiction shows that G is $\Delta(G)$-regular. Thus we obtain $G \in \Psi$.
" \Leftarrow " Assume that G is a k - γ_{t}-critical graph with n vertices and $G \in \Psi$. We will show that $n=\Delta(G)\left(\gamma_{t}(G)-1\right)+1$.

Since $G \in \Psi$, then G is $\Delta(G)$-regular and $\Delta(G) \geq 2$. Moreover, for any $v \in V(G)$, there exists an $A \subseteq V(G-v)$ such that $N(v) \cap A=\emptyset$ and $\langle A\rangle$ is 1-regular, and let $B=V(G-v)-A$, then $d_{A}(y)=1$ for any $y \in B$, which means that $d_{A}(x)=1$ for any $x \in V(G-v)$. So we have that

$$
n-|A|-1=e(A, B)=|A|(\Delta(G)-1),
$$

that is,

$$
\begin{equation*}
n=\Delta(G)|A|+1 \tag{3}
\end{equation*}
$$

Since $d_{A}(x)=1$ for any $x \in V(G-v), A$ is a total dominating set of $G-v$. By Observation 3.1, we have that

$$
\begin{equation*}
|A| \geq \gamma_{t}(G-v)=\gamma_{t}(G)-1 \tag{4}
\end{equation*}
$$

By (3) and (4), we obtain

$$
\begin{equation*}
n \geq \Delta(G)\left(\gamma_{t}(G)-1\right)+1 \tag{5}
\end{equation*}
$$

On the other hand, since G is a $k-\gamma_{t}$-critical graph, by Observation 3.1, we have that $\gamma_{t}(G-v)=k-1$ for any $v \in V(G)$. Let A^{\prime} be a $\gamma_{t}(G-v)$-set of $G-v$ and $B^{\prime}=V(G-v)-A^{\prime}$. So we have that $\left|A^{\prime}\right|=k-1$ and $\left|B^{\prime}\right|=n-k$. Since A^{\prime} is a $\gamma_{t}(G-v)$-set, we have that $d_{A^{\prime}}(x) \geq 1$ for any $x \in A^{\prime}$ and $d_{A^{\prime}}(y) \geq 1$ for any $y \in B^{\prime}$, which means that each vertex of A^{\prime} has at most $\Delta(G)-1$ neighbors in B^{\prime} and each vertex of B^{\prime} has at least one neighbor in A^{\prime}. Hence,

$$
\begin{equation*}
n-k \leq e\left(A^{\prime}, B^{\prime}\right) \leq(k-1)(\Delta(G)-1) . \tag{6}
\end{equation*}
$$

that is,

$$
\begin{equation*}
n \leq \Delta(G)\left(\gamma_{t}(G)-1\right)+1 \tag{7}
\end{equation*}
$$

By (5) and (7), we have that $n=\Delta(G)\left(\gamma_{t}(G)-1\right)+1$.
This completes the proof of Theorem 3.4.

4. Open problems

We close with two open problems.

1. Does there exists a graph in Ψ which is not a Cayley graph?
2. Motivated by Propositions 2.2 and 2.3 , we propose the problem: Characterize $2 k$-regular graphs in Ψ, for each $k \geq 2$?

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976, (Macmillan, London).
[2] W. Goddard, T.W. Haynes, M.A. Henning, L.C. van der Merwe, The diameter of total domination vertex critical graphs, Discrete Mathematics 286 (2004) 255-261.

[^0]: ${ }^{*}$ Supported by National Natural Science Foundation of China (10371048, 10571071,10671081).

 * Corresponding author.

 E-mail addresses: wcxiang@mail.ccnu.edu.cn (C. Wang), hu_zhiq@yahoo.com.cn (Z. Hu), xwli_email@yahoo.ca (X. Li).

