Note

A constructive characterization of total domination vertex critical graphs

Chunxiang Wang *, Zhiquan Hu, Xiangwen Li

Department of Mathematics, Huazhong Normal University, Wuhan, 430079, PR China

Received 18 April 2006; received in revised form 7 January 2008; accepted 10 January 2008
Available online 15 February 2008

Abstract

Let G be a graph of order n and maximum degree $\Delta(G)$ and let $\gamma_t(G)$ denote the minimum cardinality of a total dominating set of a graph G. A graph G with no isolated vertex is the total domination vertex critical if for any vertex v of G that is not adjacent to a vertex of degree one, the total domination number of $G - v$ is less than the total domination number of G. We call these graphs γ_t-critical. For any γ_t-critical graph G, it can be shown that $n \leq \Delta(G)(\gamma_t(G) - 1) + 1$. In this paper, we prove that: Let G be a connected γ_t-critical graph of order n ($n \geq 3$), then $n = \Delta(G)(\gamma_t(G) - 1) + 1$ if and only if G is regular and, for each $v \in V(G)$, there is an $A \subseteq V(G) - \{v\}$ such that $N(v) \cap A = \emptyset$, the subgraph induced by A is 1-regular, and every vertex in $V(G) - A - \{v\}$ has exactly one neighbor in A.

Keywords: Total domination set; Total domination number; Vertex critical graphs; Cayley graphs; Corona

1. Introduction

The graphs considered in this paper are finite, undirected, and simple (no loops or multiple edges). For notation and terminology not presented here, we in general follow [1]. In what follows, let $G = (V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$.

Let v be a vertex of G, the open neighborhood of v is $N(v) = \{u \in V(G) \mid uv \in E(G)\}$ and the closed neighborhood of v is $N[v] = N(v) \cup \{v\}$. For a subset S of vertices, we define the open neighborhood $N(S) = \bigcup_{v \in S} N(v)$, and the closed neighborhood $N[S] = \bigcup_{v \in S} N[v]$. Let $N_S(v) = N(v) \cap S$, and $d_S(v) = |N_S(v)|$. The degree $d_G(v)$ of a vertex v in G is the number of edges of G incident with v, and the vertex v is called a vertex of degree k if $d_G(v) = k$. An edge $e \in E(G)$ is called a pendant edge if e is incident with a vertex of degree 1. If A is another subset of $V(G)$ disjoint from S, we let $E(A, S) = \{uv \in E(G) \mid u \in A$ and $v \in S\}$, $e(A, S) = |E(A, S)|$, and let (A) denote the subgraph of G induced by A.

The set $S \subseteq V(G)$ is a dominating set of G if $N[S] = V(G)$, and a total dominating set if $N[S] = V(G)$. The minimum cardinality among all total dominating sets of G is the total domination number of G, denoted by $\gamma_t(G)$. A total dominating set with cardinality $\gamma_t(G)$ we call a γ_t-set.

* Supported by National Natural Science Foundation of China (10371048, 10571071,10671081).
* Corresponding author.
E-mail addresses: wcxiang@mail.ccnu.edu.cn (C. Wang), hu_zhiq@yahoo.com.cn (Z. Hu), xwli_email@yahoo.ca (X. Li).

0012-365X/S - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2008.01.015
Let $S \subseteq V(G)$ and let $G - S$ denote the graph obtained from G by deleting all the vertices of S together with all the edges with at least one endvertex in S. When $S = \{x\}$, we simplify this notation to $G - x$. A vertex $v \in V(G)$ is called γ_t-critical if $\gamma_t(G - v) < \gamma_t(G)$. Let $D_1(G) = \{v \in V(G) \mid d_G(v) = 1\}$ and $W(G) = N(D_1(G))$. A graph G is said to be total domination vertex critical, or γ_t-critical if each vertex of $V(G) - W(G)$ is critical. G is called a k-γ_t-critical graph if G is γ_t-critical, and $\gamma_t = k$. For example, the 5-cycle is 3-γ_t-critical. Throughout this paper, we let $n = |V(G)|$ denote the order of G.

We organize this paper as follows. In Section 2, we define a family of graphs, and study a few properties of the graphs defined. In Section 3, we give our main theorem. Finally, in Section 4 we propose two open problems.

2. The properties of the class of graphs

Note that a graph is γ_t-critical if and only if each component is γ_t-critical, so we only need to consider connected graphs. Furthermore, K_2 is 2-γ_t-critical, indicated by Goddard et al. [2]. We define that K_1 is 1-γ_t-critical.

Definition 2.1. We define a family of graphs Ψ as follows:

1. $K_1, K_2 \in \Psi$.
2. Let G be a connected graph with at least 3 vertices. $G \in \Psi$ if and only if both the following two conditions hold:
 1. G is a regular graph;
 2. For any $v \in V(G)$, there exists an $A \subseteq V(G) - v$ such that $N(v) \cap A = \emptyset$, (A) is 1-regular, $d_A(y) = 1$ for each $y \in V(G) - A - \{v\}$.

Here is an example showing that such a graph exists in Ψ. Let G be a cycle of length 9. Suppose $G = C_9 = v_0v_1 \cdots v_8v_0$ and $v = v_8$. Then $G - v$ is a path and $A = \{v_1, v_2, v_5, v_6\}$, $V(G) - A - \{v\} = \{v_0, v_3, v_4, v_7\}$.

The following proposition is useful when we construct a graph in Ψ.

Proposition 2.2. Let $G \in \Psi$. If G is a connected graph of order n ($n \geq 3$). Then n is odd and G is k-regular, where k is even.

Proof. Since $G \in \Psi$, by **Definition 2.1**, G is k-regular and, for any $v \in V(G)$, there is an $A \subseteq V(G) - v$ such that $N(v) \cap A = \emptyset$ and (A) is 1-regular, and $d_A(y) = 1$ for each $y \in V(G) - A - \{v\}$. Since (A) is 1-regular, we have that m is even. Since G is k-regular, (A) is 1-regular and $d_A(y) = 1$ for each $y \in V(G) - A$, we have that $|V(G) - A| = m(k - 1)$. Since $|V(G)| = |A| + |V(G) - A| + |\{v\}|$, $n = m + m(k - 1) + 1 = mk + 1$. Thus, n is odd. Since $2|E(G)| = \sum_{v \in V(G)} d(v)$, which implies that kn is even, we have that k is even.

The following proposition characterize the cycles in Ψ.

Proposition 2.3. A cycle $G = C_n$ is in Ψ if and only if $n \equiv 1 \text{mod } 4$.

Proof. “⇒” Assume that $G = C_n$ is in Ψ. Let $v \in V(G)$. By **Definition 2.1**, there exists $A \subseteq V(G) - v$ such that $N(v) \cap A = \emptyset$, (A) is 1-regular, $d_A(y) = 1$ for each $y \in V(G) - A$, and (A) is 1-regular, we have that $|A|$ is even, suppose $|A| = 2m$. Since G is 2-regular, (A) is 1-regular and $d_A(y) = 1$ for each $y \in V(G) - A$, we have that $|V(G) - A| = |A| = 2m$. Thus, $|V(G)| = 4m + 1$. Since G is a cycle, G is isomorphic to a cycle of length $4m + 1$. Thus, $n \equiv 1 \text{mod } 4$.

“⇐” Assume that $G = C_n$ and $n \equiv 1 \text{mod } 4$. By symmetry, choose $v = 0$ and $(A) = \{2, 3, 6, 7, \ldots, 4m - 2, 4m - 1\}$. It is easy to check that $G \in \Psi$.

Let H be a group and S be a generating subset of H such that the identity element $1 \not\in S$ and $x^{-1} \in S$ for each $x \in S$. A Cayley graph $G(H; S)$ on group H is defined to be the graph with the elements of H as its vertices and edges joining h and hs for all $h \in H$ and $s \in S$. S is called the connection set.

When $k \geq 4$, we construct a Cayley graph as follows. Let H be a cyclic group Z_{33} Then, we have that Cayley graph $G(H; S)$ with connection set $S = \{6, 27\}$ is in Ψ. By symmetry, we choose $v = 0$ and $(A) = \{(2, 8), (11, 12), (21, 22), (25, 31)\}$. It is easy to check that $G(H; S) \in \Psi$.

3. Main theorem and its proof

To prove our main theorem, we need some necessary results also on γ_1-critical graphs.

Observation 3.1 ([2]). If G is a γ_1-critical graph, then $\gamma_1(G - v) = \gamma_1 - 1$ for any $v \in V(G) - W(G)$. Furthermore, each $\gamma_1(G - v)$-set contains no neighbor of v.

A corona of a graph H, denoted by $cor(H)$, is the graph obtained from H by adding a pendant edge to each vertex of H. Goddard et al. [2] characterized the γ_1-critical graphs with at least one vertex of degree 1 as follows.

Theorem 3.2 ([2]). Let G be a connected graph with at least 3 vertices and at least one vertex of degree 1. Then, G is k-γ_1-critical if and only if $G = cor(H)$ for some connected graph H with k vertices and $\delta(H) \geq 2$.

The next lemma plays a key role in the proof of our main theorem.

Lemma 3.3. Let G be a connected γ_1-critical graph of order n ($n \geq 3$). If $n = \Delta(G)(\gamma_1(G) - 1) + 1$, then the following results hold:

(i) $\delta(G) \geq 2$;

(ii) For any $v \in V$, there is an $A \subseteq V(G - v)$ such that A is a $\gamma_1(G - v)$-set and $N(v) \cap A = \emptyset$. Moreover, $\langle A \rangle$ is 1-regular, $d_G(x) = \Delta(G)$ for any $x \in A$ and $d_A(y) = 1$ for any $y \in V(G) - A - \{v\}$.

Proof. (i) Suppose, to the contrary, that $\delta(G) = 1$. Let G be a k-γ_1-critical graph. By Theorem 3.2, $G = cor(H)$ for some connected graph H with k vertices and $\delta(H) \geq 2$, which implies that $k \geq 3$. Furthermore, we have that $n = 2k$ and $3 \leq \Delta(G) \leq k$, from which we obtain $1 + \frac{1}{\Delta(G)-2} \leq 2$ and $k > 1 + \frac{1}{\Delta(G)-2}$. Therefore we have that $2k < \Delta(G)(k - 1) + 1$ and $n < \Delta(G)(k - 1) + 1$, which contradicts $n = \Delta(G)(\gamma_1(G) - 1) + 1$. Thus, $\delta(G) \geq 2$.

(ii) Since $\delta(G) \geq 2$, we have that $W(G) = \emptyset$. Let G be a k-γ_1-critical graph, by Observation 3.1, $\gamma_1(G - v) = k - 1$ for any $v \in V(G)$. Let A be a $\gamma_1(G - v)$-set of $G - v$ and let $B = V(G - v) - A$, by Observation 3.1, we have that $N(v) \cap A = \emptyset$. So we have that $|A| = k - 1$ and $|B| = n - k$. Since A is a $\gamma_1(G - v)$-set, we have that $d_A(x) \geq 1$ for any $x \in A$ and $d_A(y) \geq 1$ for any $y \in B$, which means that each vertex of A has at most $\Delta(G) - 1$ neighbors in B and each vertex of B has at least one neighbor in A. Hence,

$$n - k \leq e(A, B) \leq (k - 1)(\Delta(G) - 1).$$

That is,

$$n \leq \Delta(G)(\gamma_1(G) - 1) + 1. \quad (2)$$

The equality $n = \Delta(G)(\gamma_1(G) - 1) + 1$ holds if and only if both the equalities of (1) hold. So we have that $n - k = e(A, B) = (k - 1)(\Delta(G) - 1)$, which means that each vertex of A has exactly $\Delta(G) - 1$ neighbors in B, and each vertex of B has exactly one neighbor in A. Therefore, there exists a partition of $V(G) - v$ for any $v \in V$, i.e., there exist $A \subseteq V(G) - v$ and $B = V(G - v) - A$, such that A is a $\gamma_1(G - v)$-set and $N(v) \cap A = \emptyset$. Moreover, $\langle A \rangle$ is 1-regular, $d_G(x) = \Delta(G)$ for any $x \in A$ and $d_A(y) = 1$ for any $y \in B$. This completes the proof of Lemma 3.3. \hfill \blacksquare

Let f be a map from set A to set B. We say that f is injective if $f(a) \neq f(a')$ for every pair $a \neq a' \in A$. We say that f is surjective if there exists x in A such that $f(x) = y$ for every y in B.

In the following, we give the main theorem of this paper.

Theorem 3.4. Let G be a connected γ_1-critical graph of order n. Then $n = \Delta(G)(\gamma_1(G) - 1) + 1$ if and only if $G \in \Psi$.

Proof. It is easy to check that when $n = 1$ or 2, Theorem 3.4 is true. So we may assume that G is a graph with at least three vertices.

“\(\Rightarrow\)” Assume that $n = \Delta(G)(\gamma_1(G) - 1) + 1$ and $\gamma_1(G) = k$. We will show that $G \in \Psi$.

By Lemma 3.3, for any $v \in V(G)$, there is an $A \subseteq V(G - v)$ such that A is a $\gamma_1(G - v)$-set and $N(v) \cap A = \emptyset$. Let $B = V(G) - A - \{v\}$. Moreover, $\langle A \rangle$ is 1-regular, $d_G(x) = \Delta(G)$ for any $x \in A$ and $d_A(y) = 1$ for any $y \in B$.

Now we only need to prove that $\delta(G) = \Delta(G)$, which implies that G is $\Delta(G)$-regular.
Suppose, to the contrary, that there exists a vertex \(v \in V(G) \) such that \(d_G(v) = \delta(G) < \Delta(G) \). Consider the subgraph \(G - v \). By Lemma 3.3, \(\delta(G) \geq 2 \), so \(W(G) = \emptyset \). By Lemma 3.3, there is an \(A \subseteq V(G - v) \) such that \(A \) is a \(\gamma_1(G - v) \)-set and \(N(v) \cap A \) is \(\emptyset \), \(\langle A \rangle \) is 1-regular. Suppose \(A = \{x_1, x_2, \ldots, x_{k-1}\} \), and \(E(A) = \{x_1x_2, x_3x_4, \ldots, x_{k-2}x_{k-1}\} \), and \(B_i = N_B(x_i) \) for each \(1 \leq i \leq k - 1 \), then \(B \) is the disjoint union of \(B_i \), \(1 \leq i \leq k - 1 \). (See Fig. 1).

We consider the subgraph \(G - x_1 \). Since \(G \) is a \(k - \gamma_1(G) \)-critical graph, by Observation 3.1, we have that \(\gamma_1(G - x_1) = k - 1 \). By Lemma 3.3, we obtain:

(\(\bullet \)) (There is an \(A' \subseteq V(G) - x_1 \) such that \(N(x_1) \cap A' = \emptyset \) and, \(A' \) is a \(\gamma_1(G - x_1) \)-set with \(|A'| = k - 1 \). \(A' \) is 1-regular, \(d_G(u) = \Delta(G) \) for any \(u \in A' \). Let \(B' = V(G - x_1) - A' \), then \(d_{A'}(y) = 1 \) for any \(y \in B' \).

Claim 1. \(A' \cap A \neq \emptyset \).

Proof. Suppose, to the contrary, \(A' \cap A = \emptyset \). Then the following two results hold:

(a) \(A' \subseteq \bigcup_{i=2}^{k-1} B_i \).

Proof. Since \(V(G) = A \cup B \cup \{v\} = A' \cup B' \cup \{x_1\} \) and \(A \cap B = \emptyset \) and \(A' \cap B' = \emptyset \), \(v \notin A \), \(v \notin B \) and, \(x_1 \notin A' \), \(x_1 \notin B' \), then \(A \subseteq B' \cup \{x_1\} \) and \(A' \subseteq B \cup \{v\} \), which give \(A - x_1 \subseteq B' \) and \(A' - v \subseteq B \). Since \(d_G(v) = \delta(G) < \Delta(G) \), then \(v \notin A' \), therefore \(A' \subseteq B \). Since \(N(x_1) \cap A' = \emptyset \), that is, \((x_2 \cup B_1) \subseteq B' \). Therefore \(A' \subseteq \bigcup_{i=2}^{k-1} B_i \).

(b) \(|A' \cap B_i| \leq 1 (2 \leq i \leq k - 1) \).

Proof. Suppose, to the contrary, that there exist some \(j, 2 \leq j \leq k - 1 \) such that \(|B_j \cap A'| \geq 2 \). Since \(B_j = N_B(x_j) \), then \(|N_B(x_j) \cap A'| \geq 2 \). Since \(x_j \in A \) and \(A - x_1 \subseteq B' \), then \(x_j \in B' \). Thus \(d_{A'}(x_j) \geq 2 \). But by (\(\bullet \)), \(d_{A'}(x_j) = 1 (2 \leq j \leq k - 1) \). This is a contradiction.

By (a) and (b), \(|A'| \leq k - 2 \). This contradicts the fact that \(A' \) is a \(\gamma_1(G - x_1) \)-set with \(|A'| = k - 1 \). \(\square \)

If there exists \(x \in A' - A \), then \(x \notin A \). Therefore, \(x \in B \). By Lemma 3.3, there exists a unique vertex \(z \in A \) such that \(xz \in E(G) \). If \(z \in A \cap A' \), then there exists a unique vertex \(z_1 \in A - A' \) such that \(z_1z \in E(\langle A \rangle) \) since \(\langle A \rangle \) is 1-regular. Let \(f : A' - A \rightarrow A - A' \) be defined by (See Fig. 2)

\[
f(x) = \begin{cases} z & \text{if } x \in A' - A, N_A(x) = \{z\}, \text{ and } z \notin A' \cap A; \\
z_1 & \text{if } x \in A' - A, N_A(x) = \{z\}, z \in A' \cap A, \text{ and } N_A(z) = \{z_1\}.
\end{cases}
\]

Claim 2. \(f \) is well defined.

Proof. Firstly, we prove that \(f(x) \in A - A' \). Consider the two Cases:

Case 1. \(x \in A' - A \), \(N_A(x) = \{z\} \), and \(z \notin A' \cap A \).

By the definition of \(f \), \(f(x) = z \). Since \(N_A(x) = \{z\} \), then \(z \in A \). Since \(z \notin A' \cap A \), then \(z \notin A' \). Therefore, \(z \in A - A' \), that is, \(f(x) \in A - A' \).

Case 2. \(x \in A' - A \), \(N_A(x) = \{z_1\} \), \(z_1 \in A' \cap A \), and \(N_A(z) = \{z_1\} \)

By the definition of \(f \), \(f(x) = z_1 \). Since \(N_A(z) = \{z_1\} \), then \(z_1 \in A \). If \(z_1 \in A' \), then \(z, z_1 \in A' \cap A \) since \(z \in A' \cap A \). Thus, \(x, z, z_1 \in A' \) and \(\{x, z_1\} \subseteq N_A(z_1) \), that is, \(d_{A'}(z) \geq 2 \), which contradicts the fact that \(A' \) is 1-regular. Therefore, \(z_1 \notin A' \), that is, \(z_1 \in A - A' \).
Lemma 3.3

Fig. 3

Claim 2

For two vertices $x, x' \in A' - A$, $x \neq x'$, and $f(x) = z$, $f(x') = z'$. We will show that $z \neq z'$. Suppose, to the contrary, $z = z'$. By the definition of f, $z \in A - A'$. Thus, $z \in B'$. We have the following cases:

Case (1). $x \in A' - A$, $N_A(x) = \{z\}$, and $z \notin A' \cap A$.

Subcase (1.1). $x' \in A' - A$, $N_A(x') = \{z'\}$, and $z' \notin A' \cap A$. (See Fig. 3(a)). Since $N_A(x) = \{z\}$, $N_A(x') = \{z'\}$, $xz \in E(G)$. Therefore $\{x, x'\} \subseteq N_A(z)$, that is, $d_{A'}(z) \geq 2$. This contradicts (\clubsuit).

Subcase (1.2). $x' \in A' - A$, $N_A(x') = \{z_1\}$, $z_1 \in A' \cap A$, and $N_A(z_1) = \{z_1\}$. (See Fig. 3(b)). Since $N_A(x) = \{z\}$, $xz \in E(G)$. Since $z_1 \in A \cap A'$ and $N_A(z_1) = \{z_1\}$, $z_1, x \subseteq N_A'$. Thus $d_{A'}(z) \geq 2$. This contradicts (\clubsuit).

Case (2), $x \in A' - A$, $N_A(x) = \{z_1\}$, $z_1 \in A' \cap A$, and $N_A(z_1) = \{z_1\}$.

Subcase (2.1). $x' \in A' - A$, $N_A(x') = \{z_1\}$, and $z' \notin A' \cap A$. (See Fig. 3(c)). Since $N_A(z_1) = \{z_1\}$ and $N_A(x') = \{z_1\}$, $z_1, x' \notin E(G)$. Since $z_1 \in A' \cap A$, $[z_1, x'] \subseteq N_A(z)$. Thus, $d_{A'}(z) \geq 2$. This contradicts (\clubsuit).

Subcase (2.2). $x' \in A' - A$, $N_A(x') = \{z_1\}$, $z_1 \in A' \cap A$, and $N_A(z_1) = \{z_1\}$. (See Fig. 3(d)). Then $z_1, x' \notin E(G)$ and $z_1, x' \notin E(G)$. If $z_1 \neq x'$, then $d_{A'}(z) \geq 2$ since $z_1 \notin A' \cap A$. This contradicts the fact that $\langle A' \rangle$ is 1-regular. If $z_1 = x'$, then $d_{A'}(z_1) \geq 2$ since $N_A(x) = \{z_1\}$ and $N_A(x') = \{z_1\}$. This contradicts the fact that $\langle A' \rangle$ is 1-regular.

This completes the proof of Claim 2. \blacksquare

Claim 3. f is injective.

Proof. For two vertices $x, x' \in A' - A$, $x \neq x'$. Suppose $f(x) = z$, $f(x') = z'$. We will show that $z \neq z'$. Assume that $z = z'$. Then $d_{A'}(z) = 1$. Since $z \in A - A'$, this is impossible. This completes the proof of Claim 3. \blacksquare

Claim 4. f is not surjective.

Proof. By (\clubsuit), $N(x_1) \cap A' = \emptyset$, then x_1 has no neighbor in A'. Furthermore, x_1 has no neighbor in $A' - A$. Since $x_1, x_2 \in E(\langle A' \rangle)$, $x_2 \in A \cap B'$. Thus, $x_2 \notin A' \cap A$, $x_2 \notin E(\langle A' \rangle)$ for each $x \in A' - A$. Note that $x_1 \in A - A'$. Thus, $f(x) \neq x_1$ for each $x \in A' - A$. Hence f is not surjective. \blacksquare

From Claim 2 to Claim 4, it follows that $|A' - A| < |A - A'|$, which contradicts the fact that $|A| = |A'| = k - 1$. The contradiction shows that G is $\Delta(G)$-regular. Thus we obtain $G \notin \Psi$.

"\Leftarrow" Assume that G is a k-γ_t-critical graph with n vertices and $G \in \Psi$. We will show that $n = \Delta(G)(\gamma_t(G) - 1) + 1$.

Fig. 2.

A map $f : A' - A \rightarrow A - A'$

Fig. 3.

$x, x' \in A' - A$, $x \neq x'$, and $f(x) = z$, $f(x') = z'$, $z = z'$.
Since \(G \in \Psi \), then \(G \) is \(\Delta(G) \)-regular and \(\Delta(G) \geq 2 \). Moreover, for any \(v \in V(G) \), there exists an \(A \subseteq V(G - v) \) such that \(N(v) \cap A = \emptyset \) and \(\langle A \rangle \) is 1-regular, and let \(B = V(G - v) - A \), then \(d_A(y) = 1 \) for any \(y \in B \), which means that \(d_A(x) = 1 \) for any \(x \in V(G - v) \). So we have that
\[
|A| = e(A, B) = |A|(\Delta(G) - 1),
\]
that is,
\[
n - |A| - 1 = e(A, B) = |A|(\Delta(G) - 1),
\]
(3)
Since \(d_A(x) = 1 \) for any \(x \in V(G - v) \), \(A \) is a total dominating set of \(G - v \). By Observation 3.1, we have that
\[
|A| \geq \gamma_t(G - v) = \gamma_t(G) - 1.
\]
(4)
By (3) and (4), we obtain
\[
n \geq \Delta(G)(\gamma_t(G) - 1) + 1.
\]
(5)
On the other hand, since \(G \) is a \(k\)-\(\gamma_t \)-critical graph, by Observation 3.1, we have that \(\gamma_t(G - v) = k - 1 \) for any \(v \in V(G) \). Let \(A' \) be a \(\gamma_t(G - v) \)-set of \(G - v \) and \(B' = V(G - v) - A' \). So we have that \(|A'| = k - 1 \) and \(|B'| = n - k \). Since \(A' \) is a \(\gamma_t(G - v) \)-set, we have that \(d_{A'}(x) \geq 1 \) for any \(x \in A' \) and \(d_{A'}(y) \geq 1 \) for any \(y \in B' \), which means that each vertex of \(A' \) has at most \(\Delta(G) - 1 \) neighbors in \(B' \) and each vertex of \(B' \) has at least one neighbor in \(A' \). Hence,
\[
n - k \leq e(A', B') \leq (k - 1)(\Delta(G) - 1).
\]
(6)
that is,
\[
n \leq \Delta(G)(\gamma_t(G) - 1) + 1.
\]
(7)
By (5) and (7), we have that \(n = \Delta(G)(\gamma_t(G) - 1) + 1 \).
This completes the proof of Theorem 3.4. ■

4. Open problems

We close with two open problems.

1. Does there exists a graph in \(\Psi \) which is not a Cayley graph?
2. Motivated by Propositions 2.2 and 2.3, we propose the problem: Characterize \(2k \)-regular graphs in \(\Psi \), for each \(k \geq 2 \)?

References