
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 40, 7087 (1990)

Applied Computational Geometry:
Towards Robust Solutions of Basic Problems*

DAVID DOBKIN

Department of Computer Science, Princeton University,
Princeton, New Jersqv 08544

AND

DEBORAH SILVER

Department of Electrical and Computer Engineering,
Rutgers University, Piscataway, New Jersey 08855

Received December 13, 1988; revised March 31, 1989

Geometric computations, like all numerical procedures, are extremely prone to roundoff
error. However, virtually none of the numerical analysis literature directly applies to
geometric calculations. Even for line intersection, the most basic geometric operation, there is
no robust and efficient algorithm. Compounding the difficulties, many geometric algorithms
perform iterations of calculations reusing previously computed data. In this paper, we explore
some of the main issues in geometric computations and the methods that have been proposed
to handle roundoff errors. In particular, we focus on one method and apply it to a general
iterative intersection problem. Our initial results seem promising and will hopefully lead to
robust solutions for more complex problems of applied computational geometry. ‘C 1990

Academic Press, Inc.

1. INTRODUCTION AND MOTIVATION

As algorithmic techniques in computational geometry and graphics algorithms
mature, attention is focussed on the problem of technology transfer. The goal is to
determine which theoretically fast algorithms actually work well in practice and to
find methods of turning the efficient into the practical. Most models of computation
assume that arithmetic is done flawlessly. This is precisely expressed by the
following quotation:

As is the rule in computational geometry problems with discrete output, we assume all the
computations are performed with exact (infinite-precision) arithmetic. Without this assump-
tion it is virtually impossible to prove the correctness of any geometric algorithms. [MS873

* This work was supported in part by a National Science Foundation Grant CCR-8700917 and by
a Hewlett-Packard Faculty Development Grant to the second author.

70
0022~0000/90 $3.00
Copyright Q 1990 by Academic Press, Inc
All rights al reproduction m any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81988848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

APPLIED COMPUTATIONAL GEOMETRY 71

Unfortunately, that assumption is seldom valid in the real world. Roundoff error
plagues all computation intensive procedures and geometric algorithms are no
exceptions. Thus, the central problem of the technology transfer lies in the genera-
tion of fast algorithms which are robust. The definition of robust, according to
Webster’s dictionary, is “full of health and strength; vigorous; hardy”, and that is
exactly what should be expected from any numerical algorithm. Basically, the com-
puted output should be verifiably correct for all cases. “Correct” here is a relative
term depending upon the application. For graphical output, anywhere from 3-12
significant digits of precision may suffice, whereas for other areas, more may be
needed. Having a program compute 20 digits of precision where only 3 are needed
is overly costly and time consuming. Verification of output is equally important.
How many significant digits are in the result, or how much error has accumulated
in the computed values? If a good error estimate can be calculated easily, then a
program can target its operations to a user-specified end precision. Needless to say,
the program should handle all cases and, if it is unable to compute an answer,
should inform the user instead of generating a random answer, dumping core, or
causing infinite looping.

However, this is not a trivial issue. Forrest argues that there are no robust algo-
rithms for even the simple and basic problem of line segment intersection [For87].
The recent flurry of activity on this problem confirms his belief. Knott and Jou
[KJ87] give methods for robustly determining if two line segments intersect and for
computing their intersection, and there are cases where robustness costs as much
as a factor of 100 in speed! Compounding the difficulties, many graphics and
geometric algorithms perform iterations of calculations reusing computed results as
input for subsequent calculations. Not only must each individual computation be
robust, but the whole series of calculations must be robust as well. For example, in
several hidden line (surface) elimination algorithms, polygon intersection is perfor-
med by calculating the intersection of the computed intersection of various polygons
with other polygons. These cascading calculations suffer from roundoff error as well
as from computing with inexact data as the calculations progress (propagation
error). For instance, the calculated point of intersection of two line segments may
be used as a vertex of another line segment. Since this vertex is “rounded” and not
“exact,” the next series of calculations involving this point cannot be “exact,” not
necessarily because of the roundoff error generated from this particular set of
calculations, but because the data is wrong. The exact endpoint may be above,
below, or to the side of the calculated one, so that the calculated line is a shifted
version of the exact one causing any further computations with that line segment
to be off, no matter how exact the arithmetic functions are (of course, if all the
calculations are precise this problem would not exist). As the calculations progress,
the line segments are continually shifted, and the final results may be nowhere near
the true results. Ultimately, these errors become apparent by producing visible
glitches in picture outputs or causing program failures when the computed topology
becomes inconsistent with the underlying geometry [Ram82; SS88; Mi188].

This is similar to the following problem, which we consider in our paper:

72 DOBKIN AND SILVER

Suppose we are given a set of line segments along with a series of computations to be done
on these segments. This computation will involve creating new segments having endpoints
which are intersections of existing line segments. An additional part of the input is a specilica-
tion of the precision to which the original inputs are known and the precision desired for the
final output.

Our model of computation assumes that calculations can be done at any preci-
sion but there is a cost function dependent upon the precision of the computation.
Furthermore, since the computation tree is known, backtracking is permitted in
order to achieve greater precision. The cost of this backup is defined as the addi-
tional cost to redo the computations at the higher precision added to the cost of the
computation already done. Finally, there is no advantage to achieving extra preci-
sion; however, a computation is deemed to be unacceptable if it does not achieve
the desired precision. Basically, we envision three processes: one that does the
actual calculations; a second to record the history of the computations; and a third
to determine the precision and set the appropriate flags when necessary.

We claim that this is a valid model for hidden surface elimination and many
other computations in computer graphics (ray tracing, CAD-CAM). Indeed, our
attention was focussed on this problem because of our frustration with ad hoc
methods being used to achieve desired precision in hidden surface routines we were
writing as part of our graphics efforts. There are two versions of the problem stated
above. In one, the entire computation tree is known in advance and, for the other,
the computation tree is determined as the computing evolves. In what follows, we
focus on the first which is the simpler of the two.

In this article, an initial attempt at approaching roundoff issues in cascading
geometric computation is presented. The organization of this paper is as follows.
The second section presents a brief review of some existing methods dealing with
roundoff error in geometric computations and a description of a sample geometric
problem with one of the methods singled out for its applicability to this problem.
The third, fourth, and fifth sections contain the application, analysis, and conclu-
sion. The results of this work are fourfold. First, we have explored the various
approaches to the issue of robustness in general and have demonstrated a method
of computing precision in an ongoing geometric computation. We have also
analyzed the cost of backtracking and means of avoiding it. Third, we have
proposed an empirical solution for a cascaded line intersection procedure. And last,
we have presented insights into the problem which will hopefully spur additional
research and applications.

2. LITERATURE SURVEY

The most widely applied solution to the problem of roundoff error is the ad hoc
approach: calling the local guru to pull a fix out of his/her magic box. This usually
entails arbitrarily increasing precision, reordering calculations, tweaking specific
numbers, or arbitrarily selecting epsilon values, and in most instances, will only

APPLIED COMPUTATIONAL GEOMETRY 13

solve a set of problems temporarily and does not attack the underlying cause of the
roundoff error. Needless to say, this approach is far from robust and consistent.

Line intersection calculation can be viewed as being either of geometric or of
numeric flavor, and the attempts at coping with the roundoff error problem have
taken one of these two approaches. The geometric flavored solutions strive to main-
tain correct topological information using finite precision. This is accomplished
with special functions and data structures to keep the geometric objects in a consis-
tent state. To overcome floating point error, epsilon procedures are used to handle
the ambiguous cases and to keep the objects “far enough” apart. Milenkovic
[Mi188] proposed two methods for verfiable implementations of geometric algo-
rithms using finite precision. The first is data normalization which alters the objects
by vertex shifting and edge cracking to maintain a distance of at least E (determined
by machine roundoff error) between the geometric structures. The second method
is called the hidden variable method, which constructs configurations of objects that
belong in an infinite precision domain, without actually representing these infinite
precision objects, by modeling approximation to geometric lines with monotonic
curves. Segal and Sequin’s [SSSS] method introduces a minimum feature size and
face thickness to objects and then either merges or pulls apart those objects that lie
within the minimum feature size of each other. Hoffmann, Hopcroft, and Karasick
[Kar89 J add symbolic reasoning to compensate for numerical uncertainties when
performing set operations on polyhedral solids. Also employing a combination
approach, Davenport et al. use a mixture of numerical and algebraic techniques to
attain topological consistency [BDM87]. Related to line intersection, Ramshaw
[Ram821 shows how floating point line segments can appear to “braid” by inter-
secting each other more than once. To correct this, Greene and Yao [GY86] trans-
form geometric objects from the continuous domain to the discrete domain and
perform all the calculations in the discrete domain. Line segments are treated as a
set of raster points (these are the points used by line drawing algorithms) and the
line is the shortest path within this envelope of points. The line-path is controlled
with hooks which serve to direct the line to pass through specified grid points in
order to insure that it will intersect certain lines while not crossing others. Similarly,
Franklin et al. achieve numerical robustness by performing intersections on a
uniform grid [FCK88]. Related to robustness is the problem of handling
degenerate cases, most of which are unaccounted for in theory. Methods have been
proposed to handle these situations without having to specify all the exceptional
cases explicitly [Yap88; LY88; EM88].

The numeric flavored solutions consider line intersection primarily as a set of
numerical calculations, as opposed to operations on geometric objects, and borrow
from classical numerical analysis, i.e., roundoff-error analysis. Pioneered by Wilkin-
son [Wi163], this approach involves forward and backward error analysis and
determination of condition numbers for a particular set of calculations. The condi-
ticn numbers can alert the programmer or user to possible bad sets of data or
unstable algorithms [MW80]. A by-product of the condition numbers are some
common-sense issues, such as reordering calculations to avoid “undesirable”

74 DOBKIN AND SILVER

calculations (adding together very large and small numbers, subtractive cancella-
tion, etc.). Although this type of analysis is basic to a first approach at combatting
roundoff error, it is not helpful in dealing with the buildup of unavoidable roundoff
error. Unfortunately, we know of no numerical analysis literature regarding the
accumulation of roundoff error in cascading processes such as we consider.

Many tackle the difficulty of roundoff error by proposing modified floating point
systems. The most obvious is the use of infinite precision or simulated infinite preci-
sion possibly using integer arithmetic, exact rational arithmetic, or purely symbolic
computations. Unfortunately, these approaches can be slow and unwieldy for
cascading calculations, in addition to raising logical existence problems (see
[Hof89] for more detail). Kulisch and Miranker introduce a dot product function
that performs the dot product of two vectors rounding only at the end instead of
after each individual multiplication and addition [KM81]. Ottmann, Thiemt, and
Ullrich [OTU87] show how to implement “stable” geometric primitives with this
dot product function. A popular approach is interval arithmetic [Moo661 which
treats a rounded real number as an interval between its two bounding representable
real numbers, and calculations are performed on this interval widening the resulting
interval as necessary. Madur and Koparkar [MK84] apply interval arithmetic to
the processing of geometric objects and attempt to narrow the computed interval
of some common geometric procedures. In their work, geometric functions are
defined with interval computations and new algorithms are devised using these
functions for such tasks as curve drawing, surface shading, and intersection detec-
tion. Knott and Jou [KJ87] also use interval arithmetic to determine correctly
whether two line segments intersect and, if that fails, resort to multiple-precision
floating-point arithmetic. Another method is that of Vignes and La Porte [VP74;
VigSS] which takes a stochastic approach to evaluating the number of significant
digits in a computed result. Their method generates a subset of all the possible com-
putable results of a function and uses that subset to determine properties of
the entire set. Furthermore, different floating point systems (implementation in
hardware) vary in their performance with regards to roundoff error, and there has
been work documenting those differences [Kah88; IEE85]. (For a more com-
prehensive survey see [Hof89; Si188].)

Although useful in various situations, the aforementioned methods are of
necessity flawed when applied to cascading intersection calculations. The geometric
solutions are hard to implement and not directly applicable to this problem. The
numerical solutions are equally fraught with difficulties. Condition numbers do not
give an accurate description of the exact accumulation of errors as the iterations
increase, in addition to being difficult to calculate if all the cascading iterations are
taken into consideration. Interval arithmetic gives overly pessimistic results since
the intervals expand rapidly as the computations progress. While the geometric
objects being operated on in cascading intersections generally become smaller, the
intervals become bigger, causing in many instances, the intervals to be larger than
the objects being manipulated (techniques for narrowing the computed intervals
must be used to obtain satisfactory results).

APPLIED COMPUTATIONAL GEOMETRY 75

2.1. The Pentagon Problem

Before attempting to fully analyze a proposed solution, it is necessary to precisely
formulate a particular problem as a testbed for an accurate assessment of a possible
approach. However, in most geometric algorithms the results of a computation are
not known in advance and can only be checked by more numerical computations
(making the testing suspect) or by viewing the results (making the viewer suspect).
In our work, we have used the pentagon problem for experimentation. Although it
is not a very practical problem, it captures the essense of cascaded intersections
while enabling accurate testing of final and intermediate results. Furthermore, the
pentagon problem has a simple structure and so can be easily studied, yet displays
the unstable behavior of related (but more complex) iterative algorithms, especially
those that are geometric in nature.

The pentagon problem involves taking a pentagon stored as a set of live vertices
(ten floating-point numbers) and iterating in and out a certain number of times to
get back to the original pentagon. The in iteration computes the intersection of the
pentagon’s diagonals resulting in a smaller inverted pentagon. The operation can be
repeated on the “new” pentagon to get an even smaller pentagon. The inverse of
this operation, the out iteration, projects alternate sides of the pentagon and finds
the intersection point which is just a vertex of the larger pentagon (see Fig. 1). In
each iteration following the first, the data used are those calculated by the previous
iteration.

An iteration in and then out is an identity function; therefore, after an equal
amount of ins and outs the differences between the computed pentagon and the
original pentagon can be determined. Owing to roundoff error in finite precision
arithmetic, the computed vertices differ from the original vertices after a number of
iterations in and out. Sometimes it is impossible to maintain any precision in the
calculated data.

FIG. 1. An in iteration.

76 DOBKIN AND SILVER

The key to the difliculty in the pentagon problem, as well as some other geometric
algorithms, lies in the fact that the entire set of iterations must be considered one
unit, although the exact series of ins and outs may not be known in advance.
Namely, an accurate assessment of previous-error-generated must be tracked and
worked into the calculations to determine error accumulated at a particular level.
Many of the mentioned methods aim toward the individual iterations and do not
easily accommodate cascading calculations without being overly pessimistic.
However, one method that does enable easy and accurate prediction of error
generated during compounded calculations is the permutation-perturbation method
of Vignes and La Porte [Vig88].’ In what follows, we describe their method in
detail, and discuss its application to the problem of cascading intersections with
emphasis on efficiency, accuracy, and their trade-offs.

2.2. The Permutation-Perturbation Method

Because of perturbation and permutation, the results of a set of mathematical
computations performed on a computer are not unique. Perturbation refers to the
rounding of a computed value up or down when being assigned to a variable.
Therefore, any arithmetic computer operation can have one of two valid answers
(one by lack, the other by excess); if an algorithm has k operations, there are a
possible 2k values. Since computer operations are not associative, rearranging the
arithmetic operations in an algorithm may generate different results; this is known
as permutation.2

Let P,, be the total number of different possible permutations of the operators
in a particular algorithm. When permutation and perturbation are applied in all
possible combinations, the total set, R, of different computable solutions to a
particular function, can be derived. R is of size 2k x P,,.

The number of significant digits of a computed value can be determined by3

where C is the number of significant digits, x,. is the computed value, and x is the
“exact” result. This quantity is generally expressed with the absolute error (x - x,.)
divided by x,. instead of x, which is valid when x,. is a reasonable approximation
to x (see below).

Vignes and La Porte use this formula to determine the precision of computed
value. However, they attempt to estimate the error since the exact error may not
be known at computation time. The formula used is 6/R, where R is the mean of
the population R and 6 the standard deviation. Both 6 and a can be evaluated

’ Also known as CESTAC.
* For example, the four numbers, 0.1025 x 104, -0.9112 x IO’, -0.9773 x 102, -0.9315 x 10’. when

added left to right, using four digit arithmetic, result in the exact sum 0.6755 x 10’. However, adding
from right to left produces 0.7000 x 10’. (This example also illustrates subtractive cancellation [Van’lS].)

s This is the formula used for computing the relative error.

APPLIED COMPUTATIONAL GEOMETRY 77

probabilistically by drawing samples from R. (For more complete detail see [Vig78;
FV85; VigSS].)

This analysis rests upon two hypotheses: (1) that R = Y (r is the exact result) to
within an error smaller than or at worst comparable with 6 (see [Mai79]) and (2)
that R is better approximated by a continuous distribution than by a small discrete
population. The first implication can be false on those rare occasions when the
computation in question comes as close to a singularity as it can without actual
collision. The second may cause problems when only a few among the many
rounding errors contribute the bulk of the error in the final result (under-
sampling R). However, for the majority of cases, this method is likely to give a fair
indication of a computation’s typical accuracy [Kah88].

3. APPLICATION

The application of the permutation-perturbation method to the pentagon problem
was straightforward. On each iteration, all intersection points were calculated three
to four times using different permutations/perturbations of the intersection code
(care must be taken when performing permutations), and the number of significant
digits of the average was computed with the formula of La Porte and Vignes (see
above). This was done for all five pentagon vertices (10 values-five x and five y)
and the average of the number of significant digits of the vertices was plotted
against the iteration number; the resulting curve represented the decline (or
increase) of significant digits in the vertices as the iterations progressed (see Fig. 2).

(Note: A typical run of our hidden surface elimination program with 20,000
triangles involves over 200,000 iterations similar to those in the pentagon problem.
At each iteration as many as four new triangles can be created. Some of the
triangles go through many more than 10 such iterations, so the in-10 out-10 scheme
is possibly overly conservative.) Different combinations of iterations were per-
formed: in ten then out ten; out-10 in-lo; in-5 out-5 in-5 out-5; out-5 in-5; etc....4

Normally, the best computed result of an iteration was the average of the
calculated results of the different permutations of the intersection code [Mai79].
However, this average value was not used as input data for all the intersection
calculations of the next iteration. Namely, the results of the previous iterations were
stored and used in the next iteration (each different permutation used one of the
results). This is equivalent to performing all the iterations as one computation, but
stopping it along the way for precision determination, thereby enabling the per-
mutation-perturbation algorithm to artificially keep track of the calculations done
thus far and use that “knowledge” in the significant digit calculation at any level.

After all the iterations were completed, the error incurred during the computa-

4 It is not always possible to extend outwards starting with the initial pentagon, e.g., if two sides are
parallel to each other. However, sometimes it may be possible but the result is not convex--e.g., if two
semi-adjacent edges from angles of less than 90” with the middle adjacent edge.

78 DOBKIN AND SILVER

iteration plots and their
corresponding pentagons

i I , , ~ 3 6i , 3.9

' ' ' '10' ' ' "
0 2 4 6 8 12 14 16 18 20

iteration count
predicted precision/ actual precision

D pentagon 1

0 2 4 6 8 12 14 16 18 20

iteration count

pentagon 2 D
FIG. 2. In-10 out-10 series.

tions was calculated (since the original pentagon was given). The exact error was
then compared with the computed predicted error to analyze the performance of
the permutation-perturbation method. Fortunately, the permutation-perturbation
method proved to be an accurate predictor of roundoff error buildup in the
calculated results and was within one digit of the actual error (see Fig. 2).

4. ANALYSIS OF RESULTS (FOR THE I~-10 OUT-10 SERIES)

It is clear from the plots of significant digits vs iteration number that the pen-
tagons displayed similarities; thus certain conclusions can be drawn. All the curves
were downward sloping; i.e., the number of significant digits in the calculations
decreased as more calculations were performed on the data. Seen from a different
perspective, the error increased as more computations were executed (as expected).
The initial decline of significant digits (or increase in error) began by slowly curving
downwards and then, after a number of iterations (different for each pentagon),
displayed loglinear (the significant digit is a log value) behavior (see the results of
[MM73]). In general, the out iterations caused a steeper decline in the number of
significant digits than the in iterations, mainly because the pentagon grows during

APPLIED COMPUTATIONAL GEOMETRY 79

the out iteration causing any error in the input data to be magnified. Interestingly,
when in iterations were performed after out iterations (for example, if the series was
in-5 out-5 in-5 out-5) the plots exhibited a slight increase in the number of signifi-
cant digits.

Furthermore, the iterations are rotation invariant, namely, a pentagon and its
rotated version resulted in similar plots. For the same reason, pentagons that were
close to regular (equal angles) performed better than degenerate pentagons imply-
ing that the shape of the pentagon was responsible for the curve as opposed to the
actual coordinates of the vertices.5 Other series combinations (in-5 out-5, etc.)
performed in the same manner as the in-10 out-10 series; the curves would decline
during the out series and either stabilize or slightly improve initially during the in
series (following out iterations) if the error generated previously was not over-
whelming.

Based upon the experimentation, the permutation-perturbation method proved
to be helpful in predicting the amount of error accumulated during cascading line
intersection calculations. Although it has an associated cost of a factor of three or
four times that of doing nothing, it has many signzficant advantages to it over the
other methods. First, it is mathematically easy to understand and implement (the
code for this method is less than 50 lines of (C) which is no small achievement
when dealing with numerical algorithms. It requires no special mathematical func-
tions for the basic arithmetic operations and no special hardware (which may or
may not exist). Unlike the geometric flavored methods, no normalization or object
rearranging is required. It can be implemented with any algorithm without
modification to the method or recalculation of the mathematics involved (unlike
condition numbers), and the method’s calculations do not get messier as the
program’s computations progress. There are no special cases (such as division by
zero in interval arithmetic) since the permutation-perturbation method is not
interested in the individual computations. It is also an “on-line” algorithm and can
be used during the programs normal run, not only as an error estimator but also
to set the “fuzz” values in a program. Finally, this method provides an accurate
estimate of the errors accumulated during the computations without being overly
pessimistic or optimistic.

4.1. Multiple Precision

It is almost impossible to avoid increasing precision in order to boost accuracy.
Assuming the cost of increased precision is somehow related to the amount of
increase, one would like to avoid overkill, i.e., using much more precision than is
actually necessary. If something is known about the accuracy of the data and the
degradation of precision likely to occur with the computations to be performed,
then hopefully that knowledge can help determine the precision to use. The section
that follows discusses the issues involved in attempting to increase precision in con-

’ Intersecting perpendicular lines gives a more accurate result than intersecting those that are close to
parallel [For85].

571/40/l-6

80 DOBKIN AND SILVER

junction with an accuracy measure. The increase in precision can be accomplished
with any multiple precision package. Unfortunately, most are implemented in
software and are therefore slow and cumbersome to use.6

4.2. Combining the Two

The first problem that arises is merging the accuracy measure and multiple preci-
sion package. The tools must be put together in an efficient manner to produce a
viable and effective combination. The most obvious (and costly) route to a
workable mix is the following:

1. estimate an initial precision;
2. at each step of the computation, determine the number of significant digits

remaining;
3. if the number in step 2 becomes too low, increase the initial precision

estimate and start again.

This algorithm works but raises more questions than it answers, such as, What
should the initial precision be? What is “too low”? And, how much precision is
needed for the increase? etc. There is also potential for gross inefficiency. If the
“new” precision in step 3 is inadequate, the whole algorithm must be repeated (over
and over) until the correct precision is attained. Many of these problems are
dependent upon the particular set of calculations and the computing environment
being used for the implementation. Even for simple iterative procedures, these
questions remain.

Before proceeding, it is essential to further define two problem areas, namely,
processes based on reusing computed data (i.e., cascading calculations) and cost
functions. The simplest cascading process has three basic properties: the total
number of iterations is known in advance; all the iterations accumulate error in a
similar manner; and the sequence of calculations already performed is available at
little or no cost. Thus, the time/space trade-off for recording the computation
history to ease rollbacks can be ignored. In what follows, we assume that a rollback
to a previous computation is always free. Note that the pentagon problem has these
three qualities and is therefore an ideal model for initial experimentation.

The next problem concerns the multiple precision package. We would like to
have a polynomial functionf(p) such that computations of precision p requiref(p)
operations. In real environments, this is not necessarily valid. Computer hardware
supports certain precisions (typically single and double, occasionally quad) for
which computations are fast, while other calculations are done via software and are
much slower. In this case f(p) grows quadratically for small p, and decreases
towards O(p log p) as p increases (not including the extra time needed for com-
munication between software processes). To simplify our development, f(p) is
assumed to be either quadratic or linear.

6 In [KJ87] code for a multiple precision program is given. See also [Sch].

APPLIED COMPUTATIONALGEOMETRY 81

With these issues clarified, we are now able to proceed with the implementation.
Here again, numerous problems arise, which we state along with some of our
empirical observations:

4.2.1. PROBLEM 1. How can the precision needed for future calculations be
predicted? Some type of formula must be used to determine when, where, and how
to increase precision. The formula must account for the current precision, future
computations, and future precision. If the rate of decline is stable and can be
calculated during the computations, or if it is known in advance, then the number
of significant digits of the final computed result can be estimated using the formula

final precision = a - i x m,

where a is the number of significant digits currently (in the execution), i is the
number of iterations left to be performed, and m is the rate of decline per iteration.

4.2.2. PROBLEM 2. Assuming the diagnosis of Problem 1 is accurate, it is
necessary to provide a remedy or cure for the cases where insufficient precision for
future calculations is predicted. There are two possibilities: backtracking and
performing previous calculations with higher precision; or increasing the precision
of calculations done from that point henceforth. The problem with both of these
solutions are apparent. Do they work? If so, which one is preferable? And, how
much precision is needed for the increase ?

Based upon some initial experimentation with the pentagon problem, increasing
precision for future calculations without backtracking was ineffective in most
instances in stabilizing the significant digit decline (although it did slow down the
rate of decline). Therefore, rolling back iterations was required. But major questions
still remain unanswered, such as, how far to backtrack, and how much additional
precision is necessary for redoing the calculations. Making the wrong decision has
a serious effect on the performance of the system causing constant zigzaging or
thrashing, i.e., repeated backtracking with increased precision until the correct
amount is finally attained. An example of this is illustrated in Fig. 3. The desired
end precision for the execution (in-10 out-lo) is six significant digits. Every time the
program predicted that the current precision was not high enough to guarantee six
digits after the complete 20 iterations, the precision was increased by two digits and
backtracking was performed. As is evident from the graph, this is not the most
efficient way to achieve the desired precision.

4.2.3. PROBLEM 3. Ultimately, efficiency has to be a central component of the
solution to this problem. The algorithm proposed for Problem 2 did not take
efficiency into account. Therefore, it was sufficient to add precision and backtrack
as often as was necessary. Ideally, backtracking costs should be taken into account.
To do so, a formula is needed which balances the cost of additional iterations at
higher precision vs the cost of overestimating the necessary precision. In our initial

82 DOBKIN AND SILVER

I precision changea lieted above bulletr

20

18

16

14

rig 12
dig

I
I I I ’ 10 ’ I I I

~- 0 2 4 6 8 12 14 16 18 20

FIG. 3. Thrashing example.

experiments, we observed no difference in comparative computational costs
between cost functions which were linear and quadratic. Both suggested the same
basic conclusion, namely, that backtracking should be avoided if possible, and
thrashing should always be avoided.

Based upon the cost function, other questions arise. For example, to avoid
zigzagging, it may be more beneficial to run the program in a “diagnostic” mode
first and then run it again with the precision deemed necessary by the first run. This
decision is heavily dependent on the cost function used. In particular, using a linear
cost function for this two phase approach does not make sense, whereas for a
squared cost function it becomes a more reasonable solution (if the precision to use
for the second run can be determined). However, whether thrashing will occur with

APPLIED COMPUTATIONAL GEOMETRY 83

desired end precision (for all graphs) = 5

22 --

20 9

18 -

16 -

14 -

sig 12 -
digital6 _

8-

6 - linear cost = 8000

4-

2-
cpu-lime = 12s

o- . . % . 1
’ 10 ’ ’ ’ ’

0 2 4 6 8 12 14 16 18 20

diagnostic mode
no precision increase was performed

0 2 4 6 8 12 14 16 18 20

starting precision = 15
add-on precision = 10

22
20
18
16
14
12
10

0 2 4 6 8 12 14 16 18 20

starting precision = 10
add-on precision = 2

18

16 pentagon 2

4

1
cpu.time = 17%

2

0 1 I
’ ’ ’ 10 ’ ’ ’ ’

0 2 4 6 8 12 14 16 18 20

starting precision = 10
add-on precision = 7

with a lower bound threshold = 4

rollback occuta if a value has fewer
significant digits than the threshold,

even though the average is above

FIG. 4. Cost function examples

84 DOBKIN AND SILVER

a particular set of input parameters (number of digits for the increase, the starting
precision, etc.) cannot be known in advance (see Fig. 4).

Since the pentagon problem displays a linear degradation curve for the in-10
out-10 series, once the initial decline begins, the end precision can be calculated
easily. Furthermore, if the precision calculated is deemed insufficient, a correct
starting precision can be calculated and the program restarted.

There are a number of advantages to executing in this manner. Because the
decline begins relatively soon after the first couple iterations, only those need be
repeated, thereby removing the additional expense of running the predictor method
for the whole set of equations. In general, if the decline of precision can be caught
early the cost of fixing it will probably be less. Furthermore, by restarting the entire
sequence of calculations, a log or history file is not required to keep track of which
calculations were already performed (or need repeating).

4.2.4. PROBLEM 4. It is important to note that the method described here
accomplishes two things. First it produces the “best” answer, and second, it
estimates the accuracy of that answer. There may be methods which perform the
first function more efficiently (see [IEE85]), however, they do not perform the
second function as well.

Furthermore, the Vignes’ method is stochastic and is therefore prone to potential
pitfalls which are inherent in any such approach. There is a trade-off in numerical
analytic techniques between reliability and accuracy. While condition numbers and
interval arithmetic are reliable, they are worst case approximations and in many
instances cannot be easily applied. This technique is accurate, although there may
be unusual cases that slip through. However, it is very likely to give a fair indica-
tion of a computation’s typical accuracy under normal circumstances [Kah88]. A
further advantage is that it is less cumbersome to use than the other approaches.’
The possibility to do better with some other method is as yet an unexplored option.

In addition, there is the question of numerical accuracy vs topological con-
sistency. Maintaining numerical accuracy will certainly help to preserve topological
consistency, but it does not necessarily ensure it and the exact relationship between
the two is unclear. There have been a number of proposals which utilize numerical
methods and symbolic or algebraic techniques to guarantee topological correctness
in geometric design systems (see Section 2). As a numerical procedure, the permuta-
tion-perturbation method could be advantageous in such a combination mode.

4.2.5. PROBLEM 5. Lastly, there is the issue of generalizing our results for
problems which are more complex than the pentagon problem. Unless we know
otherwise, we can only assume that each iteration does computations with the same
tendency towards roundoff errors. If the exact cascading process is unknown, we
may want to run preliminary tests to gain some insight into the expected number
of iterations that will be applied to individual data during the cascading process.

' Using IEEE Std. 754 may further reduce the computational cost [Gro88].

APPLIED COMPUTATIONALGEOMETRY 85

Otherwise, every time the program is executed with a different set of data, an initial
run at low precision can be performed to estimate this amount (in diagnostic
mode).

For the pentagon problem the cascading sequence determined the behavior and
characteristic of the corresponding precision plot. Namely, the in-10 out-10 series
displayed linear decline and so the correct precision was easy to calculate (see
above). For the in-out-in-out... series the graph would slightly improve during an
in iteration following an out iteration. Therefore, a formula for predicting the final
precision would have to be adjusted for this increase. However, since the charac-
teristics of the general behavior of the pentagons is known for all these cases (most
of the iteration sequences), it is easy to account for the cases in a program which
performs the pentagon problem. Any problem can be studied in this manner (the
permutation-perturbation method accommodates this easily) and the different cases
noted.

The final issue is the time/space trade-off of storing the cascade if the intersection
pattern is not known. At one extreme, we could store nothing and restart the
process whenever precision gets too low. At the other extreme, the entire sequence
of calculations can be recorded simplifying backtracking, as in the pentagon problem
(although for the pentagon problem each iteration was essentially the same as the
previous one). Further study is necessary to fully resolve these questions.

We have begun to test this method with a hidden surface elimination routine
(based on polygon intersections) and have found that the precision degrades slower
than for the pentagon problem. The reason for this is that generally when a “new”
line is formed only one of the vertices is “newly” computed, while the other is from
the original line.

One of the main difIiculties in implementing many numerical processes with
floating point arithmetic is that various epsilon or fizz values must be set to
compensate for inexact computations. The epsilon values appear throughout a
program to guide decision making functions. Unfortunately, most of these epsilon
values are set arbitrarily at the start of program execution and do not account for
changes in the precision of the data that results from performing repeated calcula-
tions (e.g., cascaded calculations). If an accurate estimate of the data precision is
available, the epsilon values can be set based on that precision and can be
“upgraded30 reflect the change in the accuracy of the data.

Furthermore, this method is very useful as a debugging tool to track and identify
numerical problems which cause program failures. Generally, one computation
does not cause problems, but a series of calculations slowly lead to the buildup of
catastrophic error. This buildup can be tracked enabling more detailed analyzation
of the algorithm used.

5. CONCLUSION

As is the nature of experimental work in computer science, as opposed to
research done in more theoretical areas, different results are observed and, because

86 DOBKIN AND SILVER

of that, various solution are proposed. Our aim here has been to explore some of
these differences on a basic problem of significant practical import and provide the
groundwork for additional research in this area.

The initial results are promising, showing that more work needs to be done to
precisely formulate the exact requirements of a system like this. Using an error
estimator coupled with the right “guesswork” as to when to increase precision and
by how much, leads to a robust solution for cascading line intersection, as well as
for other more complex problems of computational geometry. The problem of com-
pletely removing the “guesswork” remains open, Unfortunately, the cost is high
regardless of how it is measured, but this is only to be expected. As Demmel
[Dem87] observes, “In short, there is no free lunch when trying to write reliable
code.” However, our solution seems to be less expensive than many others.

ACKNOWLEDGMENT

We would like to thank Professor William Kahan for his helpful comments and suggestions.

REFERENCES

[BDM87] A. BOWYER, J. DAVENPORT, P. MILNE, J. PADGET, AND A. WALLIS, A geometric algebra

[Dem87]

[EM881

[FCK88]

[For851

[For871

[FV85]

[Gro88]
[GY86]

[Ho1891

[IEE85]
[Kah88]
[Kar89]

system, manuscript, December 1987.
J. DEMMEL, On error analysis in arithmetic with varying relative precision, in “Eighth
Symposium on Computer Arithmetic, Como, Italy, May 1987,” pp. 148-152.
H. EDELSBRUNNER AND E. P. MUCKE, Simulation of simplicity: A technique to cope with
degenerate cases in geometric algorithms, in “Proceedings, ACM Symposium on Computa-
tional Geometry, June 1988.”
W. R. FRANKLIN, N. CHANDRASEKHAR, M. KANKANHALLI, M. SESHAN, AND V. AKMAN,
Efficiency of uniform grids for intersection detection on serial and parallel machines, in
“New Trends in Computer Graphics” (N. Magnenat-Thalmann and D. Thanlmann, Eds.),
Springer-Verlag, Berlin/New York, 1988; Proceedings of CG International 1988.
A. R. FORREST, Computational geometry in practice, in “Fundamental Algorithms for
Computer Graphics” (R. A. Earnshaw, Ed.), Springer-Verlag, Berlin/New York, 1985.
A. R. FORREST, Geometric computing environments: Computational geometry meets
software engineering, in “Proceedings, NATO Advanced Study Institute on TFCG and
CAD, II Gioceo, Italy, July 1987.”
J. P. FAYE AND J. VIGNES, Stochastic approach of the permutation-perturbation method for
round-off error analysis, Appl. Numer. Math. 1 (1985), 349-362.
E. GROSSE, private communication, December 1988.
D. GREENE AND F. YAO, Finite resolution computational geometry, in “27th Annual FOCS
Conference Proceedings, October 1986,” pp. 143-152.
C. HOFFMANN, The problems of accuracy and robustness in geometric computation,
Computer, March (1989).
IEEE standard for binary floating-point arithmetic, 1985, ANSI/IEEE Std. 754-1985.
W. KAHAN, private communication, October 1988.
M. KARASICK, “On the Representation and Manipulation of Rigid Solids,” Ph.D. thesis,
Dept. of Computer Science, McGill University, Montreal, 1989.

APPLIED COMPUTATIONAL GEOMETRY 87

[KJ87]

[KM811

[LYSS]

[Mai79]

[Mil88]

[MK84]

[MM731

[Moo661
[MS871

[MWSO]

[OTU87]

[Ram821

Cschl

[Sil88]

[SSSS]

[Van781

[Vig78]

[VigSS]

[VP741

[Wil63]

G. KNOTT AND E. Jou, “A Program to Determine Whether Two Line Segments Intersect,”
CAR-TR-306, CS-TR-1884, DCR-86-05557, Computer Science Dept. University of
Maryland at College Park, August 1987.
U. W. KULISCH AND W. L. MIRANKER, “Computer Arithmetic in Theory and Practice,”
Academic Press, New York, 1981.
L. ERIC~ON AND C. YAP, The design of linetool, a geometric editor, in “Proceedings, ACM
Symposium on Computational Geometry, June 1988.”
M. MAILLE, “Methodes d’evaluation de la precision d’une mesure ou d’un calcul numerique,”
Rapport L.I.T.P., Universitk P. et M. Curie, Paris, France, 1979.
V. MILENKOVIC, “Veritiable Implementations of Geometric Algorithms Using Finite
Precision Arithmetic,” Ph.D. thesis, Carnegie-Mellon University, Pittsburgh, 1988.
S. MADUR AND P. KOPARKAR, Interval methods for processing geometric objects, IEEE
Comput. Graphics Appl., February (1984), pp. 7-17.
J. MARASA AND D. MATULA, A simulative study of correlated error propagation in various
finite-precision arithmetics, IEEE Trans. Comput. C-22, No. 6 (1973), 587-597.
R. E. MOORE, “Interval Analysis,” Prentice-Hall, Engelwood Cliffs, NJ, 1966.
H. MAIRSON AND J. STOLFI, Reporting and counting intersections between two sets of line
segments, in “Proceedings, NATO AS1 on TFCG and CAD, July 1987.”
W. MILER AND C. WRATHALL, “Software for Roundoff Analysis of Matrix Algorithms,”
Academic Press, New York/London, 1980.
T. OTTMANN, G. THIEMT, AND C. ULLRICH, Numerical stability of geometric algorithms, in
“Proceedings, ACM Symposium on Computational Geometry, June 1987,” pp. 119-125.
L. RAMSHAW, The braiding of floating point lines, Xeroc PARC, CSL Notebook Entry,
October 1982.
J. SCHWARZ, Guide to the C++ real library (infinite precision floating point), AT &T Bell
Laboratories, unpublished manuscript.
D. SILVER, “Geometry, Graphics, and Numerical Analysis,” Ph.D. thesis, Princeton Univer-
sity, October 1988.
M. SEGAL AND C. SEQUIN, Partitioning polyhedral objects into nonintersecting parts, IEEE
Comput. Graphics Appl. January (1988).
J. VANDERGRA~, “Introduction to Numerical Computations,” Academic Press, New York,
1978.
J. VIGNES, New methods for evaluating the validity of the results of mathematical computa-
tions, Math. Comput. Simulation 20 (1978), 227-249.
J. VIGNES, Review on stochastic approach to round-off error analysis and its applications,
Math. Comput. Simulation 30 (1988), 488491.
J. VIGNES AND M. LA PORTE, Error analysis in computing, in “Proceedings, IFIP Congress,
Stockholm, 1974,” pp. 610-614.
J. WILKINSON, “Rounding Errors in Algebraic Processes,” Prentice-Hall, Englewood Cliffs,
NJ, 1963.

[Yap881 C. YAP, A geometric consistency theorem for a symbolic perturbation scheme, in
“Proceedings, ACM Symposium on Computational Geometry, June 1988.”

