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Geometric computations, like all numerical procedures, are extremely prone to roundoff 
error. However, virtually none of the numerical analysis literature directly applies to 
geometric calculations. Even for line intersection, the most basic geometric operation, there is 
no robust and efficient algorithm. Compounding the difficulties, many geometric algorithms 
perform iterations of calculations reusing previously computed data. In this paper, we explore 
some of the main issues in geometric computations and the methods that have been proposed 
to handle roundoff errors. In particular, we focus on one method and apply it to a general 
iterative intersection problem. Our initial results seem promising and will hopefully lead to 
robust solutions for more complex problems of applied computational geometry. ‘C 1990 

Academic Press, Inc. 

1. INTRODUCTION AND MOTIVATION 

As algorithmic techniques in computational geometry and graphics algorithms 
mature, attention is focussed on the problem of technology transfer. The goal is to 
determine which theoretically fast algorithms actually work well in practice and to 
find methods of turning the efficient into the practical. Most models of computation 
assume that arithmetic is done flawlessly. This is precisely expressed by the 
following quotation: 

As is the rule in computational geometry problems with discrete output, we assume all the 
computations are performed with exact (infinite-precision) arithmetic. Without this assump- 
tion it is virtually impossible to prove the correctness of any geometric algorithms. [MS873 
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Unfortunately, that assumption is seldom valid in the real world. Roundoff error 
plagues all computation intensive procedures and geometric algorithms are no 
exceptions. Thus, the central problem of the technology transfer lies in the genera- 
tion of fast algorithms which are robust. The definition of robust, according to 
Webster’s dictionary, is “full of health and strength; vigorous; hardy”, and that is 
exactly what should be expected from any numerical algorithm. Basically, the com- 
puted output should be verifiably correct for all cases. “Correct” here is a relative 
term depending upon the application. For graphical output, anywhere from 3-12 
significant digits of precision may suffice, whereas for other areas, more may be 
needed. Having a program compute 20 digits of precision where only 3 are needed 
is overly costly and time consuming. Verification of output is equally important. 
How many significant digits are in the result, or how much error has accumulated 
in the computed values? If a good error estimate can be calculated easily, then a 
program can target its operations to a user-specified end precision. Needless to say, 
the program should handle all cases and, if it is unable to compute an answer, 
should inform the user instead of generating a random answer, dumping core, or 
causing infinite looping. 

However, this is not a trivial issue. Forrest argues that there are no robust algo- 
rithms for even the simple and basic problem of line segment intersection [For87]. 
The recent flurry of activity on this problem confirms his belief. Knott and Jou 
[KJ87] give methods for robustly determining if two line segments intersect and for 
computing their intersection, and there are cases where robustness costs as much 
as a factor of 100 in speed! Compounding the difficulties, many graphics and 
geometric algorithms perform iterations of calculations reusing computed results as 
input for subsequent calculations. Not only must each individual computation be 
robust, but the whole series of calculations must be robust as well. For example, in 
several hidden line (surface) elimination algorithms, polygon intersection is perfor- 
med by calculating the intersection of the computed intersection of various polygons 
with other polygons. These cascading calculations suffer from roundoff error as well 
as from computing with inexact data as the calculations progress (propagation 
error). For instance, the calculated point of intersection of two line segments may 
be used as a vertex of another line segment. Since this vertex is “rounded” and not 
“exact,” the next series of calculations involving this point cannot be “exact,” not 
necessarily because of the roundoff error generated from this particular set of 
calculations, but because the data is wrong. The exact endpoint may be above, 
below, or to the side of the calculated one, so that the calculated line is a shifted 
version of the exact one causing any further computations with that line segment 
to be off, no matter how exact the arithmetic functions are (of course, if all the 
calculations are precise this problem would not exist). As the calculations progress, 
the line segments are continually shifted, and the final results may be nowhere near 
the true results. Ultimately, these errors become apparent by producing visible 
glitches in picture outputs or causing program failures when the computed topology 
becomes inconsistent with the underlying geometry [Ram82; SS88; Mi188]. 

This is similar to the following problem, which we consider in our paper: 
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Suppose we are given a set of line segments along with a series of computations to be done 
on these segments. This computation will involve creating new segments having endpoints 
which are intersections of existing line segments. An additional part of the input is a specilica- 
tion of the precision to which the original inputs are known and the precision desired for the 
final output. 

Our model of computation assumes that calculations can be done at any preci- 
sion but there is a cost function dependent upon the precision of the computation. 
Furthermore, since the computation tree is known, backtracking is permitted in 
order to achieve greater precision. The cost of this backup is defined as the addi- 
tional cost to redo the computations at the higher precision added to the cost of the 
computation already done. Finally, there is no advantage to achieving extra preci- 
sion; however, a computation is deemed to be unacceptable if it does not achieve 
the desired precision. Basically, we envision three processes: one that does the 
actual calculations; a second to record the history of the computations; and a third 
to determine the precision and set the appropriate flags when necessary. 

We claim that this is a valid model for hidden surface elimination and many 
other computations in computer graphics (ray tracing, CAD-CAM). Indeed, our 
attention was focussed on this problem because of our frustration with ad hoc 
methods being used to achieve desired precision in hidden surface routines we were 
writing as part of our graphics efforts. There are two versions of the problem stated 
above. In one, the entire computation tree is known in advance and, for the other, 
the computation tree is determined as the computing evolves. In what follows, we 
focus on the first which is the simpler of the two. 

In this article, an initial attempt at approaching roundoff issues in cascading 
geometric computation is presented. The organization of this paper is as follows. 
The second section presents a brief review of some existing methods dealing with 
roundoff error in geometric computations and a description of a sample geometric 
problem with one of the methods singled out for its applicability to this problem. 
The third, fourth, and fifth sections contain the application, analysis, and conclu- 
sion. The results of this work are fourfold. First, we have explored the various 
approaches to the issue of robustness in general and have demonstrated a method 
of computing precision in an ongoing geometric computation. We have also 
analyzed the cost of backtracking and means of avoiding it. Third, we have 
proposed an empirical solution for a cascaded line intersection procedure. And last, 
we have presented insights into the problem which will hopefully spur additional 
research and applications. 

2. LITERATURE SURVEY 

The most widely applied solution to the problem of roundoff error is the ad hoc 
approach: calling the local guru to pull a fix out of his/her magic box. This usually 
entails arbitrarily increasing precision, reordering calculations, tweaking specific 
numbers, or arbitrarily selecting epsilon values, and in most instances, will only 
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solve a set of problems temporarily and does not attack the underlying cause of the 
roundoff error. Needless to say, this approach is far from robust and consistent. 

Line intersection calculation can be viewed as being either of geometric or of 
numeric flavor, and the attempts at coping with the roundoff error problem have 
taken one of these two approaches. The geometric flavored solutions strive to main- 
tain correct topological information using finite precision. This is accomplished 
with special functions and data structures to keep the geometric objects in a consis- 
tent state. To overcome floating point error, epsilon procedures are used to handle 
the ambiguous cases and to keep the objects “far enough” apart. Milenkovic 
[Mi188] proposed two methods for verfiable implementations of geometric algo- 
rithms using finite precision. The first is data normalization which alters the objects 
by vertex shifting and edge cracking to maintain a distance of at least E (determined 
by machine roundoff error) between the geometric structures. The second method 
is called the hidden variable method, which constructs configurations of objects that 
belong in an infinite precision domain, without actually representing these infinite 
precision objects, by modeling approximation to geometric lines with monotonic 
curves. Segal and Sequin’s [SSSS] method introduces a minimum feature size and 
face thickness to objects and then either merges or pulls apart those objects that lie 
within the minimum feature size of each other. Hoffmann, Hopcroft, and Karasick 
[Kar89 J add symbolic reasoning to compensate for numerical uncertainties when 
performing set operations on polyhedral solids. Also employing a combination 
approach, Davenport et al. use a mixture of numerical and algebraic techniques to 
attain topological consistency [BDM87]. Related to line intersection, Ramshaw 
[Ram821 shows how floating point line segments can appear to “braid” by inter- 
secting each other more than once. To correct this, Greene and Yao [GY86] trans- 
form geometric objects from the continuous domain to the discrete domain and 
perform all the calculations in the discrete domain. Line segments are treated as a 
set of raster points (these are the points used by line drawing algorithms) and the 
line is the shortest path within this envelope of points. The line-path is controlled 
with hooks which serve to direct the line to pass through specified grid points in 
order to insure that it will intersect certain lines while not crossing others. Similarly, 
Franklin et al. achieve numerical robustness by performing intersections on a 
uniform grid [FCK88]. Related to robustness is the problem of handling 
degenerate cases, most of which are unaccounted for in theory. Methods have been 
proposed to handle these situations without having to specify all the exceptional 
cases explicitly [Yap88; LY88; EM88]. 

The numeric flavored solutions consider line intersection primarily as a set of 
numerical calculations, as opposed to operations on geometric objects, and borrow 
from classical numerical analysis, i.e., roundoff-error analysis. Pioneered by Wilkin- 
son [Wi163], this approach involves forward and backward error analysis and 
determination of condition numbers for a particular set of calculations. The condi- 
ticn numbers can alert the programmer or user to possible bad sets of data or 
unstable algorithms [MW80]. A by-product of the condition numbers are some 
common-sense issues, such as reordering calculations to avoid “undesirable” 
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calculations (adding together very large and small numbers, subtractive cancella- 
tion, etc.). Although this type of analysis is basic to a first approach at combatting 
roundoff error, it is not helpful in dealing with the buildup of unavoidable roundoff 
error. Unfortunately, we know of no numerical analysis literature regarding the 
accumulation of roundoff error in cascading processes such as we consider. 

Many tackle the difficulty of roundoff error by proposing modified floating point 
systems. The most obvious is the use of infinite precision or simulated infinite preci- 
sion possibly using integer arithmetic, exact rational arithmetic, or purely symbolic 
computations. Unfortunately, these approaches can be slow and unwieldy for 
cascading calculations, in addition to raising logical existence problems (see 
[Hof89] for more detail). Kulisch and Miranker introduce a dot product function 
that performs the dot product of two vectors rounding only at the end instead of 
after each individual multiplication and addition [KM81]. Ottmann, Thiemt, and 
Ullrich [OTU87] show how to implement “stable” geometric primitives with this 
dot product function. A popular approach is interval arithmetic [Moo661 which 
treats a rounded real number as an interval between its two bounding representable 
real numbers, and calculations are performed on this interval widening the resulting 
interval as necessary. Madur and Koparkar [MK84] apply interval arithmetic to 
the processing of geometric objects and attempt to narrow the computed interval 
of some common geometric procedures. In their work, geometric functions are 
defined with interval computations and new algorithms are devised using these 
functions for such tasks as curve drawing, surface shading, and intersection detec- 
tion. Knott and Jou [KJ87] also use interval arithmetic to determine correctly 
whether two line segments intersect and, if that fails, resort to multiple-precision 
floating-point arithmetic. Another method is that of Vignes and La Porte [VP74; 
VigSS] which takes a stochastic approach to evaluating the number of significant 
digits in a computed result. Their method generates a subset of all the possible com- 
putable results of a function and uses that subset to determine properties of 
the entire set. Furthermore, different floating point systems (implementation in 
hardware) vary in their performance with regards to roundoff error, and there has 
been work documenting those differences [Kah88; IEE85]. (For a more com- 
prehensive survey see [Hof89; Si188].) 

Although useful in various situations, the aforementioned methods are of 
necessity flawed when applied to cascading intersection calculations. The geometric 
solutions are hard to implement and not directly applicable to this problem. The 
numerical solutions are equally fraught with difficulties. Condition numbers do not 
give an accurate description of the exact accumulation of errors as the iterations 
increase, in addition to being difficult to calculate if all the cascading iterations are 
taken into consideration. Interval arithmetic gives overly pessimistic results since 
the intervals expand rapidly as the computations progress. While the geometric 
objects being operated on in cascading intersections generally become smaller, the 
intervals become bigger, causing in many instances, the intervals to be larger than 
the objects being manipulated (techniques for narrowing the computed intervals 
must be used to obtain satisfactory results). 
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2.1. The Pentagon Problem 

Before attempting to fully analyze a proposed solution, it is necessary to precisely 
formulate a particular problem as a testbed for an accurate assessment of a possible 
approach. However, in most geometric algorithms the results of a computation are 
not known in advance and can only be checked by more numerical computations 
(making the testing suspect) or by viewing the results (making the viewer suspect). 
In our work, we have used the pentagon problem for experimentation. Although it 
is not a very practical problem, it captures the essense of cascaded intersections 
while enabling accurate testing of final and intermediate results. Furthermore, the 
pentagon problem has a simple structure and so can be easily studied, yet displays 
the unstable behavior of related (but more complex) iterative algorithms, especially 
those that are geometric in nature. 

The pentagon problem involves taking a pentagon stored as a set of live vertices 
(ten floating-point numbers) and iterating in and out a certain number of times to 
get back to the original pentagon. The in iteration computes the intersection of the 
pentagon’s diagonals resulting in a smaller inverted pentagon. The operation can be 
repeated on the “new” pentagon to get an even smaller pentagon. The inverse of 
this operation, the out iteration, projects alternate sides of the pentagon and finds 
the intersection point which is just a vertex of the larger pentagon (see Fig. 1). In 
each iteration following the first, the data used are those calculated by the previous 
iteration. 

An iteration in and then out is an identity function; therefore, after an equal 
amount of ins and outs the differences between the computed pentagon and the 
original pentagon can be determined. Owing to roundoff error in finite precision 
arithmetic, the computed vertices differ from the original vertices after a number of 
iterations in and out. Sometimes it is impossible to maintain any precision in the 
calculated data. 

FIG. 1. An in iteration. 
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The key to the difliculty in the pentagon problem, as well as some other geometric 
algorithms, lies in the fact that the entire set of iterations must be considered one 
unit, although the exact series of ins and outs may not be known in advance. 
Namely, an accurate assessment of previous-error-generated must be tracked and 
worked into the calculations to determine error accumulated at a particular level. 
Many of the mentioned methods aim toward the individual iterations and do not 
easily accommodate cascading calculations without being overly pessimistic. 
However, one method that does enable easy and accurate prediction of error 
generated during compounded calculations is the permutation-perturbation method 
of Vignes and La Porte [Vig88].’ In what follows, we describe their method in 
detail, and discuss its application to the problem of cascading intersections with 
emphasis on efficiency, accuracy, and their trade-offs. 

2.2. The Permutation-Perturbation Method 

Because of perturbation and permutation, the results of a set of mathematical 
computations performed on a computer are not unique. Perturbation refers to the 
rounding of a computed value up or down when being assigned to a variable. 
Therefore, any arithmetic computer operation can have one of two valid answers 
(one by lack, the other by excess); if an algorithm has k operations, there are a 
possible 2k values. Since computer operations are not associative, rearranging the 
arithmetic operations in an algorithm may generate different results; this is known 
as permutation.2 

Let P,, be the total number of different possible permutations of the operators 
in a particular algorithm. When permutation and perturbation are applied in all 
possible combinations, the total set, R, of different computable solutions to a 
particular function, can be derived. R is of size 2k x P,,. 

The number of significant digits of a computed value can be determined by3 

where C is the number of significant digits, x,. is the computed value, and x is the 
“exact” result. This quantity is generally expressed with the absolute error (x - x,.) 
divided by x,. instead of x, which is valid when x,. is a reasonable approximation 
to x (see below). 

Vignes and La Porte use this formula to determine the precision of computed 
value. However, they attempt to estimate the error since the exact error may not 
be known at computation time. The formula used is 6/R, where R is the mean of 
the population R and 6 the standard deviation. Both 6 and a can be evaluated 

’ Also known as CESTAC. 
* For example, the four numbers, 0.1025 x 104, -0.9112 x IO’, -0.9773 x 102, -0.9315 x 10’. when 

added left to right, using four digit arithmetic, result in the exact sum 0.6755 x 10’. However, adding 
from right to left produces 0.7000 x 10’. (This example also illustrates subtractive cancellation [Van’lS].) 

s This is the formula used for computing the relative error. 
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probabilistically by drawing samples from R. (For more complete detail see [Vig78; 
FV85; VigSS].) 

This analysis rests upon two hypotheses: (1) that R = Y (r is the exact result) to 
within an error smaller than or at worst comparable with 6 (see [Mai79]) and (2) 
that R is better approximated by a continuous distribution than by a small discrete 
population. The first implication can be false on those rare occasions when the 
computation in question comes as close to a singularity as it can without actual 
collision. The second may cause problems when only a few among the many 
rounding errors contribute the bulk of the error in the final result (under- 
sampling R). However, for the majority of cases, this method is likely to give a fair 
indication of a computation’s typical accuracy [Kah88]. 

3. APPLICATION 

The application of the permutation-perturbation method to the pentagon problem 
was straightforward. On each iteration, all intersection points were calculated three 
to four times using different permutations/perturbations of the intersection code 
(care must be taken when performing permutations), and the number of significant 
digits of the average was computed with the formula of La Porte and Vignes (see 
above). This was done for all five pentagon vertices (10 values-five x and five y) 
and the average of the number of significant digits of the vertices was plotted 
against the iteration number; the resulting curve represented the decline (or 
increase) of significant digits in the vertices as the iterations progressed (see Fig. 2). 

(Note: A typical run of our hidden surface elimination program with 20,000 
triangles involves over 200,000 iterations similar to those in the pentagon problem. 
At each iteration as many as four new triangles can be created. Some of the 
triangles go through many more than 10 such iterations, so the in-10 out-10 scheme 
is possibly overly conservative.) Different combinations of iterations were per- 
formed: in ten then out ten; out-10 in-lo; in-5 out-5 in-5 out-5; out-5 in-5; etc....4 

Normally, the best computed result of an iteration was the average of the 
calculated results of the different permutations of the intersection code [Mai79]. 
However, this average value was not used as input data for all the intersection 
calculations of the next iteration. Namely, the results of the previous iterations were 
stored and used in the next iteration (each different permutation used one of the 
results). This is equivalent to performing all the iterations as one computation, but 
stopping it along the way for precision determination, thereby enabling the per- 
mutation-perturbation algorithm to artificially keep track of the calculations done 
thus far and use that “knowledge” in the significant digit calculation at any level. 

After all the iterations were completed, the error incurred during the computa- 

4 It is not always possible to extend outwards starting with the initial pentagon, e.g., if two sides are 
parallel to each other. However, sometimes it may be possible but the result is not convex--e.g., if two 
semi-adjacent edges from angles of less than 90” with the middle adjacent edge. 
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FIG. 2. In-10 out-10 series. 

tions was calculated (since the original pentagon was given). The exact error was 
then compared with the computed predicted error to analyze the performance of 
the permutation-perturbation method. Fortunately, the permutation-perturbation 
method proved to be an accurate predictor of roundoff error buildup in the 
calculated results and was within one digit of the actual error (see Fig. 2). 

4. ANALYSIS OF RESULTS (FOR THE I~-10 OUT-10 SERIES) 

It is clear from the plots of significant digits vs iteration number that the pen- 
tagons displayed similarities; thus certain conclusions can be drawn. All the curves 
were downward sloping; i.e., the number of significant digits in the calculations 
decreased as more calculations were performed on the data. Seen from a different 
perspective, the error increased as more computations were executed (as expected). 
The initial decline of significant digits (or increase in error) began by slowly curving 
downwards and then, after a number of iterations (different for each pentagon), 
displayed loglinear (the significant digit is a log value) behavior (see the results of 
[MM73]). In general, the out iterations caused a steeper decline in the number of 
significant digits than the in iterations, mainly because the pentagon grows during 
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the out iteration causing any error in the input data to be magnified. Interestingly, 
when in iterations were performed after out iterations (for example, if the series was 
in-5 out-5 in-5 out-5) the plots exhibited a slight increase in the number of signifi- 
cant digits. 

Furthermore, the iterations are rotation invariant, namely, a pentagon and its 
rotated version resulted in similar plots. For the same reason, pentagons that were 
close to regular (equal angles) performed better than degenerate pentagons imply- 
ing that the shape of the pentagon was responsible for the curve as opposed to the 
actual coordinates of the vertices.5 Other series combinations (in-5 out-5, etc.) 
performed in the same manner as the in-10 out-10 series; the curves would decline 
during the out series and either stabilize or slightly improve initially during the in 
series (following out iterations) if the error generated previously was not over- 
whelming. 

Based upon the experimentation, the permutation-perturbation method proved 
to be helpful in predicting the amount of error accumulated during cascading line 
intersection calculations. Although it has an associated cost of a factor of three or 
four times that of doing nothing, it has many signzficant advantages to it over the 
other methods. First, it is mathematically easy to understand and implement (the 
code for this method is less than 50 lines of (C) which is no small achievement 
when dealing with numerical algorithms. It requires no special mathematical func- 
tions for the basic arithmetic operations and no special hardware (which may or 
may not exist). Unlike the geometric flavored methods, no normalization or object 
rearranging is required. It can be implemented with any algorithm without 
modification to the method or recalculation of the mathematics involved (unlike 
condition numbers), and the method’s calculations do not get messier as the 
program’s computations progress. There are no special cases (such as division by 
zero in interval arithmetic) since the permutation-perturbation method is not 
interested in the individual computations. It is also an “on-line” algorithm and can 
be used during the programs normal run, not only as an error estimator but also 
to set the “fuzz” values in a program. Finally, this method provides an accurate 
estimate of the errors accumulated during the computations without being overly 
pessimistic or optimistic. 

4.1. Multiple Precision 

It is almost impossible to avoid increasing precision in order to boost accuracy. 
Assuming the cost of increased precision is somehow related to the amount of 
increase, one would like to avoid overkill, i.e., using much more precision than is 
actually necessary. If something is known about the accuracy of the data and the 
degradation of precision likely to occur with the computations to be performed, 
then hopefully that knowledge can help determine the precision to use. The section 
that follows discusses the issues involved in attempting to increase precision in con- 

’ Intersecting perpendicular lines gives a more accurate result than intersecting those that are close to 
parallel [For85]. 

571/40/l-6 



80 DOBKIN AND SILVER 

junction with an accuracy measure. The increase in precision can be accomplished 
with any multiple precision package. Unfortunately, most are implemented in 
software and are therefore slow and cumbersome to use.6 

4.2. Combining the Two 

The first problem that arises is merging the accuracy measure and multiple preci- 
sion package. The tools must be put together in an efficient manner to produce a 
viable and effective combination. The most obvious (and costly) route to a 
workable mix is the following: 

1. estimate an initial precision; 
2. at each step of the computation, determine the number of significant digits 

remaining; 
3. if the number in step 2 becomes too low, increase the initial precision 

estimate and start again. 

This algorithm works but raises more questions than it answers, such as, What 
should the initial precision be? What is “too low”? And, how much precision is 
needed for the increase? etc. There is also potential for gross inefficiency. If the 
“new” precision in step 3 is inadequate, the whole algorithm must be repeated (over 
and over) until the correct precision is attained. Many of these problems are 
dependent upon the particular set of calculations and the computing environment 
being used for the implementation. Even for simple iterative procedures, these 
questions remain. 

Before proceeding, it is essential to further define two problem areas, namely, 
processes based on reusing computed data (i.e., cascading calculations) and cost 
functions. The simplest cascading process has three basic properties: the total 
number of iterations is known in advance; all the iterations accumulate error in a 
similar manner; and the sequence of calculations already performed is available at 
little or no cost. Thus, the time/space trade-off for recording the computation 
history to ease rollbacks can be ignored. In what follows, we assume that a rollback 
to a previous computation is always free. Note that the pentagon problem has these 
three qualities and is therefore an ideal model for initial experimentation. 

The next problem concerns the multiple precision package. We would like to 
have a polynomial functionf(p) such that computations of precision p requiref(p) 
operations. In real environments, this is not necessarily valid. Computer hardware 
supports certain precisions (typically single and double, occasionally quad) for 
which computations are fast, while other calculations are done via software and are 
much slower. In this case f(p) grows quadratically for small p, and decreases 
towards O(p log p) as p increases (not including the extra time needed for com- 
munication between software processes). To simplify our development, f(p) is 
assumed to be either quadratic or linear. 

6 In [KJ87] code for a multiple precision program is given. See also [Sch]. 
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With these issues clarified, we are now able to proceed with the implementation. 
Here again, numerous problems arise, which we state along with some of our 
empirical observations: 

4.2.1. PROBLEM 1. How can the precision needed for future calculations be 
predicted? Some type of formula must be used to determine when, where, and how 
to increase precision. The formula must account for the current precision, future 
computations, and future precision. If the rate of decline is stable and can be 
calculated during the computations, or if it is known in advance, then the number 
of significant digits of the final computed result can be estimated using the formula 

final precision = a - i x m, 

where a is the number of significant digits currently (in the execution), i is the 
number of iterations left to be performed, and m is the rate of decline per iteration. 

4.2.2. PROBLEM 2. Assuming the diagnosis of Problem 1 is accurate, it is 
necessary to provide a remedy or cure for the cases where insufficient precision for 
future calculations is predicted. There are two possibilities: backtracking and 
performing previous calculations with higher precision; or increasing the precision 
of calculations done from that point henceforth. The problem with both of these 
solutions are apparent. Do they work? If so, which one is preferable? And, how 
much precision is needed for the increase ? 

Based upon some initial experimentation with the pentagon problem, increasing 
precision for future calculations without backtracking was ineffective in most 
instances in stabilizing the significant digit decline (although it did slow down the 
rate of decline). Therefore, rolling back iterations was required. But major questions 
still remain unanswered, such as, how far to backtrack, and how much additional 
precision is necessary for redoing the calculations. Making the wrong decision has 
a serious effect on the performance of the system causing constant zigzaging or 
thrashing, i.e., repeated backtracking with increased precision until the correct 
amount is finally attained. An example of this is illustrated in Fig. 3. The desired 
end precision for the execution (in-10 out-lo) is six significant digits. Every time the 
program predicted that the current precision was not high enough to guarantee six 
digits after the complete 20 iterations, the precision was increased by two digits and 
backtracking was performed. As is evident from the graph, this is not the most 
efficient way to achieve the desired precision. 

4.2.3. PROBLEM 3. Ultimately, efficiency has to be a central component of the 
solution to this problem. The algorithm proposed for Problem 2 did not take 
efficiency into account. Therefore, it was sufficient to add precision and backtrack 
as often as was necessary. Ideally, backtracking costs should be taken into account. 
To do so, a formula is needed which balances the cost of additional iterations at 
higher precision vs the cost of overestimating the necessary precision. In our initial 
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FIG. 3. Thrashing example. 

experiments, we observed no difference in comparative computational costs 
between cost functions which were linear and quadratic. Both suggested the same 
basic conclusion, namely, that backtracking should be avoided if possible, and 
thrashing should always be avoided. 

Based upon the cost function, other questions arise. For example, to avoid 
zigzagging, it may be more beneficial to run the program in a “diagnostic” mode 
first and then run it again with the precision deemed necessary by the first run. This 
decision is heavily dependent on the cost function used. In particular, using a linear 
cost function for this two phase approach does not make sense, whereas for a 
squared cost function it becomes a more reasonable solution (if the precision to use 
for the second run can be determined). However, whether thrashing will occur with 
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a particular set of input parameters (number of digits for the increase, the starting 
precision, etc.) cannot be known in advance (see Fig. 4). 

Since the pentagon problem displays a linear degradation curve for the in-10 
out-10 series, once the initial decline begins, the end precision can be calculated 
easily. Furthermore, if the precision calculated is deemed insufficient, a correct 
starting precision can be calculated and the program restarted. 

There are a number of advantages to executing in this manner. Because the 
decline begins relatively soon after the first couple iterations, only those need be 
repeated, thereby removing the additional expense of running the predictor method 
for the whole set of equations. In general, if the decline of precision can be caught 
early the cost of fixing it will probably be less. Furthermore, by restarting the entire 
sequence of calculations, a log or history file is not required to keep track of which 
calculations were already performed (or need repeating). 

4.2.4. PROBLEM 4. It is important to note that the method described here 
accomplishes two things. First it produces the “best” answer, and second, it 
estimates the accuracy of that answer. There may be methods which perform the 
first function more efficiently (see [IEE85]), however, they do not perform the 
second function as well. 

Furthermore, the Vignes’ method is stochastic and is therefore prone to potential 
pitfalls which are inherent in any such approach. There is a trade-off in numerical 
analytic techniques between reliability and accuracy. While condition numbers and 
interval arithmetic are reliable, they are worst case approximations and in many 
instances cannot be easily applied. This technique is accurate, although there may 
be unusual cases that slip through. However, it is very likely to give a fair indica- 
tion of a computation’s typical accuracy under normal circumstances [Kah88]. A 
further advantage is that it is less cumbersome to use than the other approaches.’ 
The possibility to do better with some other method is as yet an unexplored option. 

In addition, there is the question of numerical accuracy vs topological con- 
sistency. Maintaining numerical accuracy will certainly help to preserve topological 
consistency, but it does not necessarily ensure it and the exact relationship between 
the two is unclear. There have been a number of proposals which utilize numerical 
methods and symbolic or algebraic techniques to guarantee topological correctness 
in geometric design systems (see Section 2). As a numerical procedure, the permuta- 
tion-perturbation method could be advantageous in such a combination mode. 

4.2.5. PROBLEM 5. Lastly, there is the issue of generalizing our results for 
problems which are more complex than the pentagon problem. Unless we know 
otherwise, we can only assume that each iteration does computations with the same 
tendency towards roundoff errors. If the exact cascading process is unknown, we 
may want to run preliminary tests to gain some insight into the expected number 
of iterations that will be applied to individual data during the cascading process. 

' Using IEEE Std. 754 may further reduce the computational cost [Gro88]. 
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Otherwise, every time the program is executed with a different set of data, an initial 
run at low precision can be performed to estimate this amount (in diagnostic 
mode). 

For the pentagon problem the cascading sequence determined the behavior and 
characteristic of the corresponding precision plot. Namely, the in-10 out-10 series 
displayed linear decline and so the correct precision was easy to calculate (see 
above). For the in-out-in-out... series the graph would slightly improve during an 
in iteration following an out iteration. Therefore, a formula for predicting the final 
precision would have to be adjusted for this increase. However, since the charac- 
teristics of the general behavior of the pentagons is known for all these cases (most 
of the iteration sequences), it is easy to account for the cases in a program which 
performs the pentagon problem. Any problem can be studied in this manner (the 
permutation-perturbation method accommodates this easily) and the different cases 
noted. 

The final issue is the time/space trade-off of storing the cascade if the intersection 
pattern is not known. At one extreme, we could store nothing and restart the 
process whenever precision gets too low. At the other extreme, the entire sequence 
of calculations can be recorded simplifying backtracking, as in the pentagon problem 
(although for the pentagon problem each iteration was essentially the same as the 
previous one). Further study is necessary to fully resolve these questions. 

We have begun to test this method with a hidden surface elimination routine 
(based on polygon intersections) and have found that the precision degrades slower 
than for the pentagon problem. The reason for this is that generally when a “new” 
line is formed only one of the vertices is “newly” computed, while the other is from 
the original line. 

One of the main difIiculties in implementing many numerical processes with 
floating point arithmetic is that various epsilon or fizz values must be set to 
compensate for inexact computations. The epsilon values appear throughout a 
program to guide decision making functions. Unfortunately, most of these epsilon 
values are set arbitrarily at the start of program execution and do not account for 
changes in the precision of the data that results from performing repeated calcula- 
tions (e.g., cascaded calculations). If an accurate estimate of the data precision is 
available, the epsilon values can be set based on that precision and can be 
“upgraded30 reflect the change in the accuracy of the data. 

Furthermore, this method is very useful as a debugging tool to track and identify 
numerical problems which cause program failures. Generally, one computation 
does not cause problems, but a series of calculations slowly lead to the buildup of 
catastrophic error. This buildup can be tracked enabling more detailed analyzation 
of the algorithm used. 

5. CONCLUSION 

As is the nature of experimental work in computer science, as opposed to 
research done in more theoretical areas, different results are observed and, because 
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of that, various solution are proposed. Our aim here has been to explore some of 
these differences on a basic problem of significant practical import and provide the 
groundwork for additional research in this area. 

The initial results are promising, showing that more work needs to be done to 
precisely formulate the exact requirements of a system like this. Using an error 
estimator coupled with the right “guesswork” as to when to increase precision and 
by how much, leads to a robust solution for cascading line intersection, as well as 
for other more complex problems of computational geometry. The problem of com- 
pletely removing the “guesswork” remains open, Unfortunately, the cost is high 
regardless of how it is measured, but this is only to be expected. As Demmel 
[Dem87] observes, “In short, there is no free lunch when trying to write reliable 
code.” However, our solution seems to be less expensive than many others. 
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