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3.3 Photoelectrochemical characterization 
 
Figure 5a and b show the results of the photocurrent response measurements performed under AM 1.5 and AM0 

illumination, without external bias applied. With no illumination, only residual current of a few nanoamps is 
observed. Exposure to light yields a photoanodic spike and after a while the photocurrent decreases reaching 
saturation level. The source of the anodic spike might be due to crystal defects as suggested by Radecka et al. [18]. 
There, a fast decay in the photoanodic spike indicates the increased recombination process and was attributed to the 
point defects resulting from incorporation of foreign atoms. This in turn leads to an increase in the number of the 
recombination sites. In our case, we believe that for the ML structure the greatest contribution to the recombination 
centers in the film can be attributed to the presence of the multiple interfaces. In addition, it was also shown that the 
presence of Cd leads to worsening of the film crystallinity due to the ionic radius mismatch.  

As can be seen the increase in TiO2 protective layer thickness is followed by a significant decrease in the 
photocurrent intensity. This may indicate that the observed high values for the 5 nm TiO2 protective film are due to 
corrosion processes occurring on the sample surface exposed to the electrolyte. This observation is supported by the 
fact the J-V curves presented in Fig. 4b do not show a saturation current. Post mortem observations revealed a 
discoloration of the samples after the PEC testing in the area exposed to the solution (see section 3.1). TiO2 is highly 
resistive towards electrochemical and photochemical corrosion and it was previously shown that thin films are 
sufficient to prevent the electrolyte from diffusing through the protective layer [19]. However any discontinuities in 
the film created either during the deposition or the handling will lead to the penetration of the electrolyte through the 
pinholes and the subsequent reaction with the Zn ions from the lattice according to the reaction: ZnO + 2H+  Zn2+ 

+ H2O [20]. Once the contact between the TiO2 protective layer and the ML is broken, the TiO2 no longer adheres to 
ML and peels off easily, exposing the ML to the further electrochemical corrosion, as it can be seen from SEM 
observations. 

A change in the illumination conditions is followed by a 10-folded increase in the photocurrent response of the 
ML. Indeed, the light utilized under AM0 has an enhanced UV part which coincides with the ZnO fundamental 
absorption edge. Thus, we suggest that the observed photoresponse is dominated by the ZnO film on top of the ML 
structure, while carriers photoexcited in the deeper films buried under ZnO layer may be stopped at interfaces 
between the single films.  

 

4. Conclusion 

The systematic study of ZnCdO ML structures has lead to the conclusion that optical emission band is broadened 
for ML ZnCdO structures compared to single film ZnO which can be explained by combined band-edge emissions 
from the individual layers. In addition, temperature-dependant studies reveal excitonic nature of all individual layers 
in the ML structure. In case of the PEC measurements the highest photocurrent intensity was observed for the UV-
rich illumination, which may be attributed to the dominating role of the pure ZnO layer in the ML photoanodic 
device. However, there is a need to improve the TiO2 protective layers, since the applied films proved to be 
insufficient in preventing efficiently the ML from corrosion processes occurring under the measurement conditions. 
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