
NORTH- HOLLAND 

On Minimizing the Largest Eigenvalue of a Symmetric Matrix* 

Michael K. H. Fan+ and Batool Nekooie 

School of Electrical and Computer Engineering 
Georgia Institute of Technology 
Atlanta, Georgia 30332 

Submitted by Richard A. Brualdi 

ABSTRACT 

Optimization problems involving eigenvalues arise in many engineering problems. 
In this paper, we consider the problem of minimizing the largest eigenvalue over an affine 
family of symmetric matrices. This problem has a variety of applications, such as the 
stability analysis of dynamic systems or the computation of structured singular values. 
Given e 1 0, we give an optimality condition which ensures that the largest eigenvalue 
is within E error bound of the solution. Also, a new line search rule is proposed, and it is 
shown to have good descent properties. When the multiplicity of the largest eigenvalue 
the solution is known, a new algorithm for the optimization problem under consideration 
is proposed. Some numerical experiments on the proposed algorithm are presented. 

0. NOTATION 

XT Transpose of vector x 

IIX II Euclidean norm of vector x 
I Identity matrix of appropriate size 
A > 0 Matrix A is positive definite (similar definitions for A > 0 

andAs0) 

*Some of the results in this paper were given without proofs in [17]. 
tcorresponding author. 
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.!jr (A) Largest eigenvalue of symmetric matrix A 
cos Convex hull of set S 
nr S Nearest point to the origin in set S 
tr A Trace of matrix A 
aBk Unit sphere in Rk 
Yrf Derivative of function n 
A+ Moore-Penrose generalized inverse of matrix A 

Let n(.) : R + 119. The notation n(x) = O(xk) means that n(x) goes to zero at 
least as fast as xk does. More precisely, it means that there exists K 2 0 such that 
]q(x)]/lxk] I K asx + 0. 

1. INTRODUCTION 

Optimization problems involving eigenvalues arise in many engineering prob- 
lems. In this paper, given symmetric matrices Ai, i = 0, . . . , m, we consider the 
convex (nondifferentiable) optimization problem. 

a* = ini& a1 (x), (1.1) 

where hl (x) denotes the largest eigenvalues of 

A(x)=AcI+&~A~. 
i=l 

An application of (1.1) is in the following storage problem [6]. Suppose a company 
manufactures n chemical products. Certain pairs of these products are incompat- 
ible and would cause explosions if brought into contact with each other. As a 
precautionary measure the company wishes to partition its warehouse into com- 
partments, and store incompatible chemical products in different compartments. 
The question is the least number of the compartments, denoted by x , into which 
the warehouse should be partitioned. This problem is actually a special case of the 
vertex coloring problem in graph theory. In [26] Lovasz showed that the following 
inequality is satisfied: 

x 1 r@r(A), (1.2) 

where A denotes the set of all real symmetric IZ x n matrices A = (aij) for which 
Aij = 1 if i = j or if ith and jth chemical products are incompatible. It is easy 
to see that the right hand side of (1.2) can be recast into (1.1). Other applications 
of (1.1) and its variations can be found in, e.g., [3,7,9, 10, 13-15, 18, 19,34,35]. 
For study of (1.1) and related problems, see, e.g., [ 1, 2, 4, 8, 20, 23, 28-33, 361 
and the references therein. 
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0.2190 0.3632 0.5991 

A,, = 0.3632 0.9347 0.5991 0.6072 0.6072 1 0.0346 

0.1235 

A, = [ 0.2687 0.2687 0.5443 0.1334 0.5443 0.3768 0.3768 1 0.1390 

W = {[ vHAov d’A,v]= : v E a&} 

FIG. 1. Geometric interpretation of h’. 

There is a simple geometric interpretation for the problem (1.1). Consider the 
intersection of the first coordinate axis and convex hull of the set 

W = {[uHAou.. . v~A,,,I.J]~ : v E al?,}. 

Then it can be easily checked that )c* is equal to the maximal value of the inter- 
section. We illustrate this interpretation in Figure 1, using an example with n = 3 
andm=l.IthasbeenshownthatWisconvexifm=lorifm=2andn>3, 
and not necessarily convex otherwise [5, 211. Notice that )L* is finite if and only 
if there exists no x such that C~clxiAi is positive definite. Furthermore, if h* is 
finite, it must lie between the smallest and largest eigenvalues of Ao. 

It is well known that the eigenvalues of a matrix are not differentiable at points 
where they coalesce. Typically, the process of minimization tends to make them 
coalesce at the solution. Therefore, smooth optimization methods usually cannot 
be.directly applied to this type of problems. In this paper we explore some prop- 
erties of the problem (1.1). In Section 2, given E > 0 and x E Rm, we derive a 
sufficient condition on x to satisfy 

al(x) - 6 5 a* c al(x). (1.3) 

This condition reduces to the usual optimality condition for (1.1) when e = 0. Also 
we show how to construct descent directions for )c 1 (x) when the sufficient condition 
fails to hold. In Section 3, given a descent direction, we propose a line search rule 
for (1.1). Under some mild assumptions, it is shown that the resulting step size 
is a very good estimate of the one achieving the exact line search. In Section 
4, under the assumption that the multiplicity of Al(x) at solution is known, we 
propose an algorithm to solve (1.1). We first show that, locally, (1.1) is equivalent 
to a smooth constrained optimization problem. We then consider a sequence 
of subproblems which are constructed using second order approximations of the 
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objective and the constraint. A special method is derived to estimate the solution 
of the subproblem. It only involves essentially solving two linear equations of size 
m, and yet, according to our numerical experiments, gives very good estimates 
when the solution of the original problem is approached. Finally, some numerical 
experiments on the proposed algorithm are given in Section 5. 

In the sequel, an eigenvalue decomposition of a symmetric matrix means one 
with decreasing eigenvalues and orthonormal eigenvectors. 

2. OPTIMALITY CONDITIONS 

We begin with a sufficient condition for (1.3). Given x E lIUm, let A(x) = 
U(x)A(x)UT(x) be an eigenvalue decomposition of A(x), where A(x) = 
diag()it (x), . . . , A,,(x)) and U(x) = [ul(x) ... u,(x)]. Given any E 2 0, define 
qC to be the largest integer between 1 and n satisfying h,(x) 2 At(x) - E. Also 
define A,(x) = diag@t (x), . . . , )Lq6 (x)) and U,(x) = [ut(x) . . + uq, (x)]. We 
now introduce the notation of e-optimality condition. 

DEFINITION 2.1. Given E > 0 and x E Rm. We say that the e-optimality 
condition holds at x if there exists a qs x qC (symme&ric) positive semide?nite 
matrix Q satisfyingtr Q = 1 and, for i = 1, . . . , m, tr[Ai(x)Q] = 0, whereAi(x) 
is defined by Ai (x) = UT(x)Ai U, (x). Furthermore, any matrix Q satisfying these 
properties is called a multiplier matrix. 

Notice that the multiplier matrix is in general nonunique. The result below 
shows that, among other things, the e-optimality condition is sufficient for (1.3). 

THEOREM 2.1. Let E 2 0 and x E Rm. Suppose that the e-optimal condi- 
tion holds at x with a multiplier matrix Q. Let Q = VSVT be an eigenvalue 
decomposition of Q with S = diag(st, . . . , sq,) and V = [VI . . . uqc]. Then 

Al(x) -6 5 &(x) I min 
k=l,...,q, 

t$A,(x)uk I )L* 5 Al(x). (2.1) 

In view of Theorem 2.1, the c-optimality condition may be used as the stopping 
criterion for any algorithm which looks for x E Rm to satisfy (1.3). Although the 
6-optimality condition is in general not necessary for (1.3), we will show below 
that if it does not hold, one can always construct a descent direction of hi(x) at 
x. It is interesting to notice that the c-optimality condition reduces to the usual 
optimality condition for (1.1) when E is zero (see, e.g., [29] in a slightly different 
context on the optimality condition for (1.1)). Moreover, it can be shown that in 
this case the condition is necessary and sufficient. 

Verification of the c-optimality condition using its definition is not an easy 
task. Difficulty arises because the matrix Q needs to be constrained in the set of 
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positive semidefinite matrices. Below we give two equivalent characterizations 
of the c-optimality condition. Theorem 2.2 shows that the E-optimality condition 
can be equivalently stated as the origin inclusion property of some convex set. 
Theorem 2.3 shows that the c-optimality condition holds if and only if the solution 
of some optimization problem in the form of (1. l), possibly with much smaller 
matrices, is not less than zero. Both results also provide means to construct descent 
directions when the c-optimality condition fails to hold. 

THEOREM 2.2. Define the set W,(x) c IP by 

We(X) = {[LJT&(X)U . . . VTAI,(X)v]T : LJ E a&&} 

where zi (x) is defined in Definition 2.1. Then the r-optimality condition holds if 
and only if the set co W,(x) contains the origin. Furthermore, if co W,(x) does 
not contain the origin, then -III co W,(x) is a descent direction for h 1 (x) at x. 

Existing methods for computing nr co W,(x) can be found in, e.g., [15, 221. 
Notice that it can be obtained analytically when qc < 2 (see [16] in another 
context). 

THEOREM 2.3. Let u E a&, and define z = [uTA^I(x)u . * + uT &(x)u]~. 
Assume z # 0. Dejine z1 = -z/llzll, and let ~2,. . . , zm be such that-Z = 
[Zl ... zm] is orthogonal. For i = 1, . . . , m, define xi(x) = cy=l zji Aj(x). 
Then the e-optimality condition holds ifana’ only if 

( 
m-l 

inf cl Xt (X) + C yi;ii+l(X) L 0. 
y&m-l i=l 1 

Furthermore, let y E IRm-’ be such that 

( 
m-l 

Cl xl(X) + C yi;ii+l(X) 2 0. 
i=l 1 

Then the vector 

is a descent direction for hl (x) at x. 

3. A LINE SEARCH RULE 

(2.2) 

(2.3) 

Let h be a descent direction for At(x) at x. A line search rule is to find a 
step size s > 0 such that 11(x + sh) < Al(x). Define n(s) = It(x + sh), and 



230 MICHAEL K. H. FAN AND BATOOL NEKOOE 

#’ 
6’ 

, 
,’ 

/’ 
1 1 0 S. s 82 6 

FIG. 2. Definition of Z 

suppose that infs,c n(s) is achieved at s*. It is well known that rr(s) is analytic 
everywhere except at finitely many points [24]. Without loss of generality, we 
assume IC(S*) = 0. Therefore, in the neighborhood of s*, n(s) can be expressed 
as n(s) = max(rrt(s), 1r2(s)}, where nt(s) and n2(s) are analytic functions with 
Taylor series expansions about s* given by, for i = 1,2, 

ni(S)=Ui(s-s*)+bj(s-s*)2+Ci(S-_*)3+O(IS-_~14). (3.1) 

Notice that the coefficients in (3.1) are not arbitrary; they satisfy ata2 5 0, b 1 2 0, 
and bz 2 0 (without loss of generality, we may assume at 5 0 and a2 2 0). 

In this section, given a search direction h, we propose a line search rule. We 
first compute s2 > 0 that satisfies 

n1(0) = 752@2). (3.2) 

Then, the step size 7 is defined as the point where the tangent lines of rrt (s) at 
s = 0 and n2(s) at s = s2 intersect, i.e.,?satisfies 

r= 7qrz)sz 

Jri(s2) - n;(O). 
(3.3) 

See also Figure 2 for an illustration of 2 The following theorem shows that, under 
some mild assumptions, 3is a very good estimate of s*. 

THEOREM 3.1. Suppose (i) a2 > 0 or (ii) at = a2 = 0, bl > 0, and b2 > 0. 
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LeGbe defined by (3.3). Then there exists M > 0 such that 

T- s* = MS,2 + O(s,3). (3.4) 

The following proposition addresses the question how to find s2 to satisfy (3.2). 
This result has also been observed in [38]. 

PROPOSITION 3.1. Let h be a descent direction for hl (x) at x. Define A = 
A(x) - kl(x)Z and B = - I:=“=, hiAi. Suppose that B is nonsingular, and let 
y1 2.m 2 ** . > yn be the roots of the polynomial det(A - y B). Then I* = --oo 
if yl = 0. Otherwise, s2 defined by (3.2) is the smallest positive element in the set 
In, . . .1 Yn). 

4. A LOCAL ALGORITHM 

The basic idea behind Newton’s method on minimizing a smooth convex func- 
tion is first to construct a second order model around the current estimate. Then the 
new estimate is defined as the global minimizer of the model. Newton’s method 
cannot be directly applied to minimization of a nondifferentiable function, as the 
second order model, if it exists, may not approximate the function well in the 
neighborhood of the current estimate. In the nondifferentiable case, it is necessary 
that a good model itself be nondifferentiable. In general, k 1 (x) is nondifferen- 
tiable at x when the corresponding multiplicity is more than one. In this section, 
we propose a model of Al (x) around x when x is sufficiently close to x*. We 
also propose a method to minimize the model. Under a certain assumption on the 
multiplicity at the solution (see below), a new algorithm is then derived for the 
problem (1.1). Numerical experiments show that the proposed algorithm has good 
convergence behavior. Moreover, it will be seen that the computational complex- 
ity at each iteration is not more than a few times that of computing the eigenvalue 
decomposition of an n x n matrix. 

Given x E Rm, the multiplicity of hr (x) is said to be q if )cl (x) = h4(x) > 
key+ 1 (x). Suppose that the solution of (1.1) is bounded, and let x* be the minimizer. 
Throughout this section, we assume that the multiplicity of kt(x*) is given. In 
the neighborhood of x*, by the continuity property of eigenvalues, it holds that 
h,(x) > &+I (x). The following theorem characterizes the problem (1 .l). 

THEOREM 4.1. Let q be the multiplicity of 11 (x) at x*. Then 

h* = .grn Ifi : f2(x) = 01, (4.1) 
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where fl (x) and fz(x) are defined by 

and 
p-1 4 

f2Cx> = 5 C ,C [h(X) -kj(X)]2 
I=1 pr+l 

respectively. 

Using a result in [14], it can be shown that jr(x) defined above is convex in 
x. We also have the following result. 

THEOREM 4.2. Suppose that hq(x) > h,+l (x) for some q. Then fl(x) and 
f2(x) defined in Theorem 4.1 are analytic at x. 

Theorem 4.1 and Theorem 4.2 together reveal that, in a neighborhood of x*, 
(1.1) can be equivalently formulated as a smooth constrained optimization prob- 
lem. An immediate approach that comes to mind in solving (4.1) is sequential 
quadratic programming (SQP). That is, one solves a sequence of QP problems, 
each of which is constructed using the second order approximation of fr (x) and 
the first order approximation of f2(x). In our case, however, that will not work 
well, since the first order approximation of f2(x) is degenerate at all feasible x 
[i.e., f2(x) = 01. Instead, we take second order approximations for both fl (x) and 
fi(x) to form the subproblem. The resulting optimization becomes nonconvex, 
since the constraint set is no longer convex. We will propose a method to estimate 
the solution of the subproblem. Essentially it only requires solving two linear 
equations. Yet, according to our numerical experiments, the estimate seems to be 
very good. Below we derive the gradients and Hessians of fr (x) and fz(x). 

THEOREM 4.3. Suppose that k”,(x*) > h,+l(x*) for some q. Also, suppose 
that both x - x* and h E R” are suficiently small. Then 

fi(x +h) = 5(x) +g;(x)h + ;h%i(x)h + 0(llh113), i = 1,2, 

where 
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Hz(x) = H21h) + ff22&), 

H21(x) = 2 [(fk - tl)(tk - tf + 2,t,lt,:] , 
k,l 

H22h) = 2 bk+) - h(x)] (Tk - 81, 
k,l 

tk = tkk, 

Tk = Tkk, 

(tkdi = &+Mxh 

(Tkl>ij = U~(X)AiXAjUl(x) + ur(x)AiSkAjUk(X), 

Sk = ul [hk(X)z - Al]-’ u,T, 

fJ_L = [Uq+lW ... unw] 9 

AL = diag (h,+l(x), . . . , L(x)). 

Here, we denote by (t)i the ith element of the vector t, and by (T)ij the i jth element 

of the matrix T. Also, we denote CEl: c:c,+, bY c;,,. 
The subproblem we will solve is 

rnp gr(x)h f $hTHl(x)h (4.2) 

subject to the constraint 

_Mx) + g;(x)h + $hTHz(x)h = 0. (4.3) 

We propose to estimate the solution of the subproblem as h = /?z, where 2 = 
h, + hb, and h,, hb, and p are computed as follows: 

(1) The vector h, is to reduce the error for the constraint (4.3). Notice that 
the original constraint f2(x + h) = 0 is the same as f2(x + h) ( 0. Also, notice 
that H2(x) = H21(x) + H22(x), H21(x) 2 0, and if f2(x) = 0 then H22(x) = 0 
(see Theorem 4.3 above). Therefore, we define h, = - HiI (x)gz(x), which is 
essentially equal to the minimizer of 

m,ingl(x)h + ihTHz(x)h. 

(2) The vector hb is to reduce the objective function in (4.2) while keeping the 
constraint (4.3) from changing too much. Notice that in the case of f2(x) = 0 
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[which implies Hz(x) = H21(x) p 01, choosing hb as a linear combination of 
vectors in the null space of Hz1 (x) will force the error of the constraint to stay on 
the order of o(]]hb]j3). We adopt this idea in defining hb even when f,(x) # 0. 
Therefore, let the columns of N form a basis of the null space of Hz1 (x). Define 
hb = N, and choose z to minimize 

g;(x)(hn + Nz) + ;(h, + Nz)rHl(x)(h, + Nz). 

It is easy to show that z is equal to 

z = -[NTHI(X)Nl-‘NTIH1(X)h, + gl(x)l. 

Thus, 
hb = -N[NrH,(x)N]-‘Nr[HI(x)h, +gl(x)]. 

(3) We then perform linEsearch along c% ensure monotone decrease of the 
largest eigenvalue ), 1 (x + Bh) [not fl (X + j?h)], where p is the step size. 

The proposed algorithm is summarized as follows. 

ALGORITHM 4.1. Step 0: Estimate the multiplicity q at solution. Choose 
initial x0. Set k = 0. 

Step 1: Perform an eigenvalue decomposition of A(xk). Compute 
gl(xk), g2(xk), Hl(xk), and H2(xk> defined in Theorem 4.3. Let the columns 
of N form the null space of HZ (xk). 

Step 2: Compute the search direction x: 

h, = -H;,(xk)gz(xk), 

hb = -N 
[ 
NTHI(xk)N 1-l NT [HI(x + gl(xk)] 9 

z=h,+hb. 

Step 3: Perform line search. Set t3 = 1. If 

hl (xk)Z - A(xk + /3x) > 0, (4.4) 

then set xk+’ = x k + SK, k t k + 1, ana’ go to step I. Otherwise, set B c /?/2 
and repeat the test in (4.4). 

The stopping criterion of the algorithm can be based on the size of the search 
direction h. We don’t have a convergence analysis of the proposed algorithm yet; 
this is under investigation. However, our numerical experiments suggest that the 
proposed algorithm is promising. 
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REMARK 1. This remark concerns some implementation details. 

(1) The matrix Hz1 (x) defined in Theorem 4.3 may be of full rank. In this 
case, it indic_ates that the minimizer x* can be defined solely by the constraint. We 
then define h = h, in step 2. 

(2) The null space of Hz1 (x) can be computed by a QR decomposition. 
(3) The matrix NT HI(X) N may be singular or nearly singular. In this case, 

we solve hb in step 2 in the least squares sense. Alternatively, we may add a small 
number to its diagonal elements to avoid the singularity. 

(4) The matrices HI(X) and Hz1 (x) need not be formed explicitly. The 
matrix HI(X) is positive semidefinite, and its square root factor H:‘2(x) [i.e, 

H1 (x) = HIT’2(x) H:‘2(x)] is readily available. The Cholesky decomposition of 

NT HI (x)~ (in solving hb) can be obtained by a QR decomposition of H:12(x)N. 
Similar arguments can be applied to the matrix Hz1 (x). 

(5) Checking the positive definiteness of a matrix in (4.4) can be done by a 
Cholesky decomposition. 

REMARK 2. This remark concerns the computational effort. Each iteration 
requires an eigenvalue decomposition of an n by n symmetric matrix [ 0 (n3) flops], 
computing various quantities in steps 1 and 2. [O(qmn2) + 0(m3) flops], and 
performing line search in step 3. It is observed that the step size is one when 
approaching to the solution. Also, checking (4.4) by Cholesky decomposition, 
only needs a small fraction of the number of flops that is needed for an eigenvalue 
decomposition. The overall computational effort for each iteration. then depends 
polynomially upon the size of the problem. 

REMARK 3. This remark concerns the estimated multiplicity of ht(x*). 
When the multiplicity is chosen too small, it is observed that the step size becomes 
very small after a few iterations. This is quite reasonable, since other eigenvalues 
may become active along the search direction. When the multiplicity is chosen 
too large, it is possible for the algorithm to converge, with step size 1, but not 
to the solution. In this case, the result in Section 2 and some work of Overton’s 
[29] can be used to split the eigenvalues. Methods to guess the true multiplicity 
at the solution and to update it dynamically are necessary to have a more general 
algorithm. This is also under investigation. 

We shall close this section with the following result. 

THEOREM 4.4. Let the multiplicity q given in Algorithm 4.1 be the multiplicity 
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of h 1 (x). Also let g be defined as in step 2 of Algorithm 4.1, and assume 2 # 0. 
Then 2 is a descent direction for A1 (x) at x. 

5. NUMERICAL TESTS 

Algorithm 4.1 has been implemented in MATLAB [27]. In this section, we 
demonstrate it by two numerical examples. The first example uses randomly 
generated matrices, and the second is borrowed from [29]. 

EXAMPLES. n = 5 and m = 5. The six matrices are [ 171 

-0.69 
-0.32 

A0 = 0.34 
0.43 

-0.05 

Al = [ 

-0.66 
0.31 
0.57 

-0.06 
-0.44 

A2 = 

[ 

-0.31 
0.35 
0.06 

-0.23 
0.17 

[ 

0.27 
-0.14 

A3 = 0.13 
-0.32 
-0.08 
-0.57 
-0.38 

A4 = 

i 

-0.09 
0.31 

0.22 

i 

0.22 
0.28 

A5 = 0.14 - 
0.03 
0.09 

-0.32 0.34 0.43 -0.05 
-0.11 -0.11 -0.45 -0.34 
-0.11 -0.71 -0.33 -0.08 , 
-0.45 -0.33 0.65 0.27 
-0.34 -0.08 0.27 0.39 1 

0.31 0.57 -0.06 -0.44 
-0.23 -0.12 -0.35 0.28 
-0.12 -0.26 -0.06 -0.37 ( 
-0.35 -0.06 0.64 0.34 

0.28 -0.37 0.34 0.61 I 
0.35 0.06 -0.23 0.17 
0.24 -0.19 0.21 -0.12 

-0.19 -0.34 0.00 -0.36 , 
0.21 0.00 0.16 -0.24 

-0.12 -0.36 -0.24 0.00 1 
-0.14 0.13 -0.32 -0.08 
-0.20 -0.29 -0.05 -0.64 
-0.29 -0.45 -0.20 -0.59 ( 
-0.05 -0.20 -0.27 -0.46 
-0.64 -0.59 -0.46 -0.39 1 
-0.38 -0.09 0.31 0.22 

0.66 0.17 -0.03 0.51 
0.17 0.23 0.12 -0.21 , 

-0.03 0.12 -0.56 -0.21 
0.51 -0.21 -0.21 0.59 1 

0.28 0.14 0.03 0.09 
0.69 -0.12 0.10 0.30 
.0.12 -0.77 -0.21 0.13 ) 
0.10 -0.21 -0.42 - -0.15 
0.30 0.13 -0.15 0.22 1 
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TABLE 1. TEST RESULTS FOR EXAMPLE 1 

Iter k 11 (xk) B Iter k Al (xk) 

0 1.204260662 - 10 0.710958694 
1 1.040300888 1.00 11 0.709448235 
2 1.024891334 1.00 12 0.708991355 
3 0.875331883 1.00 13 0.708898846 
4 0.836961646 0.13 14 0.708884719 
5 0.772514993 0.25 15 0.708882872 
6 0.744923566 0.13 16 0.708882634 
7 0.731179722 0.13 17 0.708882602 
8 0.717824578 0.50 18 0.708882598 
9 0.715879585 1.00 19 0.708882597 

B 

1 .oo 
1 .oo 
1.00 
1.00 
1.00 
1.00 
1.00 
1 .oo 
1 .oo 
1 .oo 

First, we apply Kelley’s cutting plane method [25] and obtain 

x*=[:iZZ!J and ~iif=[I~$~]. 

Thus the multiplicity of ht (x*> is 2. We then choose the initial guess x = 0 and 
run Algorithm 4.1. The result is summarized in Table 1. 

EXAMPLE 2. This example is due to Overton [29]. The problem is to find 
the diagonal of a 10 by 10 matrix to maximize its largest eigenvalue in absolute 
value. The off-diagonal elements of the matrix are given (see [29]). The proposed 
algorithm can be easily modified to take advantage of the sparse structure of various 
matrices Ai, or to minimize the largest eigenvalue is absolute value. However, as 
was done in [23], here we simply apply our algorithm with the matrices 

xi=[; _Aql. 0 5 i 4 10. 

The resulting problem has 11 matrices of size 20. The optimal value )c* for this 
problem is 22.3661216, and the associated multiplicity is 3. We set the multiplicity 
q = 3 and run the proposed algorithm. The result is summarized in Table 2. As 
pointed out by Overton [29], this problem is quite difficult to solve using any 
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TABLE2. TESTRESULTSFOREXAMPLE 1 

Iter k A1 (xk) B Iter k 11 (xk) B 

0 37.6974815 - 11 22.4051515 0.015 
1 30.4555145 0.500 12 22.4013878 0.004 
2 27.5295344 0.125 13 22.3962849 0.004 
3 24.0245400 0.125 14 22.3916726 0.016 
4 23.7125700 0.062 15 22.3836499 0.250 
5 23.4261984 0.031 16 22.3807503 0.500 
6 23.3857604 0.031 17 22.3703151 1.000 
7 22.7222438 0.031 18 22.3669657 1.000 
8 22.6109781 0.031 19 22.3662088 1.000 
9 22.5727067 0.008 20 22.3661253 1.000 
10 22.4882827 0.004 21 22.3661216 1.000 

algorithm which relies on the multiplicity at the solution. This is because several 
other eigenvalues are very close to the first three at the solution. We have also 
experienced some difficulty with this problem. As appears in Table 2, the step 
sizes of some early iterations are quite small. In fact, reducing the multiplicity at 
early iterations may give larger step size and consequently may increase the rate 
of convergence. When the algorithm starts to have step size 1 at the 17th iteration, 
it improves the accuracy of the result to six digits within four iterations. 

APPENDIX 

The proof of Theorem 2.1 is facilitated by the following result. 

LEMMA A.l. L&t Ck E Ii8 and dk E Rrn, k = 1, . . . , q. suppose 0 E 
co{dl, . . . . dq}. Thenfor any E E Rm, 

min max Ck + (dk, x) > ,=nfy q Ck + (dk, 3. 
XEW”’ k=l,...,q 3 . 1 

Pro05 It is equivalent to show that, for any X, l? E Rm, 

max 
k=l,...,q 

Ck + (dk, x) ? ,=yin q Ck + (dk, j;). 
3.1.. 
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Given x E lIZm, define u(x) = maxk=t,...,4(ck + (4, x)) and Z(X) = 

mink=1 ,..., q(ck+(dk,~)).Thus,foranyx,3EBmandk=1 ,..., q,wehave 

u(x) 2 ck + (dk, X) 1 ck + (dk,% - (dk, 3 + (dk, X) 2 l@ + (dk, X - 3. 

The hypothesis 0 E co(dt , . . . , dq] implies that there exist ok > 0, k = 1, . . . , q, 
such that cf=t crk = 1 and cf,, akdk = 0. Therefore, 

u(x> = eaku(X) 2 f&k [l(?) + (dk, X -??)I = [m. 
k=l k=l 

Proof of Theorem 2. I. The last inequality in (2.1) is obvious. Define S2 = 
{UE(X)Vl, . . . . udx)q,I. Then 

= x$Rt k=yaX ck + (dk, X) , 
,....qc 

where ck = Vp&(x)uk and dk = [VpA^l(x)vk ... uf&(X)VklT E Rrn Notice 
that,fori = 1, . . . . m, 

0 = L(X) 1 Q = ~I’[~~(x)VSV~] = tr[vH&(X)vs] = ~SkU~~j(X)Uk. 
k=l 

Therefore, cF==, skdk = 0, i.e., 0 E co{dl, . . . , dqC). In view of Lemma A.l, we 
have 

h* > min Ck + (dk, X) = k=yi,nq vf~,H(X)~(X)~(X)~(X)H~c(X)2)k 
k=l,...,q, 3. . . e 

= k=yi;q $&(X)Uk 2 Aq,(X) i Al(x) -C 
,. . . 6 

Above, the next to the last inequality holds because that up&(x)Vk is a convex 
combination of the diagonal elements in AE (x). ??

Proof of Theorem 2.2. The first claim follows from the proof of The- 
orem 2.1. It has been shown that co We(x) is the generalized gradient of 
At(x) (see, e.g., [ll, 331). Thus, if co We(x) does not contain the origin, 
then the vector -nrco WO(X) is the steepest descent direction for At(x). No- 
tice that W,, (x) c W,,(x) and therefore co W,,(x) c co W,,(x) whenever 
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0 5 et 5 ~2. Using properties of convex sets, the second claim follows. 
W 

Proof of Theorem 2.3. First, we show that first claim. 
Sufficiency: Define 

Given u E a Bq6, it is easy to check that 

[uHAI(x)u . . . VTT&)V] = [lJHX+)v . . . dsi-&)V]Z. 

Therefore, 

co iii(x) = ZT co W<(X). (A.11 
By the geometric interpregtion given in Section 1, x is equal to the maximal value 
of the intersection of co W(x) and th_e first coordinate axis. In view of (A.l) and 
since 2 is orthogonal, it holds that AZ, E co RJ(x). On the other hand, by the 
definition of 2, we have Z.-E co W,(x). Since h > 0, it is easy to check that the 
origin lies between z and )Lz, . Hence 0 E co W<(x). In view of Theorem 2.2, the 
e-optimality condition holds. 

Necezsity: Follow the discussion given in the sufficiency part; x < 0 implies 
0 +! co W(x). Hence 0 $ co WE(x). In view of Theorem 2.2, the 6-optimality 
condition doesn’t hold. 

Second, we show that the vector h defined by (2.3) is a descent direction for 
ht (x). It suffices to show WTh -c 0 for any w E W&K). In view of (2.2), it holds 
that, for any u E 8 Bq6, 

( 
m-1 

UH Xl(X) + C Yi&+l(x) tJ < Cl 
i=l ) 

i.e., [uHA1u ... #&,u]h < 0. Since co We(x) c co WE(x), we then have 
WTh -c 0 for all w E We(x). ??

Proof of Theorem 3.1. Define tt = -s* and t2 = s2 - s*. It can be checked 
that under the given assumptions, t2 can be expressed as 

t2 = at1 + pt: + w:> 64.2) 

for some a! < 0 and fi. Assume a2 > 0. Substitute (A.2) into (3.2) to obtain 

Ulfl + blf,2 = m(0) + wt:> 
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= 3t2@2) + 00:) 

= a2t2 + b2t; + O(t,3> + O(t$ 

= az(at1 + ptf> + 62((rt1 + fit:>2 + O(tf> 

= a2at1 + (a2/5 + b2cr2)tf + O($). 

Therefore, we have at = u2a! and bl = uz/l+ b2a2, i.e., 

-1 a! =utu2 , 

-3 fl = (bp; - b&)u2 . 

Substituting (3.2) and the above expressions for a! and B into (3.3), we have 

F-S, = 
bpz; - b2uf 2 

&a1 - a21 
s, + O(s,3)* 

Thus (3.4) holds with 

M= 
bp; - b2uf 

u;(ul - uz) . 
Now we assume that at = a2 = 0, bl > 0, and b2 > 0. Again, substitute 

(A.2) into (3.2) and obtain 

blt,2 + co; = rrl(O) + 0(ltd4) 

= x262) + W114) 

= bzt; + czt; + 0(M4> + 0(ltd4) 

= bz(atl + Bt;j2 + c2(atl + /%f)3 + O(ltl 14) 

= bza2t; + (2b2o$ + c2(r3)tf + 0(lt114). 

Therefore, we have bl = b2a2 and cl = 2bpqY + cp3, i.e., 

a = - J bib;‘, 

B = -; (c&&-’ + c2blbT2). 

Substituting (3.2) and the above expressions for cz and /3 into (3.3), we have 

F-s*= clbdi + czhfi 
2h,&%<z/i;; + 6) 

s: + O(sZ> 

Thus, (3.4) also holds with 
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Proof of Proposition 3. I. The claim that the polynomial det(A - y B) has n 
real roots follows from the assumptions that A, B are Hermitian, B is nonsingular, 
and A 5 0. Also, since det A = 0, zero is then one of the roots. Notice that, if s2 
exists, it will satisfy ht (x + s2h) = AI(X). Therefore, 

det A(X) + Tszhi Ai - hl(x)Z = det(A - SUB) = 0, 
i=l 

i.e., $2 is equal to a positive element in {n, . . . , m}. Thus yt = 0 implies that 
~2 does not exist. On the other hand, using the assumption that h is a descent 
direction, it can be easily checked that s2 does exist if yl > 0. Now, suppose 
that yl = 0. Then using the assumptions that B is nonsingular and (again) h is a 
descent direction, it follows easily that lims-toc )cl(x + sh) = -oo. Therefore, 
h* = -oo. To conclude the result, it remains to show that, if yt > 0, then 
s2 is equal to the smallest positive element in { yl , . . . , yn}. Notice that, since 
il(x + szh) = Al(x), we have A - s2B 5 0, i.e., @(A - szB)q5 5 0 for all 
4 E LIB,,. For i = 1, . . . . n, let & be the unit length generalized eigenvector 
corresponding to yi. Then, for i = 1, . . . , n, we have #,!A& - yi@HB#i = 0 
and +,!A& - s2@ B4i 5 0. In view of the fact that A 5 0, this implies that, 
when yi > 0, we have $,F B& < 0 and ~2 5 yi. ??

Proof of Theorem 4.1. It is obvious by using the definition of the multiplicity 
q of 11(x) at x*. ??

Let P = {sl, . . . , sq} be a partition of (1, . . . , n}, i.e., P is a collection 
of nonempty, pairwise disjoint subsets whose union is { 1, . . . , n}. A function 
r] : IP’ + IR is said to be symmetric w z t. a partition P if the value of n is invari- 
ant under permutations of its arguments within the groups ~1, . . . , sq. For any 
a E BY, we define the partition Pi(,) to be the partition that groups the indices 
i for which ki(u) are of a same value. We will employ the following result in 
proving Theorem 4.2. 

FuctA.2. [37] Suppose that q: IP + R is analytic and is symmetric w.r.t. PA(,) 
for some a E EP. Then the composite function f(x) = tl()cl (x), . . . , &(x)) is 
analytic at a. 

Proof of Theorem 4.2. Let r]l (z), 59(z) : R” + R be defined by 

ad 
14-l 4 

VZ(Z) = 2 C ,C (zi - zj12 
r=l ]=I+1 
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respectively. Therefore, fi(x) = ni(11 (x), . . . , k,(x)), i = 1,2. Using the 
definition of the multiplicity q of )Ll(x) at x*, it is straightforward to check that 
both r]l (z) and Q(Z) are analytic and are symmetric w.r.t. the partition QX*). The 
claim then follows from Fact A.2. W 

Proof of Theorem 4.3. It is straightforward to verify the expressions by using 
a result in [37]. W 

Proof of Theorem 4.4. It is easily checked that z is a descent direction 
for hi(x) at x when q = 1. Thus, assume q > 1. Let gi(x) and Hi(x), i = 
1,2, be defined as in Theorem 4.3, and let h, and hb be defined as in Algorithm 
4.1. Under the assumption OL the multipl@ty, it is easy to see that f2(x) = 
0, g2(x) = 0, h, = 0, Hz(x)h = 0, gr(x)h = gr(x)hb = -hlHl(x)hb, and 
N*Hl(x)hb = -NTgl(x). Then 

4-l Y 

f2(x + Si;) = C C [Ai (X + @i;i - Jbj (X + pg)]' 
i=l j=i+l 

B2--T 
= f2(x) + ,6g;(x$+ -i-h Hz(x)x+ 0(fJ3> = O(P3> 

Since hb # 0 (by assutnption) and H1 (x) 2 0, in_view of the definitions of hb and 
N, it holds that gT(x)h < 0. Let M = -gr (x)h > 0. In view of the property of 
O(.), there exists /$ > 0 such that 

- < M2/12q2 
fz(x + Bh) _ - 

9(q - 1) 
vs E (0, Bl). 

Thus, 

= f J( fJ*~(X+~K)-Ai(X+~j;)] 2 
i=2 1 

5 i (q-~)~[hl(x+Bi;)-hi(x+p~)l~ 
\1 i=2 

5 f/q= fM/3 VP E (O,/?l). (A.3) 
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Above, to obtain the first inequality, we use the fact that any c E Bk satisfies 
llclll 5 z/itllcllz, where I1 . 111 and II . 112 denote the 11 and Z2 norms, respectively. 
On the other hand, we also have 

i.e., (l/q) CT=‘=, hi(x + Si;i - Al(x) + M/I = 0(B2). In view of the property of 
O(.) again, there exists /I2 > 0 such that 

1 q 

4 i=l 
c Ai(X+pi;)-hl(X)+MB 5 iM/3 'lB E (0,82), (A-4) 

Let #IO = min{/31, /?2}. Adding (A.3) and (A.4) together yields 

hl(x + Sx) - )\l(x) 5 -M/9 + @f/l + $4/I = -$M/3 < 0 vs E (0, Bo). 

Hence, 2 is a descent direction for it (x) at x. ??

The authors wish to thank Dr N. K. Tsing, Dr A. L. Tits, and the anonymous 
referee for many helpful suggestions. 

REFERENCES 

F. Alizadeh, Optimization over the positive definite cone: Interior-point methods and 
combinatorial applications, in Advances in Optimization and Parallel Computing 
(Panos Pardalos, Ed.), North-Holland, 1991. 
F. Alizadeh, Combinatorial optimization with semidefinite matrices, in Proceedings 
of Second Annual Integer Programming and Combinatorial Optimization Confer- 
ence, Carnegie-Mellon Univ., 1991. 
k C. Allwright, LQP: Dominant output feedback, IEEE Trans. Automat. Control 
27:915-921 (1982). 
J. C. Allwright, On maximizing the minimum eigenvalue of a linear combination of 
symmetric matrices, SIAM J. Matrix Anal. Appl. 10(3):347-382 (July 1989). 
Y.-H. Au-Yeung and N.-K. Tsing, An extension of the Hausdorff-Toeplitz theorem 
on the numerical range, Proc. Ame,: Math. Sot. 89:215-218 (1983). 
J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier, 
1973. 
S. P. Boyd and C. H. Barratt, Linear Controller Design: Limits of Performance, 
Prentice-Hall, 199 1. 



MINIMIZING THE LARGEST EIGENVALUE 245 

8 

9 

10 

11 
12 

13 

14 

15 

16 

17 

18 

19 

20 

21 
22 

23 

24 
25 

26 

27 

28 

29 

S. P. Boyd and L. El Ghaoui, Method of centers for minimizing generalized eigen- 
values, Linear Algebra Appl., to appear. 
S. P. Boyd and Q. Yang, Structured and simultaneous Lyapunov functions for system 
stability problems, Internat J. Control 49(6):2215-2240 (1990). 
J. Chen, C. N. Nett, and M. K. H. Fan, Worst-case system identification in H,: 
Essentially optimal algorithms, error bounds, and validation of a priori information, 
in Proceedings of 1992 American Control Conference, Chicago, June 1992, pp. 
251-257. 
F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, 1983. 
J. Cullum, W. E. Donath, and P. Wolfe, The minimization of certain nondifferentiable 
sums of eigenvalues of symmetric matrices, Math. Programming Study 3:35-55 
(1975). 
W. E. Donath and A. J. Hoffman, Algorithms for partitioning graphs and computer 
logic based on eigenvectors of connection matrices, IBM Tech. Disclosures Bull. 15 
(1972). 
W. E. Donath and A. J. Hoffman, Lower bounds for the partitioning of graphs, IBM 
J. Res. Develop. 17 (1973). 
J. C. Doyle, Analysis of feedback systems with structured uncertainties, Proc. IEE- 
D 129(6):242-250 (1982). 
M. K. H. Fan, An Algorithm to Compute the Structured Singular Value, Technical 
Report, SRC TR-86-8, Systems Research Center, Univ. of Maryland, 1986. 
M. K. H. Fan and B. Nekooie, On minimizing the largest eigenvalue of a symmetric 
matrix, in Proceedings of 31 th IEEE Conference on Decision and Control, Tucson, 
Ariz., Dec. 1992, pp. 134-139. 
M. K. H. Fan and A. L. Tits, A measure of worst-case Ho0 performance and of largest 
acceptable uncertainty, Systems Control Lett. 18:409-421 (June 1992). 
M. K. H. Fan, A. L. Tits, and J. C. Doyle, Robustness in the presence of mixed 
parametric uncertainty and unmodeled dynamics, IEEE Trans. Automat. Control 
36(1):25-38 (1991). 
R. Fletcher, Semi-definite matrix constraints in optimization, SIAMJ. Control Optim. 
23:493-513 (1985). 
F. Hausdorff, Der Wertvorrat einer bilinearform, Math. 2. 3:314-316 (1919). 
J. E. Hauser, Proximity Algorithms: Theory and Implementation, Memo UCB/ERL 
M86/53, Electronics Research Lab. Univ. of California, Berkeley, Calif., May 1986. 
F. Jarre, An Interior-Point Method for Minimizing the Maximum Eigenvalue of a 
Linear Combination of Matrices, Technical Report SCL 91-8, June 1991. 
T. Kato, Perturbation Theory for Linear Operators, 2nd ed. Springer, Berlin, 1976. 
J. E. Kelley, The cutting-plane method for solving convex programs, J. Sot. Indust. 
Appl. Math. 8(2):703-712 (Dec. 1960). 
L. Lovasz, An Algorithmic Theory of Numbers, Graphs, and Convexity, CBMS 50, 
SIAM, Philadelphia, 1986. 
C. Moler, J. Little, and S. Bangert, PRO-METLAB User’s Guide, The Math Works, 
Inc., Sherborn, Mass., 1987. 
Y. E. Nesterov and A, S. Nemirovsky, Self-Concordant Functions and Polynomial 
Time Methods in Convex Programming, Moscow, 1990. 
M. L. Overton, On minimizing the maximum eigenvalue of a symmetric matrix, 



246 MICHAEL K. H. FAN AND BATOOL NEKOOIE 

30 

31 

32 

33 

34 

35 

36 

37 

38 

SIAMJ. Matrix Anal. Appl. 9:2X-268 (1988). 
M. L. Overton, Large-scale optimization of eigenvalues, SIAM J. Optim. 2:88-120 
(1992). 
M. L. Overton and R. S. Womersley, On the sum of the largest eigenvalues of a 
symmetric matrix, SIAM J, Matrix Anal. Appl., 1992, pp. 4145. 
E. R. Panier, On the need for special purpose algorithms for minimax eigenvalue 
problems, .I. Optim. Theory Appl. 62(2):279-287 (Aug. 1989). 
E. Polak and Y. Wardi, Nondifferentiable optimization algorithm for the design of 
control systems subject to singular value inequalities, Automatica 18(3):267-283 
(1982). 
U. T. Ringer& Optimal Design of Nonlinear Shell Structures, Report, Flygtekniska 
Forsoksantalten, Aeronautical Research Inst. of Sweden, 1991. 
M. G. Safonov, Stability margins of diagonally perturbed multivariable feedback 
systems, Proc. IEE-D 129:251-256 (1982). 
A. Shapiro, Extremal problems on the set of nonnegative definite matrices, Linear 
Algebra Appl. 67:7-18 (1985). 
N.-K. Tsing, M. K. H. Fan, and E. I. Verriest, On analyticity of functions involving 
eigenvalues, Linear Algebra Appl., to appear. 
P. Young, private communications, 199 1. 

Received 28 April 1992; final manuscript accepted 25 March I993 


