
FEBS Letters 580 (2006) 703–710

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Cepharanthine triggers apoptosis in a human hepatocellular
carcinoma cell line (HuH-7) through the activation of JNK1/2

and the downregulation of Akt

Kamal Krishna Biswasa, Salunya Tancharona, Krishna Pada Sarkera,b, Ko-ichi Kawaharaa,
Teruto Hashiguchia, Ikuro Maruyamaa,*

a Department of Laboratory and Vascular Medicine, Faculty of Medical and Dental Sciences, Kagoshima University,
8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan

b Department of Biochemistry and Molecular Biology, The University of Calgary, Faculty of Medicine, 3330 Hospital Drive, NW,
383 Heritage Medical Research Building, Calgary, AB, Canada T2N 4N1

Received 4 November 2005; revised 15 December 2005; accepted 15 December 2005

Available online 22 December 2005

Edited by Vladimir Skulachev
Abstract Cepharanthine (CEP), a biscoclaurine alkaloid, has
been reported to induce cell death, however, the molecular mech-
anism of this phenomenon remains unclear. We herein report
that CEP induced apoptosis in HuH-7 cells through nuclear
fragmentation, DNA ladder formation, cytochrome c release,
caspase-3 activation and poly-(ADP-ribose)-polymerase cleav-
age. CEP triggered the generation of reactive oxygen intermedi-
ates, the activation of mitogen activated protein kinase (MAPK)
p38, JNK1/2 and p44/42, and the downregulation of protein ki-
nase B/Akt. Antioxidants and SP600125, an inhibitor of JNK1/
2, but not inhibitors of p38 MAPK and MEK1/2, significantly
prevented cell death, thus implying that reactive oxygen species
and JNK1/2 play crucial roles in the CEP-induced apoptosis of
HuH-7 cells.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.

Keywords: Cepharanthine; Apoptosis; MAPK; PARP;
SP600125
1. Introduction

Cepharanthine (CEP) is a natural alkaloid extracted from

Stephania cepharantha Hayata [1], which has been widely used

in Japan for the treatment of snake venom-induced hemolysis

bronchial asthma and other types of allergic inflammation,

alopecia areata, and leukopenia during radiation therapy or

anti-cancer treatment without any serious side effects [2,3].

Okamoto et al. reported that CEP inhibits HIV-1 replication,

suppresses PMA-induced production of inflammatory cyto-

kine and a chemokine in monocyte/macrophage cultures, and

also protects differentiated human neuroblastoma cells death

induced by TNF-a and gp120 [3]. CEP has also been shown

to prevent vascular injury induced by LPS [4]. Goto et al. dem-
Abbreviations: CEP, cepharanthine; JNK, c-Jun N-terminal kinase;
MAPK, mitogen activated protein kinase; ROS, reactive oxygen spe-
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onstrated that CEP is beneficial for the treatment of newborn

endotoxic shock [5]. Evidence is accumulating supporting the

hypothesis that CEP potentiates the activity of some anti-can-

cer agents and restores the effect of anti-cancer drugs in multi-

drug-resistance cancer cells possibly through perturbing the

plasma membrane function in order to increase the intracellu-

lar accumulation of anti-cancer drugs [2,6]. Some recent re-

ports have provided evidence that CEP itself displays both a

direct anti-tumor effect, thereby inhibiting the growth of Ehr-

lich ascites tumors [7] and inducing apoptosis in human leuke-

mia cell lines [8] as well as an indirect anti-tumor effect by

interacting positively with human interferon [9]. Nakajima

et al. recently reported that CEP co-treatment enhances the

cytotoxicity of doxorubicine resistant hepatocellular carci-

noma cell lines [10]. Nishikawa et al. have shown that CEP en-

hances adriamycin accumulation in cancer cells but lowers its

accumulation in normal liver cells in both, in vitro and

in vivo [11], thus suggesting that CEP plays a beneficial role

in potentiating the effect of chemotherapy on the drug resis-

tance of hepatocellular carcinoma.

The family of serine–threonine protein kinases plays an

important role in apoptosis and survival signaling pathways.

The major components belonging to this family are p38 mito-

gen activated protein kinase (MAPK), c-Jun N-terminal ki-

nase (JNK), extracellular-signal regulating kinase1/2 (ERK1/

2 or p44/p42), and protein kinase B (PKB or Akt), which

are activated in response to a variety of stimuli. JNK and

p38 MAPK signaling molecules are predominantly activated

by the inflammatory cytokines, environmental stress, and oxi-

dative stress, thus leading to cell differentiation and apoptosis

[12–14]. p44/42 MAPK and Akt, on the other hand, are pref-

erentially activated by mitogen through the Ras/Raf/MEK

(MAP kinase kinase) and Ras/PI3-K signaling pathways,

respectively; thus leading to cell growth and survival [15].

Although it has been reported that CEP causes death in hepa-

tocellular carcinoma cell lines [10], to the best of our knowl-

edge there have so far been no reports available on the

mechanism of hepatocellular carcinoma cell death induced

by CEP. The present study was undertaken to investigate

the effect of CEP on human hepatocellular carcinoma using

a human hepatocellular carcinoma cell line, HuH-7, and the

underlying intracellular signal transduction pathways in-

volved. We herein show evidence that CEP induced apoptosis
blished by Elsevier B.V. All rights reserved.
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in HuH-7 cells through the generation of reactive oxygen spe-

cies (ROS), the activation of stress activated kinase JNK1/2,

MAPK p38, and ERK p44/42, and the downregulation of

the protein kinase B (Akt).
2. Materials and methods

2.1. Reagent
CEP was purchased from Kaken Shoyaku Co. Ltd. (Tokyo, Japan).

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide
(MTT) was purchased from Dojindo (Kumamoto, Japan). Hoechst
33258 (Bisbenzimide H33258) fluorochrome and phenylmethylsulfonyl
fluoride were purchased from Wako Pure Chem. Inc. Ltd. (Osaka, Ja-
pan). Protease inhibitor (complete cocktail) was purchased from Boeh-
ringer–Mannheim (Germany). Hundred base pairs DNA ladder size
marker was bought from Invitrogen (California, USA). N-Acetyl cys-
teine (NAC) and 5,6-carboxy-2,7-dichlorofluorescein-diacetate
(DCFH-DA) were purchased from Sigma Chemical Co. (St. Louis,
MO, USA). N-t-Butyl-a-phenylnitrone (PBN) was purchased from
ICN Biomedicals, Inc. (Ohio, USA). SB203580, SP600125 and Cas-
pase-3 inhibitor 1 were obtained from Calbiochem (San Diego, CA,
USA). U0126 was obtained from Promega (Madison, WI, USA).
CPP32-like protease activity assay kit was purchased from MBL (Na-
goya, Japan). Any other chemicals not specifically cited here were pur-
chased from the Sigma Chemicals (St. Louis, MO, USA).
2.2. Antibodies
The polyclonal antibodies to p38, JNK/SAPK, and phospho-p38,

phospho-JNK/SAPK, phospho-Akt (serine-473), ATF-2, phospho-
ATF-2, and themonoclonal antibodies toAkt were purchased fromCell
Signaling Technology (MA, USA). b-Actin and poly-(ADP-ribose)-
polymerase (PARP) were purchased from Sigma (St. Louis, MO,
USA) andOncogene (Cambridge,MA,USA), respectively. Cytochrome
c antibody was obtained from PharMingen (San Diego, CA, USA).
2.3. Cells and cell culture
Human hepatocellular carcinoma cell line, HuH-7, was obtained

from the RIKEN Cell Bank (Tsukuba, Japan) and cultured in 10%
FBS-containing DMEM media (Gibco-BRL, USA) with the appropri-
ate antibiotics at 37 �C in the presence of a humidified atmosphere of
air (95%) and CO2 (5%). All experiments were performed in the pres-
ence of a low serum (0.1% serum).
2.4. Cell viability test
MTT assays were applied to test cell viability, as described by Biswas

et al. [16]. In brief, the cells were seeded at a density of 2–3 · 104 cells
per well in 96-well dishes. The cells were then incubated under various
conditions as indicated. Subsequently, MTT (0.5 mg/ml final conc.)
was added to each well. After 3 h of additional incubation, 100 ll of
a solution containing 10% SDS (pH 4.8) plus 0.01 N HCl was added
to dissolve the crystals. The absorption values at 570 nm were deter-
mined with an automatic ELISA plate reader (Immuno Mini
NJ-2300, Japan).
2.5. Nuclear staining with Hoechst 33258
Morphological changes in the nuclear chromatin of cells undergoing

apoptosis were detected by staining with Hoechst 33258 fluorochrome
as described by Biswas et al. [16].
2.6. DNA fragmentation assay
To characterize the cell death pattern, DNA ladder assays were per-

formed as previously described [16]. Briefly, 106 cells were lysed in
100 ll of 10 mM Tris–HCl buffer (pH 7.4) containing 10 mM EDTA
and 0.5% Triton X-100. After centrifugation for 5 min at
15,000 rpm, supernatant samples were treated with RNase A and pro-
tenase K. Subsequently, 20 ll of 5 M NaCl and 120 ll isopropanol
were added to the samples and kept at �20 �C for 6 h. Following cen-
trifugation for 15 min at 15,000 rpm, the pellets were dissolved in 20 ll
of TE buffer (10 mM Tris–HCl and 1 mM EDTA) as loading samples.
To assay the DNA fragmentation pattern, samples were loaded onto
1.5% agarose gel and electrophoresis was carried out.

2.7. ROS assay
The formation of intracellular H2O2 as production was determined

using dichlorofluorescein diacetate (DCFH-DA) as previously de-
scribed [16].

2.8. Preparation of the cytosolic fractions, cell lysates, and Western

blotting
Cellular fractions and Western blotting were carried out as described

by Sarker et al. [14].

2.9. Assay of caspase-3/CPP32 enzyme activity
Caspase-3 enzyme activity was analyzed according to the manufac-

ture’s instructions as described by Sarker et al. [17].

2.10. Statistical analysis
All experiments were performed in triplicate. The results of multiple

observations were presented as the means ± S.D. of at least three sep-
arate experiments. Statistical significance was determined by Student’s
t-test. A value of p < 0.05 was considered to be significant.
3. Results

3.1. CEP induces apoptosis in hepatocellular carcinoma cells

We evaluated for the first time the effect of CEP on the via-

bility of hepatoma cells by stimulating HuH-7 cells with vari-

ous concentrations of CEP in the presence of a low serum

(0.1%) for 24 h. As shown in Fig. 1A, CEP dose dependently

triggered cell death. Cell death was not significantly observed

up to 10 lM CEP exposure but a marked decrease in cell via-

bility (74 ± 8%) was observed at 15 lM CEP, which in turn

sharply decreased to (60 ± 7%) when cells were exposed to

20 lM CEP. Fig. 1B shows that the cells shrank, became

rounded, and the phase became bright in response to CEP

treatment which was consistent with the results presented

above. We then investigated the effects of CEP on the cell via-

bility over time. A loss of cell viability was evident at 6 h

(89 ± 5%), which in turn, noticeably increased to (77 ± 8%)

at 12 h and a sharp increase (60 ± 7%), 24 h after 20 lM of

CEP exposure (data not shown). Because chromatin condensa-

tion, nuclear fragmentation and DNA ladder formation are

notable features of programmed cell death [18,19], we next

sought, to examine whether CEP-induced cell death was fol-

lowed by these features. In response to CEP (20 lM), both

chromatin condensation and nuclear fragmentation were ob-

served by fluorescence microscopy (Fig. 1C) and DNA ladder

formation was detected by agarose gel electrophoresis

(Fig. 1D), thus suggesting that CEP-induced HuH-7 cell death

was due to apoptosis.

3.2. CEP induces the production of ROS

We then examined whether or not CEP-induced cell death

was followed by oxidative stress. As shown in Fig. 2, CEP at

a dose of 20 lM, which caused a significant degree of apopto-

sis, also caused a marked induction of ROS. Consistent with

this result, NAC and PBN, specific scavengers of ROS, signif-

icantly attenuated CEP-induced apoptosis (cells viability in-

creased to 85 ± 8% and 88.86 ± 7% by the pretreatment of

cells with 500 lM of either NAC and PBN, respectively (data

not shown), thus suggesting that CEP induced HuH-7 cell

death followed by oxidative stress.



Fig. 1. CEP induces apoptosis in HuH-7 cells. The cells were subjected to various concentrations of CEP for 24 h (A). Cell viability was determined
by an MTT assay. The data shown are the percentages of the control values ± S.D. (*p < 0.05 vs. control). Microscopic observations of cell
morphology (B,C) in the absence (left panels) or in the presence (right panels) of 2 lMCEP. (B) The phase contrast (original magnification 200·). (C)
Hoechst staining (original magnification 400·). Note that the cells which stimulated with CEP exhibited apoptotic features characterized by
condensed/fragmented nuclei. (D) DNA ladder formation. The cells were treated with the indicated concentrations of CEP for 24 h and an
internucleosomal DNA fragmentation was analyzed on 1.5% agarose gel electrophoresis. M, indicates the 100-bp DNA ladder size marker. The data
shown are the representatives of three independent experiments.

Fig. 2. CEP causes the generation of ROS. The cells were treated with
20 lM CEP for 1 h in the presence of DCFH-DA and then harvested,
and the fluorescence of ROS was evaluated by FACS analyzer. Note
that CEP caused a marked induction of ROS. The data shown are the
representatives of three independent experiments.
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3.3. CEP triggers the activation of MAPK p38, JNK1/2 and

ERK1/2

Based on these findings, we sought to examine whether CEP-

induced hepatoma cell death was accompanied by the activa-

tion of common pro-apoptotic signaling pathways. CEP was

found to activate JNK and p38MAPK, which mediate apopto-

sis in different experimental models [12–14]. The phosphoryla-

tion of both JNK and p38 MAPK was time-dependently

induced by CEP (Fig. 3A). p38 MAPK and JNK activation

could be detected within 7.5 min, and dramatically increased

for 1 h, and thereafter was sustained for 4 h. Consistent with

such JNK and p38 MAPK activation, CEP induced the activa-

tion of c-Jun (Ser 73) and ATF-2, the down-stream targets of

JNK and p38. We also observed that ERK1/2 and Akt, which

are generally known to promote cell survival [15] were reversely

regulated in response to CEP. A marked activation of ERK1/2

was detectable at 7.5 min which thereafter maintained constant

levels for 4 h, whereas protein kinase B (Akt) was downregu-

lated in response to CEP. We next evaluated the possible roles

of these activated kinases in CEP-induced cell death. As shown

in Fig. 3B, a potent and a specific inhibitor of JNK, SP600125,

noticeably blocked CEP-induced cell death (the cell viability in-

creased from 60 ± 7% to 87 ± 7%), while SB203580, a specific



Fig. 3. CEP triggers the activation of p38, ATF-2, JNK, c-Jun, and p44/42 and downregulation of Akt. (A) The cells were stimulated with 20 lM of
CEP for the indicated time periods and the activation and expression levels of different kinases and the indicated transcription factors were
determined by immunoblotting as described in Section 2. (B,C) The effects of SB203580 and SP600125, and U0126 and LY290042 on CEP-induced
apoptosis. The cells were pretreated with various concentrations of SB (SB203580: 1, 2.5, 5, and 10 lM) and SP 1 (SP600125: 1 lM), and U0 (U0126:
0.5, 1, 2.5, and 10 lM) and LY (LY290042: 0.5, 1, 5, and 10 lM), which are all specific and potent inhibitors of p38 and JNK & MEK1/2 and PI3-K,
respectively, for 1 h. Cell viability was determined after a 24-h exposure of 20 lM CEP. The data shown are the percentages of the control
values ± S.D. (*p < 0.05 vs. CEP).
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inhibitor of p38 MAPK instead of protection dose dependently

enhanced CEP-induced cell death (the cell viability significantly

decreased from 60 ± 7% to 44 ± 8% in the presence of 10 lM
SB203580). Like SB203580, pretreatment of cells with U0126,

a potent and specific inhibitor of MEK1/2, the up-stream of

p44/42 signaling molecule, as well as LY29004, a specific inhib-

itor of PI3-K, the up-stream of Akt, could not prevent CEP-in-

duced cell death (Fig. 3C). We also found that U0126, and

SB203580, blocked activation of ERK1/2, and p38, respectively

(data not shown). Data presented above indicates that ROS

generation and JNK activation are positively correlated with

CEP-induced apoptosis of HuH-7 cells. It is of interest to exam-

ine whether ROS act up- or down-stream of JNKs. We found

that pretreatment of cells with either NAC or PBN completely

blocked CEP-induced ROS accumulation, whereas failed to in-

hibit JNK activation (data not shown). Alternatively,

SP600125 did not affect CEP-induced ROS production (data

not shown), indicating that ROS production and JNKs activa-

tion represent two independent pathways.

3.4. CEP triggers cytochrome c release and PARP cleavage

Biochemical events such as the release of cytochrome c from

mitochondria into cytosol, caspases activation, and PARP

cleavage occur during mitochondrial-mediated apoptotic cell
death. We therefore investigated whether CEP-induced cell

death was also followed by these biochemical events. We no-

ticed that after a 2-h exposure of CEP, cytochrome c was

detectable and it significantly increased at 4 h in the cytoplas-

mic protein fraction (Fig. 4A). CEP has been shown to activate

caspase-3 in jurkat cell apoptosis [8]. In addition, the release of

cytochrome c into cytosol has been well documented to trigger

caspase activation, thus resulting in cell death. As shown in

Fig. 4B, CEP stimulated a 4.2 ± 0.3-fold increase in caspase-

3-like activities at 12 h and the treatment of HuH-7 cells with

a specific and potent inhibitor of caspase-3 significantly

blocked CEP-induced apoptotic cell death (cells viability in-

creased to 82 ± 8% in the presence of 10 lM caspase-3 inhibi-

tor, data not shown), thus indicating the CEP-induced cell

death followed by caspase-3 activation. Once caspase-3 is acti-

vated, a number of cellular proteins are cleaved, including

PARP. To further confirm the activation of caspase-3 in

CEP-induced cell death, we determined the PARP cleavage

by Western blotting. As shown in Fig. 4C, CEP treatment

markedly induced PARP cleavage, thus suggesting that mito-

chondrial events were also associated with the CEP-induced

hepatoma cell death process. We further investigated whether

or not ROS production and JNK activation occur up-stream

of mitochondria. For this purpose, cells were pretreated with



Fig. 4. CEP induces the cytochrome c release from the mitochondria and PARP cleavage via caspase-3 activation. (A) The cells were treated with
CEP for the indicated periods of time and the cytosolic fractions were analyzed for the levels of cytochrome c (Cyt c, upper panel) by
immunoblotting. b-Actin was used for the loading control (lower panel). Blots represent three experiments. (B) The cells were treated with 20 lM of
CEP for 12 h. At the end of the treatment, caspase-3 like protease activity was assayed. The data are the means of ±S.D. (*p < 0.05 vs. CEP) of three
individual experiments. (C) PARP cleavage in CEP-treated cells was determined by immunoblotting. Blot represents four experiments. (D) The cells
were pretreated with NAC (500 lM) or SP600125 (1 lM) and then exposed to 20 lM of CEP for 4 h and the cytosolic fractions were analyzed for the
levels of cytochrome c by immunoblotting. Blot represents three experiments.
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NAC or SP600125 for 1 h, followed by the 4-h exposure of

CEP, and cytochrome c release was evaluated. As shown in

Fig. 4D, both of NAC and SP600125 partially blocked CEP-

induced cytochrome c release. On the other hand, caspase-3

inhibitor did not affect either ROS generation or JNKs activa-

tion induced by CEP (data not shown), suggesting that ROS

and JNK are up-stream players in the CEP-induced HuH-7

cells death (Fig. 5).
4. Discussion

In the present study, we demonstrated that CEP induces

apoptosis in human hepatocellular carcinoma, HuH-7 cells,
Fig. 5. A putative model for the CEP-i
in a dose- and time-dependent fashion. CEP induced cell death

followed by chromatin condensation, nuclear fragmentation,

and DNA ladder formation, which are the hallmark features

of apoptosis [18,19] in HuH-7 cells. Our findings are consistent

with the findings of previous reports which demonstrated that

CEP induces apoptosis in human leukemia cell lines, Jurkat

and K562, murine P388 doxorubicin-sensitive (P388), and

resistant (P388/Dox) cells [8,20]. We also investigated the link-

age between oxidative stress and cell death. Our results showed

that CEP treatment conferred oxidative stress to the cells

(Fig. 3A) and these results are in line with recent reports that

CEP (1–10 lg/ml) induced ROS in murine p388 doxorubicin-

resistance (p388/Dox) cells even though CEP did not induce

ROS in murine doxorubicin-sensitive (p388/S) cells [20].
nduced apoptosis of HuH-7 cells.
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However, contradictory reports regarding the generation of

ROS have also been published. For example, Aakamatsu

et al. reported that CEP is an effective ROS scavenger as it sig-

nificantly reduces the levels of ROS generated by neutrophils

[21]. These differences in their findings may be due to differ-

ences in the cell types.

The family of MAPKs play a key role in cell survival/death

in many physiological and pathological settings. It is well doc-

umented that JNK or p38 MAPK activation leads to apoptosis

in various experimental model systems [13,14]. A study by

Ghatan et al. has shown that p38 MAPK can induce mito-

chondrial translocation of Bax in neurons undergoing oxida-

tive stress-induced apoptosis [22]. Recently, we have reported

that JNK and p38 MAPK are activated and positively corre-

lated in oxidative stress-induced cell death [14,23]. However,

contradictory findings have also been reported. For example,

p38 MAPK was not implicated in the death of WEHI-231

and NIH3T3 cells [24]. On the other hand, the p38 MAPK is

required for proliferation of leukemia, lymphoma cell lines

[25]. JNK activation has been found to have no role in

TNF-a-mediated apoptosis in MCF-7 cells [26]. Moreover,

JNK activity has been shown to be required for growth of

T98G glioblastoma [27]. A growing body of evidence shows

that JNK activation plays pro-apoptotic role only if its activa-

tion is prolonged [13,28,29]. The process of cell survival occurs

in conjunction with apoptosis, resulting in the inhibition or de-

lay of apoptotic cell death. Activation of p44/42 MAPK and

protein kinase B (Akt) are generally associated with cell prolif-

eration and survival [15]. In contrast, p44/42 has been found to

be activated in various apoptotic models. Recently, p44/42

MAPK activation has been demonstrated to be essential in cis-

platin-induced apoptosis [30].

In the present study, we found that CEP triggered the acti-

vation of JNK, p38 MAPK, and p44/42 and the downregula-

tion of Akt. We examined the functional relationship between

the MAPK activity and the cell death process and thus ob-

served that the JNK activity, but not the p38 or p44/42 MAPK

activity, played an essential role in CEP-induced apoptosis

(Fig. 3B and C) as SP600125, the pharmacological inhibitor

of JNK but not U0126 or SB203580 significantly abrogated

CEP-induced apoptosis, thus suggesting that p38 MAPK and

p44/42 may not be involved in CEP-induced cell death. It

has been reported that SB203580 can activate the Raf-1 activ-

ity in quiescent smooth-muscle cells [31]. JNK activation has

also been reported to be inhibited by a p38 MAPK inhibitor

[32]. To rule out any non-specific function of SB203580 and

U0126 that might occur, specially, at a higher concentration,

we incubated the cell with a wide range of concentrations

(nanomolar to micromolar) of these inhibitors. However, we

did not notice any change of JNK, p44/42 activation, or cell

death by SB203580 (data not shown). Actually, the p38

MAPK subfamily which consists of p38a, p38b, p38c, and

p38d isoforms has been shown to play different roles. Nemoto

et al. reported that p38a induces apoptosis, whereas p38b
inhibits apoptosis, indicating that each member of the p38

MAPK subfamily has unique role in apoptosis [33].

SB203580, the pyridinyl imidazole compound that was used

in the present study for blocking the p38 MAPK, has been re-

ported to inhibit a and b isoforms, while the c and d isoforms

are insensitive to this compound [33]. Hence, we cannot rule

out the possibility of opposite roles that may be played by

other isoforms of p38 MAPK in CEP-induced HuH-7 cell
apoptosis. However, our results are partly in agreement with

the findings of Wu et al. who reported that p38 plays an

anti-apoptotic role, while p44/42 appeared to be a pro-apopto-

tic player in CEP-induced Jurkat and K562 cells [8]. Wu et al.

also demonstrated that CEP did not cause the activation of

JNK in either Jurkat and K562 cells [8]. Interestingly, we ob-

served a marked activation of JNK as well as its down-stream

target, c-Jun (serine 73) in HuH-7 cells in a time dependent

fashion and the JNK activity was found to be required for

the induction of cell death. Wu et al. reported that CEP in-

duces a marked activation of p44/42 in K562 cells but not in

Jurkat cells [8]. Therefore, it appears that ROS, JNK, and

p44/42 mediate CEP-induced cell death in a cell type specific

manner. The generation of ROS and the activation of p38

MAPK and JNK are correlated with apoptosis in many cell

types. It has been reported that stress-activated MAPKs (p38

and JNK) can be activated in a ROS-dependent as well as

independent manner [29,34,35]. JNK dependent mitochondrial

damage has also been shown in oxidative stress-induced cell

death [36]. We observed that ROS and JNK are positively cor-

related with CEP-induced HuH-7 cells death. We are therefore

interested in investigating the link between JNK activation and

ROS production. We found that inhibition of ROS production

did not prevent activation of JNK, whereas inhibition of JNK

did not suppress ROS accumulation (data not shown). These

observations suggest that JNK activation and ROS production

represent two independent pathways in the CEP-induced cell

death. The important issue that arises in this study is how

JNK is activated in CEP-induced cell death. There are several

lines of evidence that vanadate can trigger phosphorylation of

JNK independently of ROS [35]. Clerk et al. reported that fac-

tors other than ROS are involved in the activation of SAPKs/

JNKs during ischemia/reperfusion [37]. Although the exact

signaling pathway for ROS-independent JNK activation in

CEP-induced cell death remains to be elucidated, one possible

mechanism could be that CEP treatment somehow causes tyro-

sine phosphorylation in JNK or inhibits phosphatases in HuH-7

cells, resulting in activation of JNK and cell death.

In addition, we found that CEP treatment caused a down-

regulation of PKB/Akt and pretreatment of cells with

LY29004 instead of prevention, significantly enhanced CEP-

induced cell death indicating that Akt might have a survival

role in CEP-induced HuH-7 cell death. Our results are sup-

ported by the recent findings that FTY720, a novel anti-cancer

agent, induces apoptosis in hepatoma cell lines both in vitro

and in vivo by downregulating Akt [38]. As a result, our find-

ings suggest that CEP-induced HuH-7 cell apoptosis is accom-

panied by the activation of JNK and the downregulation of

Akt. The release of cytochrome c and other apoptogenic fac-

tors from the injured mitochondria has been shown to activate

caspases [39]. Caspases can modulate p38 MAPK/JNK activa-

tion in TNF-a or Fas-induced apoptosis [40] and caspase

inhibitor can attenuate p38/JNK activation [41], thus suggest-

ing that these stress-activated kinases may be dependent upon

caspase activation. However, JNK-mediated caspase activa-

tion has also been reported [42]. We observed that CEP-in-

duced apoptosis was accompanied by the mitochondrial

release of cytochrome c followed by the activation of cas-

pase-3 and cleavage of PARP (Fig. 4A–C). Our results also

show that a potent inhibitor of caspase-3 significantly abro-

gated cell death (data not shown), thus implying that cas-

pase-3 protease is involved in the CEP-induced apoptosis of
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HuH-7 cells. These results are consistent with the recent find-

ing that CEP induces apoptosis in human leukemia and adeno-

squamous cell carcinoma cell lines through the activation of

caspase-3 and the induction of PARP cleavage [8,43]. Further-

more, NAC and SP600125 partially inhibited CEP-induced

cytochrome c release (Fig. 4D). We also observed that cas-

pase-3 inhibitor failed to inhibit ROS generation and JNK

activation (data not shown), thus implying that ROS genera-

tion and JNK activation may be up-stream of mitochon-

drial-associated events in CEP-induced HuH-7 cells death.

Although the exact mechanism through which /JNK activation

leads to cytochrome c release is not clear in the present study

and warrants further investigation, however, it seems that,

activated JNK and down-stream c-Jun play some roles in reg-

ulating expression levels of Bcl-2 and Bax which may in turn

cause mitochondrial injury and release of cytochrome c. Lee

et al. recently reported that luteolin-induced activation of

JNK causes the mitochondrial translocation of Bax, cyto-

chrome c release, and caspase-3 activation in human hepa-

toma, HepG2 cells [44]. Taken together, our results suggest

that the production of ROS, the activation of JNK, and down-

regulation of Akt play crucial roles in CEP-induced apoptosis

of hepatocellular carcinoma, HuH 7 cells.
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