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Abstract—This paper develops the adjoint sensitivities to the free-surface barotropic Navier-
Stokes equations in order to allow for the assimilation of measurements of currents and free-surface
elevations into an unsteady flow solution by open-boundary control. To calculate a variation in a
surface variable, a mapping is used in the vertical to shift the problem into a fixed domain. A
variation is evaluated in the transformed space from the Jacobian matrix of the mapping. This
variation is then mapped back into the original space where it completes a tangent linear model. The
adjoint equations are derived using the scalar product formulas redefined for a domain with variable
bounds. The method is demonstrated by application to an unsteady fluid flow in a one-dimensional
open channel in which horizontal and vertical components of velocity are represented as well as the
elevation of the free surface (a 2D vertical section model). This requires the proper treatment of open
boundaries in both the forward and adjoint models. A particular application is to the construction of
a fully three-dimensional coastal ocean model that allows assimilation of tidal elevation and current
data. However, the results are general and can be applied in a wider context. © 2006 Elsevier Ltd.
All rights reserved.

Keywords—Navier-Stokes equations, Free surface, Open boundary, Optimal control, Adjoint
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1. INTRODUCTION

The simulation of water circulation in coastal areas requires the application of either two-
dimensional (2D) or three-dimensional (3D) computer flow models. These models calculate
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solutions for either the 2D shallow-water equations (SWE) [1], or for the layer-averaged 3D
Navier-Stokes equations (NSE) [2], or for the 3D free-surface Navier-Stokes formulation (fsNSE)
using sigma coordinates [3], or for the fully 3D nonhydrostatic {sNSE [4,5], etc. All of these cal-
culations require that the solution is driven by an unsteady inflow Dirichlet boundary condition
based on ‘known’ data. However, in a typical application it is unlikely that measurements are
available at the boundary but it is much more likely that data is available at scattered locations
within the model domain, measured by current meters and tide gauges, for example. Hence the
boundary conditions are actually unknown and must be recovered by a process of adjustments
until the model solution agrees with measured data at the internal points. This describes the
inverse problem in which data is assimilated into a model solution and boundary conditions are
recovered from internal data. The process of adjustment can be systematized by calculating
appropriate sensitivities to guide a gradient descend algorithm. In the field of meteorology, the
data-assimilation techniques based on optimal control methods appear in early 1970s [6,7]. A
general sensitivity theory for nonlinear systems was formulated in [8]. Boundary-control prob-
lems for free-surface fluid flow were considered for the SWE [9,10], for a depth-integrated tidal
model [11], and for the vorticity equation [12,13], etc. For the primitive hydrostatic equation
(PHE) we can refer to [14], where the authors declare a discrete adjoint fsNSE option. The dis-
crete (consistent) adjoint refers to the adjoint of the discretized model equations. It is quite likely
that similar discrete adjoint codes have been generated for some other ocean models. We present
here a continuous (inconsistent) adjoint model, which is an important tool for general qualitative
analysis, for considering solvability issues, etc. Also, of course, it is a valid way to construct
the adjoint solver for practical applications. This paper presents the adjoint formulation of the
nonhydrostatic barotropic fsNSE in 2D vertical section (for the inviscid case this formulation first
appeared in [15]). The method is general and can be extended to the 3D baroclinic fsNSE. The
novelty of this work is in the complete treatment of the free surface in the adjoint problem and
in the clarification of open-boundary conditions in both the forward and adjoint models.

Tidal flows in shallow coastal waters are often represented by solutions to the SWE. This
is usually considered to be valid for well-mixed, barotropic conditions. It is clear that in cases
where freshwater inflows cause baroclinic conditions a 3D representation is needed which must also
include the salinity transport equations. However, 3D models offer advantages even for barotropic
conditions because the effects of topographic steering are better represented. For example, flows
over or around a submerged step or shoal may cause flow separation and enhanced mixing that
can only be represented in 3D. Even flow past a change in coastline direction may result in
different flows at the surface where there may be a tendency to separate, than near to the bed
where the flow remains attached. The resulting lateral shears cause an increase in mixing that
may be significant in a pollutant transport study.

The rapid improvement in reliability and availability of data from coastal waters is driving the
need for data-assimilation methods effective in tidally dominated flows. Adjoint models developed
for oceanographic (deep water) applications, see for example [16], do not determine sensitivities
to variations in the free surface and therefore cannot directly assimilate water-elevation data
(although it can be achieved by introducing the measured geopotential surface). The model pre-
sented here allows direct assimilation of unsteady water levels by the adjoint method applicable
to shallow tidal flows (as well as to deep water flows). This is probably the first fsNSE continuous
adjoint model that is free from the hydrostatic assumption in any form. Further applications for
the method are to the creation of operational coastal flow models that assimilate measurements
of current flows and water levels in order to calculate a ‘nowcast’ of flow conditions at all loca-
tions within the model area. This in turn can be used as an initial condition for a short-term
forecast.



Open Boundary Control Problem 1245

2. PROBLEM STATEMENT

Let us consider a 2-D free-surface flow in a channel, where the z-axis is directed along the
channel, ‘and the z-axis from the channel bed to the surface. Velocities u = u(x,z2,t), w =
w(z, z,t) are associated to -, z-axes, respectively (see in Figure 1). The governing equations are
as follows:

oh oh
E; := 5 + u(z, h(m,t),t)% —w(z, h(z,t),t) =0, (1)
Ou Ow
By i= o+ =0, 2
Ou Ou Ou Op 0 Ou 7] Ou
ES'_E+U%+w5z_+§E—£(Hh8_x>+5;(“”5;)’ 3)
]E._a_w+ ?2_1_ 8_w+@+ _.?._ Qiu_ +2 ?ﬂ (4)
YT TV T8 Te: T T e \Mer ) T2\ ez )

z e (0,L), z € (H(z), h(z,t)), t e (0,7),

where h(z,t) is the elevation function describing a free surface, H(z) is the channel-bed shape
function, L is a position of the right boundary, uj, and u, are effective viscosities in z and 2
directions, respectively, g is the acceleration due to gravity; p = (po — pz)/p is relative pressure,
where pg is pressure, pz-atmospheric pressure at the sea level, and p = const is density.
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Figure 1. Schematic bathymetry.
The initial state is assumed to be known and we will consider it, for simplicity, as trivial
h{z,0) = Z, u(z, z,0) = 0, w(z,z,0) =0, (5)

where Z = const is the elevation of the undisturbed fluid. For the channel bed (z = H(z)) in the

viscous case, i.e., when pu, + |6g§;’) |n # 0, we must apply no-slip boundary conditions

u:(), w = 0. (6)

We also consider separately the inviscid flow, in which case we can apply free-slip condition, that
is
OH (z)
Ox
By neglecting the surface tension and the viscous normal stress, we have the dynamic condition
for the free surface (z = h(z,t)) as follows:

u

—w=0. )

p=0. (8)
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When considering boundary conditions for lateral boundaries one should distinguish between
physical boundaries, where the known physical behavior of the state variables can be specified,
and artificial or ‘open’ boundaries, introduced for computational purposes. The task of specifying
boundary conditions on the open boundaries is not trivial and, in the case of systems which are
predominantly hyperbolic, requires a characteristic analysis of the problem to be involved [17].
A fundamental point is that, in order to set up a well-posed open-boundary problem, one must
specify the incoming characteristic variables, or in terms of primitive variables, prescribe as
many boundary conditions as the number of incoming characteristics. Let us assume that the
open control boundary is at £ = 0 and denote by U, (0, z,t) the vector-function of incoming
characteristic variables. The passive boundary is assumed at z = L. It can be either an open
boundary or a real physical boundary (liquid/solid interface), i.e., a ‘wall’. An open boundary
should be assumed to contain only outgoing characteristics. The characteristic structure of lateral
boundaries will be considered in detail in Section 7.

Let us denote as Ay, := iL(fL‘k,t) elevation measurements given at some points z € (0,L); and
as Uy,m = 4(z1, Zm,t) u-velocity measurements at some points z; € (0, L) along the trajectories
I, i= Zm(x1,t) € (H(z), h(z,1)), i.e., velocity sensors are allowed to move in the vertical direc-

tion. We formulate a boundary-control problem as follows: find U, (0, z,t) and S = [h, p, u,w]"
subjected to constraints (1)—(4) such that
J (U4(0,2,t)) = inf J(V4(0,2,t)),
(Vy)
(9)

T T
T(U4(0,2,1)) = %;/0 (hzx,t) iz,c)2 dt + % zz:;/(’ (@1, Zom (@1, 1)) — i m)? dt.

The objective functional (9) can be modified to include covariances and penalty terms (regu-
larization).

One of the key difficulties with the problem of interest consists of deriving the variation in the
surface variable h. A classical approach is that the variation in a certain dependent variable is
calculated assuming all the other dependent variables are functions of z, z, t, i.e., independent
variables. For example, we can fix h, p, w and then find the variation in u using the common
rules for partial differentiation. The difficulty arises when we calculate variation in h. To do so
we have to fix all the other variables p, u, w. That cannot be done unless we fix h itself. Thus, we
face a contradiction: in order to calculate the variation in h(z,t), it has to be fized. The situation
can be resolved using either an explicit or implicit parameterization of the domain boundary [18],
or using the concept of topological derivative [19], or using a mapping approach [20]. All these
methods are widely used in the shape-optimization problems. In applications to the free-surface
fluid flow problems we can mention [21], where the first approach (parameterization) is applied for
solving steady potential flow. We use the approach based on a domain transformation. It is worth
mentioning that compared to [20] we are dealing here with an unsteady problem, and we have an
additional constraint to the mapping coefficients given by the kinematic condition (1). A similar
difficulty would arise if U, (0, z,t) was actually dependent on z € (H(0),h(0,t)). The value of
the control variable, which is updated in the course of an iterative process Uﬁ:"l = U} + UL
(i is the iteration index), generates a new control domain z € (H(0), h*1(0,t)), as long as Uit!
remains defined in the old domain y € (H(0),h(0,t)). We will see later that this difficulty can
also be resolved using the domain-transformation approach.

We should also mention the two assumptions about the surface that are made in the given
formulation. The first one is that the free surface can be defined by the graph of the elevation
function h(z,t), which must be a single-valued function of z. Thus, the chosen model cannot
describe such phenomena as breaking waves, for example. Second, we use here a simplified form
of the dynamic surface boundary condition, neglecting surface tension and the viscous normal
stress (the general form could be considered, if necessary).
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3. COORDINATE TRANSFORMATION

Let us denote R[z, z, ] the original coordinate system and introduce a new coordinate system
R'[z/, 2/, t'] related to R by the transformation Q : R — R’ as follows:
— H(z))
t=t, 2 =z, 2 = (Z—, (10)
(h(z,t) — H(z))
assuming h(z,t) > H(z), V(z,t). To simplify presentation we will use notations h := h(z,t),
H := H(z) until a special need arises. It can be seen that det(Q) = 1/(h — H) > 0, i.e., the
transformation is unique, and the inverse transformation Q' : R’ — R exists. Now we can write
for derivatives

0 0 z' Oh 0

9t ot h—H ot oz

9 _0 1 (oH ,0h-H)\ o
9z 0z h—H\ o0z '~ oz 92"
5. 1 b

9z (h—H)oz'
It follows from these formulas that

oh _oh  OH _OH o(h—H) _8(h—H)

Bt ot or oz’ Oz oz’
Therefore, we can finally rewrite the expressions for derivatives as follows:
o 0 4 8 o_b & 8 o__1 8
ot ot h—HOaz’ oxr — 0z’ (h—H)adz'"’ 0z  (h—H) 92"’
Where oh oH ,8(h—H)
6’1 = Zla—t/', 612 = 8_1,‘7 + ZIT. (12)
Then we can write for Q’
0 0 0 0- 0 0 0 0
- m % o st o T Hp (13)
where
_z—HOoh _O0H z—-HOh-H) (14)
““Th-Hot® " bz "h-H o0z

For deriving adjoint equations we have to define the scalar product for the domain with variable
bounds. Let us denote

= [ [ttt [ [ [0 masarar

We consider now two arbitrary functions §, s* € Ly, and calculate

o OB\ [ (05 e 0%
"ot/p \ '\8 h—HOz')/p’

Above, Ly = Ly((0,T) x (0,L) x (H,h)) is a space of square-integrable functions, and §' =
§(a, 2, t"), s = §'*(a',2',t'). The right-hand side of the last expression is given in constant
bounds and we evaluate it using the classical integration-by-parts rule. Next applying to the
result the inverse transformation formulas (13),(14) we obtain

~ * h L T L
<s-,_‘?ﬁ> =<_§,§’f.> +/ / [gs*]gdzdz_/ / e85 dzdt.  (15)
ot/ gp ot /n Ju Jo o Jo



1248 I. Yu. GEJADZE AND G. J. M. COPELAND

As expected, the main part is the same as if the boundaries were constant, but the boundary set
(i-e., those additional terms which arise in integration by parts) contains a term dependent on
the coefficient e;, which represents the domain-transformation rate. This term affects the adjoint
boundary conditions and may appear in the sensitivity formulas. Using a similar approach we

derive
<S*’g_:::> <§’ ax> //[ *] dZdt—/ / [e255*|; dx dt, (16)
< §> < az> // sy dadt. (17)

4. TRANSFORMED PROBLEM

Let us reformulate the problem in R’ using the transformation Q. All the variables in R’ are
marked by /. We start our investigation looking at the inviscid case. Some questions related to
the presence of viscous terms will be discussed in Appendix A. For further consideration we need
a generalized function h(z,z,t) = h(z,t), Vz. In this case equation (1) can be written in the

form N A
oh  Oh
/H]Eldz.—/H2<§+u$—w>6(z—h)dz—0. (18)

The objective functional (9) can also be presented including the d-function as follows:

J(UL(0,2,t) = Z// h hk J(a:——zk)dmdt

19
+%;;/0 /0 /H(u——ﬁlym)25(m——ml)6(z—Zm)dzdzdt. "

Applying (11),(12) to (18), (2)-(4), one gets
/OI]E'ldz' = /12<gz+ gh w') 8(z' —1)dz' =0, (20)
EQ:=%—$+u’%+%% ﬁg—g—&-g:O, (23)

z' € (0,L), Z' € (0,1), t' € (0,7),

where p'(2/, 2/, t'), v/ (2', 2/, t'), and w’(z’, 2’, t') are new variables defined in the rectangular spatial
domain [0, L] x [0, 1] related to p, u, and w by mapping

p (2,2, t)=p(',H+2(h-H),t), etc. (24)

Since h is the same in R and R’, we do not use the notation h’. The initial and boundary
conditions (inviscid case) are

h(z',0) = Z, w'(z',2,0) =0, w'(z’,2',0) =0,
(

H /
6; ) _ w'(z’,0,t') =0,
p'(z',1,t') =0,
z=0:U,(0,2,t') — control input, z = L : ‘open’ boundary or ‘wall’.

u'(z,0,t) 9
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We can see that the functions p’, v/, w’ are defined for all 2’ € (0,1), i.e., h is no longer a part of
the definitions. Therefore, we apply the classical approach to evaluate the variation in h, which
is now explicitly incorporated into the model equations written in the transformed space. Also,
in R’ the control vector-function U’ (0,2,t') can be updated because it is always defined in the
same domain z’ € (0,1). The objective functional (19) in R’ takes the form

1 T rb ~ N2
177! 1oy , , '
J(U.@.(O,Z,t))—é‘%:‘/o A (h——hk) 6(_’1: —mk)dx dt
1 T L p1 9
SES [ [ @@ el s - 2 et e
i Jo Jo Jo

Apparently J’ = J, and therefore, both J’ and J have the same stationary points and we can
solve the control problem in R’.

(25)

5. TANGENT LINEAR MODEL

The forward model, TLM, and the adjoint model could all be formulated and resolved in R’.
This is often referred to as a problem stated in o-coordinates [3]. In fact, in meteorology, con-
tinuous terrain-following coordinate transformations are generally favored. Recently, the clas-
sical transformation of Gal-Chen and Sommerville has been extended to a broad class of time-
dependent vertical domains, which incorporate free-surface upper boundaries [22]. In practice,
however, many solvers built for oceanographic applications work in the original space R. In order
to cope with existing solvers the TLM derived in R’ and the related adjoint problem can be
reformulated back to R.

Let Q(s) be the result of a mapping of an object s € R into the transformed space R’. For
example, the object s := % is defined in R’ by the right-hand side of the first formula in (11),

i.e., we can formally write
0- 0 e, 0
Ql=)i=—=-———.
ot ot h—H oz

Because Q(s) € R/, it can be used in those expressions which are written in R’, showing the
intention to perform the mapping of s at some stage. In the same way we denote Q’(s’) the
result of the inverse mapping of an object s’ € R’ into the original space R. These notations are
introduced to minimize the size of the formulas, i.e., for descriptive purposes only.

Let us define S = [h,S,]7, S1 = [p,u,w]", a vector-function of state variables in R, and
S =[h,S"]7, S| =[p',u/,w']", in the transformed space R’ correspondingly. We will mark the
variation in a certain object s as §, and the corresponding adjoint object as s*. We assume that
the TLM in R’ can be presented in the form

E.§ =0.

Here E' = [E},E/]7, E/, = [E},E%,E}]T, is a linear matrix-operator acting on ', such that

c i=1,...,4.

o _ (92 o5 o8, o
¢\ 8RBy ouw’ B!

Then the adjoint matrix-operator E”* in R’ can be calculated from the following scalar product:
T
T _ & ik ’
<(s )7L E S>R,_<(S) JE*. S >RI+B, (26)

where B’ stands for the boundary set, which arises in integration by parts. We intend to use
Q'(E™) as an adjoint matrix-operator in the original space.
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Although we could proceed in that way, a more elegant (less laborious) approach can be
suggested instead. Let E’' be a submatrix of E™ such that it consists of the columns of E*,
i = 2,3,4, and B be a subset of B’ without those terms containing h*. Let us assume now
that E*% is the adjoint matrix-operator and B, are the boundary terms derived from a scalar

product
(07 @ (1) 8), = ((8) Ei-s1) +Bu. (27)
It can be proved that if we use (15)—(17) to calculate (27), then
QEN=El, Q(B=
It can also be proved that

. OE,\ OF; OF; OF;
' 7\ _ ’ i i i i\ . C_
Q' (&) = (Q (‘—‘ah ) S e ’—Bw) L i=2,3,4, (28)

Looking at (27) and (28) we may conclude that all the adjoint terms related to (2)—(4) could be
calculated as follows: the variations f, @, @ are calculated in R from (2)—(4) and A is calculated
in R’ from (21)—(23) and then is mapped back to R; then the adjoint terms are finally calculated
directly in R. The adjoint terms related to (1) are calculated as follows: first, the variation in (20)
is calculated, then the adjoint terms are calculated in R’ and then are mapped to R. Thus, the
variation in (20) is

1 v [0k dh Bk
1.5 dy = on 1 ' ' ! = 9
/0 E;-S'dz /0 2 <6t’ tu'gs + 5t —0' ) 8(z'=1)dz' =0, (29)
and in R it is . _ ~
Oh Oh  0Oh
i i - =0. 30
/H2(6t+u6m+3m )6(2 h)dz=0 (30)

As we mentioned, the last equation cannot be used for producing the adjoint terms and it is
presented here just to complete the TLM formulation.
Following (28) we calculate first

0 0 0By,

Thus we obtain the TLM equations as follows:
o (8) 5554 2 (2) o o
Q'(Eg)-5‘::%+u%+w%+§§+%a+%w+q(ﬁé>-ﬁ:o, (32)
Q’(EQ)-S’:z%—?+u%+w%+%+ZZ) a +Q’<6E'> h=0, (33

z € (0,L), z € (H,h), te(0,T).

Then we calculate the last terms in (31)—(33) as follows:
() -0-n(-39 (3 ()Xo (5 (c2r)
() 030 (3 (£54525) 20 3 (%)),
() -0 (o (7)) 20 (2 ()
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Taking into account that

(7)==

d eh 2 0 ey

EE(h-H)'h—HZa?_‘(h—H)z’
i(w’—ei—u’e&)__z_’(@ tu 6-)_w'—e’1—u’e’2
dh h—H h—H\or ‘oz h—H?

using the inverse transformation formulas (13),(14) and then collecting terms we have got even-
tually

OE,\ < oh oh oh
/ 1 . '_—_ '=
Q(Bh) h: ai1 gy +ai25- +aiags + a; 4h, i=2,3,4, (34)
where
z—H du 1 ow ou
a1=0, @mp=-3—pz ®24=—3"F |5 23,
g, = 2z HOu o _z=H [ Ou, Op)
T TR THe: T Th-m\"9:" Bz
1 ou Op
wa= o W ey T, ) (35)
_ z-How _ z-H ow
M1 TR T He: T Th-H"8z
1 ow Op
a4,4=—ﬁ_—H (w—el ’Ulez)—a;-}—az
a;3 = a;1€1 + a;2€2, 1=2,3,4.

The initial and boundary conditions for the TLM in R (inviscid case) are as follows:

h(z,0) = @(z,2,0) =0,  @(z,z0) =0,
a(z, H,t) + on (“’)w( Hit)=
p(xi h7t) - 0,

z=0: U+ (0, z,t) — control input; z = L : ‘open’ boundary or ‘wall’.

In order to derive adjoint equations in R we also need to calculate g—i;— -4 and %% - h and map
the formulas to R. It can be seen that

Q'(g%:'ﬂ'):——- u—ZZ///(u—uzm)éx—xl)é(z— m)adzdzdt. (36)
For - h we have
%7,;, ﬁ:Z/T/L (h—he) b (@' ~ a)hda’ e’
QZ //{/ (u' — 1, )2%#dz’}6(w’—x;)l~zdw’dt'.

Then, using the differentiation rule for composite function we obtain

(37)

05(z —2,) _ 86(<' — ZL,) 02},
on 8z oh
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As long as 872,% does not depend on 2/, it can be exported from the integral with respect to z’
and will appear later as a multiplier. Using the definition for derivative of J-function we write as
follows:

1 . 86 (' — 2! ) .
—/) (’U,, - U«l,rn)2 % dZ’ = [5 ((UI - ul,m)2):|

o’
= 2 (u' - ﬁ[ym) ——]
[ 0z z'=2Z!,

2'=Z!,

Now we multiply the result by '%Z;:n and substitute it into (37) instead of the expression in braces.
Performing the inverse transformation we get eventually

Q' (%—fﬁ) :=;/OT/OL (h—izk) hé(z — zi) dz dt

T rL ou 02y Zm—-H . (3)
+;;/0 /o [(u B a”’”)a_y] ez (W - W) 6(z — zi)hdz dt.

This is interesting to note that when Z,, is a given function, then %ﬁh = 0. However, if it is
unknown, but depends explicitly on h, for example Z,, = h (i.e., measurements are performed

on the surface), then
6h h—H

o h-H

and the second term in the right-hand side of (38) vanishes.

=1-1=0

6. (PSEUDO)ADJOINT MODEL

Now we shall derive the adjoint equations and the boundary set. Let us construct the total
variation in R’ as follows:
oJ' aJ -

A+ — - h. (39)

A= <h*’]E,1'§I>R'+<(SQ)T’]E1'S’/> + oh

R o
As stated above, adjoint equations can be derived from A’ and then mapped into the original
space. This procedure is actually applied to the first term in the right-hand side of (39) only.
For the second term, we follow a ‘shortcut’ discussed in Section 5 and use (27) to calculate E}
directly in R. The last two terms, which are mapped into R (see (36),(38)), are used to derive the
right-hand sides for the corresponding adjoint equations. Thus, the first term in (39) produces
the adjoint terms

oh*  Ouh* ou,, =
-2 (—(9?+—(9';"+625—£h )5(z—h)h (40)
oh . -
+ 2$h d(z—h)u (41)
—2h*8(z — h)w (42)

and a boundary set as follows:

/ ‘ [Eh*]z dz (43)

+ / ) [Bu(x, h,t)h*}j dt. (44)
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Next we apply formulas (15)-(17) to all the terms in (31)—(33), except the last ones (in S).
Collecting results around p, @, W including those in (41),(42) we compose the adjoint equations

ou* Ow*
T or 0z =0 (45)
ou* ou* ou* Op* Ow, Ow , _Oh , _
T e Ve or et Taw Tlapt e TM=re  (9)
ow* ow* ow* Op* Ou , Ou , . _
—8t —Uax —waz —'E;-FE’U/ —a’w —2h(5(2-—h)—0, (47)

z € (0,L), z € (H,h), te (0,T),

where

ra=—=Y_3 (u—1tum)dx—z)5(z = Zpm).
l m

Finally, we apply (15)-(17) to (34), which represents the last terms in (31)—(33). Collecting
results around & including those in (40), we get after integrating all with respect to z the adjoint
equation for h*
_Oh*  O(u(z,h,t)h*)  Ohdu(z, h,t) B
ot Ox Oz Oz
z € (0,L), te (0,7),

—F=rn (48)

4 h
_ Bai,ls;‘ 6ai,gs;‘ 60,151382‘ « " . e ek .
F= E / ( D + e + 55 —a;48; | dz, s; € S*=[h*,p*,u",w*], (49)

Th=—2(h—-ilk) 5(:1:—:L‘k)
k
35 3] [IRE] Y (W ET. A PR )
l m Z2=4m

The boundary set, obtained as a result of calculating E7 , is as follows:

h oL
2= fh
H JO

T L
+/ / [—e2tup* + Wp* — egpu” +ﬁw*]’;{ dz dt
o Jo

4 T
wu* + ow* + Z Eai,ls;‘jl dzdz (51)
=2 0

T oL
+/ / [—ertu* — eqliuu™ + dwu* — eyWw* — eguw™ + u"wa*]';{ dx dt (52)
o Jo
T rh 4 L
+/ / up* + duu* + pu* + duw* + Z ha;s7| dzdt. (53)
o JH P 0

Using Leibnitz’s integration rule and taking into account (14) and (35), we can rewrite (49) in
the equivalent form, that is convenient for numerical implementation

4 h h h
0 0
— il st - s dz — . 4SF . 5
F ;=2 (3t /H a;1s; dz + 393/1{ a;2s; dz /H Qi 45; dz> (54)

The order of magnitude analysis made for coefficients a; ; in (34) shows that for weak dynamics
typical for many problems in oceanography only those terms which contain gg =~ —g and p* are
significant.
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We must emphasize here that equations (48), (45)-(47) represent in R the adjoint equations
related to the transformed equations (20)—(23), rather than the adjoint model directly related to
the original equations (1)—(4). The control problem we actually solve is the problem that involves
the objective functional (25). Thus, the adjoint solution obtained in R must deliver a correct
sensitivity in R/. Let us note that the optimality system in R’ may look different dependent
on the transformation applied. The same is true for the corresponding ‘adjoint’ model in R
(coefficients a; ;). However, an optimal solution calculated in a chosen R’ and mapped in R must
coincide with the optimal solution of the original problem in R, no matter what the transformation
was used. Taking into account these considerations, the adjoint formulation presented here is
referred to as a pseudo-adjoint to (1)-(4).

We shall derive the initial and boundary conditions for the adjoint problem. As usual, assuming
zero terminal conditions for all adjoint variables, i.e.,

h*(z,T) =0, p*(z,2,T) =0, u*(z,2,T) =0, w*(z,2,T) =0, (55)

we annul (43) and (51). Boundary terms related to the surface and the bed (52) can be rewritten
in a more comprehensive form as follows:

T /L .
/ / [—p* (te2 — W) — p(u*ex — w*) — (Gu* + Ww*)(e1 + uez — w)]};i dz dt.
o Jo

Looking at (14) and keeping in mind bed boundary conditions both for the forward model and
for the TLM we note that

Oh Oh
ler + uex —w], = 5 +u(z,h,t)5§ —w(z, h,t) =0,

ler +ueg —w]y = u(m,H,t)%—Ij —w(z, H,t) =0,
[Geg — W]y = ﬁ(z,H,t)-a—Ii —w(z,H,t) =0.
Ox
Taking into account that p(z, h,t) = 0 we annul (52) completely by choosing
p*(z, h,t) =0, (56)
u*(z, H, t)%’zi — w*(a, H,t) = 0. (57)

The terms in (44),(53) could be used for deriving boundary conditions and gradients at the lateral
boundaries. However, we use another approach, which is presented below.

7. BOUNDARY CONDITIONS FOR LATERAL BOUNDARIES

Let us consider a general 1D linear hyperbolic problem given as follows:

%+A%+BU=O, z€(0,L), te(0,T), (58)
with an open boundary at z = 0. Here U(z, t) is a vector-function of state variables, A and B are
coefficient matrices. This is a typical form in which the TLM of an original nonlinear hyperbolic
problem can be cast. Let us also assume that there exists a decomposition A = RAL, such that
A = diag()\;), RL =1, and LR = I. (Such a decomposition may exist only in some cases.) Then
the previous equation can be presented in the form

v oV oL L
—52—+A%+<LB—E——A5;)RV_O, (59)
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where V' = LU are the characteristic variables. Obviously, one also has U = RV. Depending
on the sign of eigenvalues \; we deal with either the incoming or the outgoing characteristics.
A fundamental point is that, in order to set up a well-posed open-boundary problem, one must
specify the incoming characteristic variables.

Let us write now the adjoint of (58) as follows:

oU* LU T AT\ .
-5 -4 WJF(B -5 Ut =0. (60)

In addition to (60) one must consider a boundary term
T L
/o [UTATU*], dt, (61)

which is used to derive boundary conditions for the adjoint problem. These conditions have to
be chosen in such a way that (61) would eventually depend on those variables which we intend
to control. Now we remember that, for the open-boundary problem to be well posed, only the
incoming characteristic variables have to be specified. One can note that if \; < 0 for some
indexes 4, then U(0,t) may not be considered as a boundary condition, because the problem
becomes overdetermined and therefore ill-posed. In order to build the appropriate control we
must turn to the characteristic form of (60),(61). In terms of the factors R, L, and A the adjoint
equation (60) can be written in the form

ov*  av* - 8L 8L\ BA\ .
—W—A—&—+<R (LB—E—A£> —g)v =0, (62)

where V* = RTU* shall be called the adjoint characteristic variables. As above, one can write
U* = LTV*. Comparing the transport part of (62) and (59) one can note that the eigenvalues of
the two problems differ only by sign. It means that the incoming characteristics of the forward
problem (59) are the outgoing characteristics for the adjoint problem (62), and vice versa. Now
the kernel of (61) can be written as follows:

UTATU* =UTLTAR™U* = (LU)TA (RTU*) = VTAV* = PR AN (63)

In order to make (61) independent of the outgoing forward variables, we must put to zero the cor-
responding incoming adjoint characteristic variables. Thus, from (61),(63) we derive the boundary
conditions for the adjoint problem

V=0, V<0, z=0. (64)

It is interesting to note that when specifying zero incoming characteristic variables one obtains
a radiation boundary, rather than a perfect nonreflecting boundary in terms of Hedstrom’s defi-
nition [23], which is

ou* 8v*  BRT
RT 22 _ s [ — — L]
AR oz Ai ( oz Oz

Ll V) =0. (65)
This is obviously not equivalent to (64).

Now, we should recognize that the incompressible (inelastic) fsNSE (1)-(4) are not a hyper-
bolic system. However, their eigensolutions have time-dependent behavior which is like that of
hyperbolic systems. That is, the barotropic behavior is dominated by free-surface gravity waves.
We will use this property to construct an approximate characteristic representation of open
boundaries. The well-posedness of problem (1)—(4) for periodic boundary conditions is justified
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in [25], and for the inviscid case in [24]. However, we have found no results that demonstrate the
well-posedness of the open-boundary problem for (1)-(4). The nearest results are those related
to the primitive hydrostatic equations (PHE) [26-28]. A rigorous characteristic analysis of the
compressible fsNSE (which do constitute a hyperbolic system)‘ is probably possible to conduct.
A proper elaboration of this issue may constitute a subject for a future research.

Let us note that this discussion is related to the boundaries only. We can assume that at the
boundaries we have physical conditions that could justify a simplified approach, but at the same
time inside the domain we have a full-physics model. Let us suppose that in the vicinity of the
control boundary the 2D fsNSE support a surface gravity wave that could be described by the
SWE in terms of variables ¢, ¢, which are uniquely defined through the variables of the 2D fsNSE
problem as follows:

h
o=h-2, q:/ udz.
H

However, the variables of the original problem cannot be uniquely defined through the SWE
variables, unless we associate with ¢ a certain velocity profile %(z), such that

h
/ U(z)dz =q. (66)

H

A simple choice is
i(z) = 4, (67)

but one could use functions which actually depend on z. For example, it could be the exponential
function to represent the profile associated with a short wave. However, we will confine ourselves
to considering long waves. In this case (67) is valid. If equation (58) represents the 1D SWE,

then 0 . 5
Az(cz—-ﬂ2 212)’ U=(q)’

i=—3 = /alh —
and A can be factorized in the form A = RAL, where
11 -1 _fe+@ O [ c—a 1
R_2c(c+ﬁ c—ﬁ)’ A_< 0 —c+ﬂ)’ L_(—(c+a) 1)- (69)

Now, assuming that 1 is transported along the characteristics related to the eigenvalues A\; = @i+c
and A\ = 4 — ¢, we define the following characteristic variables:

where

Vi=q+(c-u)¢, Va=gq—(c+a)s

Thus, we have two characteristic variables at the open boundary: incoming V; and outgoing V5.
The control variable is therefore the incoming characteristic variable Vi, i.e., Uy (0,t) = Vi(t).
As long as it does not depend on z, the control can be exercised directly in R. The value of the
outgoing characteristic variable V5 has to be calculated from its values in the interior. Since we
are unable to derive exact equations for characteristic variables at the boundary, we will evaluate
the values of V3 simply by extrapolating from interior values, using the second-order scheme

&

Va(0,t) = 2V(Az, t) — Va(2Az,t).

One can note that the relationship between V;, V and primitive variables h, u of the fsNSE is
nonlinear, unless @, c in (68), and h in (66) are considered as coefficients which are dependent
on z, t only. Let us assume that @, ¢, and h are defined (for example, in the semi-implicit
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numerical implementation these values are taken from the previous time step). Then h, u can be
linearly expressed via V;, V, (using R from (69)) as follows:

1 V;
hO,0) =2+ 5 (E——z),
1 ’ ’ U U (70)
R R Ay [(1+3) v+ (1-5) ]
The boundary values for w can be calculated using the irrotationality condition that yields

ow(0, z,t)

i St dak In Ay 71

5 0 (71)

This condition is used for control and passive boundaries in both forward and adjoint models.
As usual for the incompressible NSE, no boundary condition for pressure has to be specified at
lateral boundaries. Similar definitions for the adjoint characteristic variables are

*

h
* * — *= * N % — q
#=we-m), o= [ v wE =iy

1
Vl*;--21—c(¢*+(c+ﬁ)q'), V;=%(—¢*+(c—ﬁ)q*),

and the variables of the fsNSE adjoint problem expressed in terms of V;* (using LT from (69))
are

* _(C—’EL) *_(C+ﬁ) *
h(oat)_h_HVI h—HV2’ 79
V* + V* ( )
u*(O,z,t) = ﬁ
Taking into account condition (64) one can finally obtain
RO =2V, w050 = g (73)

h—H H
where V* is the outgoing adjoint characteristic variable to be estimated from its interior values.
It follows from (61),(63) that the sensitivity on V;(0,t) is

Vi) = 2 e v 0.0, (74)
The boundary conditions for a ‘physical’ boundary can also be derived from the characteristic
representation. For example, if the boundary = = L is a wall (fluid/structure interface), then we
can reasonably assume that
u(L, z,t) = 0, q(L,t) =0.

It follows from the last assumption that V; = —V,. Thus, we obtain
h(L,t) =Z + %, u(L, z,t) =0, (75)

where V; is an outgoing characteristic variable at £ = L and can be calculated based on its
interior values. Similarly, for the adjoint problem one has

h*(L, ) = —h—fc—ﬁxg*, w*(L,2,t) = 0, (76)
where V3 is an outgoing adjoint characteristic variable at x = L and can be calculated based on
its interior values.

Although the approach presented here is approximate, it works reasonably well so long as at
the boundaries the SWE model remains compatible with the barotropic fsSNSE model, i.e., for
the long-wave situation, as will be demonstrated in Section 8. Indeed, it is exact in the long-wave
limit, which is approached as the wave-length becomes much greater than the depth. Nevertheless,
we show here a practical way of designing boundary conditions for lateral boundaries for the fsNSE
model, either forward or adjoint. The method can be generalized by using the characteristics of
the multilayer SWE. This will allow us to consider the baroclinic fsNSE and introduce nonuniform
in depth u-velocity profiles. Boundary conditions of that type are presently under investigation.
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8. NUMERICAL EXAMPLES

8.1. General Description of the Numerics

A trial numerical implementation has been made using a finite-difference semi-explicit solu-
tion of the problem with a fixed regular mesh similar to the well-known SOLA algorithm {29].
Equations are discretized on a staggered grid using a hybrid scheme for advection terms. The
Poisson equation for pressure is formed and resolved by the SOR method in the case of the for-
ward equations and the TLM, and by a direct solver based on banded LU-decomposition in the
case of the adjoint equation. In solving the forward model, the solution h, p, u, w is saved in
the memory. This data is recalled when the TLM or the adjoint problem is running. Because
the forward, the TLM, and the adjoint equations differ only in source terms a single solver is
used. All calculations presented here have been performed for inviscid flow. No approximation
operator for measurements is used.

In order to underline a general applicability of the method we design a special test case when
the bed function suddenly changes from being deep to shallow. This change happens over one
space discretization step, i.e., % is bounded, and transformation (10) remains well posed. In
reality this describes a situation near the ‘shelf’ edge. This is a severe test for methods that
include the hydrostatic approximation in some way. A particular bathymetry sketch is shown in
Figure 2. Channel dimensions are: L == 3000m, Z = 100m. The number of grid nodes used in all
calculations presented here is N, = 100 and N, = 20, and the discretization steps are Az = 30m,
Az =5m, and At = 0.36s. The velocity measurements are defined at all grid nodes at a chosen
location in the middle of the shallow region (z = 2250 m).

ZA

Figure 2. The bathymetry.

The numerical experiments carried out here are sometimes referred to as identical twin exper-
iments. We consider the two forward solutions generated by two distinct control inputs Vl(tr)
and Vl(gs), which may be interpreted as a ‘true value’ and a ‘guess value’. We shall call §V;(t) =
V) (t)— V) (t) the ‘estimation error’. The difference between the two solutions at the measure-
ment points yields the residuals r, or 71, which are used as driving sources for solving the adjoint
problem to produce the sensitivity V.J(t). When a need arises, we will use (u), (h), or (u, h) as
subscripts to VJ(t) in order to indicate that the sensitivities are obtained using either ry, or s,
or both. Now, the estimation error has to be eliminated in the course of an iterative minimization
procedure, based on VJ(t).

Let us consider a linear hyperbolic transport problem and assume that all the incoming char-
acteristics (i.e., those which are directed from the control boundary toward the sensors) are
measurable. Then the sensitivity has to coincide, within a scaling factor, with the estimation
error. In this case one iteration of the steepest descend method should identify the boundary con-
trol. In reality the problem under consideration is not truly hyperbolic, and it is nonlinear. We
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cannot perfectly get rid of numerical diffusion either. Nevertheless, comparing normalized values
of the estimation error and the sensitivity function we can estimate the expected convergence
rate. So, we consider normalized functions

SVi(t)
lsVii)llz,’

and a difference between them as follows:

e(t) = 6V 1(t) — VI (t).

vJ(t)

Vi) = NG

VIt) =

In fact, the remainder € may be considered as a new value of the estimation error after one opti-
mization step, and ||€(t)”£21 as a convergence rate (in terms of the solution error). The situation
is more complicated when the incoming characteristics are not measurable, i.e., measurements
contain reflected signals. (The problem of ‘ghost’ signals is well known in inverse scattering. So
far, no perfect algorithmic remedy is suggested to filter the incident signal.) Unlike diffusion that
‘dissipates’ information, reflections redistribute it over the spatial domain. Thus, it may happen
that all sensors are located in the areas of low information content, i.e., we have information loss
for an available set of sensors.
In order to generate the control variable V;(t) we use the expression as follows:

Vi(t) = %(A +64) (1 — cos (%) + 5¢) , (77)

where A is the amplitude and P is the wave period. These parameters describe Vl(") (). We
use 0A, 0P, and §¢ to produce a deviation from Vl(tr) (t). Then (77) gives us a ‘guess value’, i.e.,
Vl(gs)(t). Equation (77) defines a ‘lifted’ sinusoid function which generates simultaneously the
two phenomena: a wave and a rise of the mean flow level. That produces a nonzero mean flow
and causes vertical eddies to develop in the vicinity of the step.

8.2. Results of the One-Step Identical Twin Experiment

We have performed seven numerical experiments all using the same channel configuration
(Figure 2), but differing in the type of boundary conditions applied at the passive boundary, in
the length of assimilation window T', in parameters used for (77) and (78) to generate ‘true value’
and ‘guess value’. We refer to the ‘guess value’ as ‘trivial’ if it is equivalent to zero. A summary
of these experiments is given in Table 1.

Table 1. Summary of numerical experiments.

Name | Figures Bzi zt T(h) | Parameters in (77),(78): A[ms™1], P[s]
True Value Guess Value
Figure 3a,
Al Figure 4 open 1/3 A=1.0, P=180 trivial
Az | Fisure 3b, wall 13 | A=0.75 P =180 trivial
Figures 5, 6 !
B1 Figure 7 open 1 A=1.0,P =432 trivial
B2 Figure 8a open 1 the same as Bl 6A=-0.1,6P =0, 6 =037
B3 Figure 8b open 1 the same as Bl 6A=0.1, 6P =86, 6y =0.3m
Figure 9a, A=10, A =0.5, N
C1 Figure 11 open 3 Az = -0.5, P = 2160, trivial
P, =432, P, =88
6A=0.2,64; =0.1,
Figure 9b 6As = —0.1, P = —180,
C2 Fiiure 1 ’ open 3 the same as C1 5Py = —36, 6Py = —7.2,
o =0
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We consider first waves of wave-length that is comparable to the length of the channel, within
the observation window T = 1200s. We model two types of passive boundary: ‘open’ boundary,
Case Al, and ‘wall’, Case A2. The structure of the surface about the mean level Z for these
two cases is shown in Figures 3a,b. In Case Al we have a progressive wave in the shallow region
(h is constant along the characteristics). Thus, the sensors located in the shallow region measure
‘clean’ incident data. In the deep region we have a mix of progressive and standing waves due
to reflection from the step (h slightly changes along the characteristics). In Case A2 we have
standing waves in both parts of the channel. One can clearly see the wave node at  ~ 2400m at
which the surface has almost no periodic motion, but is lifted, i.e., h > Z. Therefore, the surface
elevation does not carry information about the periodic component of Vl(tr)t at this location. In
Figures 4a and 5a the value of Vl(")(t) is presented by line 1, the mean inlet velocity #(0,t) by
line 2, the measured velocities 4(z1, zx,t), K = 1,...,10, by line 3, and the measured elevations
ﬁ(ml,t) by line 4. Let us note the following: for progressive waves, Figure 4a, the velocity and
the elevation are in phase, but for standing waves, Figure 5a, there is a phase shift 7/2. For
progressive waves the u-velocity profile at = z; is uniform at first, and it remains uniform until

the eddy near the step starts to produce effects downstream. This is shown in line 3, Figure 4a
at t =~ 1100s.

4
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Figure 3. Structure of the free surface h(z,t) for different boundary conditions at
z=1L.
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(a) Control variable V;(t)—line 1 and solutions (b) Estimation error V' (t)—line 1 and solutions
from the forward model: mean flow velocity from the adjoint model: sensitivities VJ,(t)—
@(0,t)—line 2; measurements i(z1,zx,t), &k = line 2; VJ,(t)—line 3; and remainders e (t)—
1,...,10—line 3; A(z1,t)—line 4. line 4; €y (t)—line 5.

Figure 4. Case Al.



Open Boundary Control Problem 1261
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(a) Control variable Vj(t)—line 1 and solutions (b) Solutions from the adjoint model: sensitivities
from the forward model: mean flow velocity VJ,(t)—line 1; VJ,(t)—line 2; and VJ} ,(t)—
4(0,t)—line 2; measurements i(z1,zk,t), k = line 3.

1,...,10—line 3; fl(zl,t)—line 4.

Figure 5. Case A2.

A trivial ‘guess value’ Vl(gs)(t) = 0 is chosen first. Thus, the residuals coincide with the mea-
surements and the estimation error §V;(t) coincides with Vl(tr)(t). Solving the adjoint equations
we obtain sensitivities, which for the progressive wave, Case Al, are shown in Figure 4b. Here,
line 1 shows 8V (t); line 2—V J(t); line 3—V J,(t); line 4—ex(t); and line 5—¢,(t). The ap-
pearance of these sensitivities is quite typical. We can clearly see a ‘blind’ spot located at the
end of the time domain (1130-12005s), where there is no ‘signal’, i.e., the perturbation from the
sensors has not yet reached the control boundary. Then follows an ‘aftershock’ area (800-11305s),
where we observe some initial oscillations related to the shock input. After those oscillations
have passed beyond the domain, €(t) becomes a regular function. For an inviscid problem this
remainder is mostly due to the nonlinearity of the problem. For longer waves, the nonlinear con-
tributions associated with ?f{ nd ah become smaller and |||z, decreases. It can be seen that
the difference between VJj(¢) and VJ (t) is very small. From this example we can draw the
following conclusion: if the sensors are located in a progressive wave area, then measurements of
the elevation or the velocity profile performed at a single location provide necessary and sufficient
information to identify the boundary control Vi(t).

Let us look now at Figure 5b, Case A2. We have a standing wave in the shallow part of the
channel, i.e., the sensors do not measure only incident data. Here line 1 shows VJ,(t); line 2—
VJ.(t). Neither of these two sensitivities actually resembles the error function. We have already
mentioned that the reflections may cause loss (or redistribution) of information. Although the
adjoint equations could be considered as a model that describes transport of information backward

time, sec.

Figure 6, Case A2. Estimation error V1 (t)—line 1, and solutions from the adjoint
model: sensitivity VJ}p, (t)—line 2; and remainder ep, o, (t)—line 3.
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in time and space we can see that the adjoint run does not separate out incident and reflected
components once they have become mixed. We have observed, however, that there always exists
a weighted sum of VJ,(t) and VJ,(t), which does look like a good estimation of §V;(t). This
function denoted as VJ ,(t) is presented by line 3. The comparison is given in Figure 6. Here
line 1 shows 8V1(t); line 2—VJ4 . (t); and line 3—ep o (t). Thus, another conclusion follows: if
the sensors are located in the area where standing waves occur, then co-located measurements of
the elevation and the velocity profile are needed to provide necessary (but maybe not sufficient)
information to identify the boundary control Vi(t). We have to mention that both conclusions
have been drawn from our numerical experiments and should be rigorously validated.

Another group of numerical experiments has been carried out for longer waves and a longer
observation window, T = 1h, Cases B1-B3. The results of the forward modeling are presented
in Figure 7a. Here, line 1 shows Vl(tr)(t); line 2—u(0, t); line 3—iz(x1,t); line 4—a(z1, 2k, t),
k =1,...,10. We can see that at the beginning the velocity profile is uniform in depth, but
starting from ¢ &~ 700-800s the curve (given by line 4) splits and all the velocity sensors show
different values. Here lines 5 and 6 show the velocities near the bed and near the surface. Thus one
can observe an eddy: at some points there exists a reverse flow near the channel bed. For a trivial

amplitude, n/d

amplitude, m/sec, m

0 600 1200 1800 2400 3000 3600 0 600 1200 1800 2400 3000 3600
time, sec time, sec

(a) Control variable V;(t)—line 1 and solutions (b) Estimation error §V1(t)—line 1 and solutions
from the forward model: mean flow velocity from the adjoint model: sensitivities VJp(t)—
%(0, t)—line 2 and measurements A(z1,t)—line 3; line 2; VJ,(t)—line 3 and remainders ep(t)—
(z1, 2k, t),k = 1,...,10—line 4; 4(z1,21,t)— line 4; e, (t)—line 5.

line 5; 4(z1, 210, t)—line 6.

Figure 7. Case B1.

amplitude, m/sec, m
amplitude, n/d

- . . . . L y . , , ,
0 600 1200 1800 2400 3000 3600 040 600 1200 1800 2400 3000 3600
time, sec time, sec
Case B2. (b) Case B3.

Figure 8. Estimation error §V1(t)—line 1 and solutions from the adjoint model:
sensitivities VJ}, (t)—line 2; VJ,(t)—line 3 and remainders e, (t)—line 4; €, (t)—
line 5.
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‘guess value’, Case B1, the sensitivities are presented in Figure 7b. Here, line 1 shows 6V (t);
line 2—VJy(t); line 3—V J,(t); line 4—e(t); and line 5—e,(t). The same functions are shown
in Figure 8, Cases B2 and B3, which instead show calculated sensitivities based on nontrivial
‘guess values’.

We can see that the remainders €.y (t) are essentially smaller than those presented in Figures 4b
and 6. This is because we consider longer waves and the nonlinearities associated with % and %f
are reduced. However, those generated by the step remain. The convergence rate for these
examples is estimated as ||e||;21 ~ 20-30.

In the next example, Cases C1 and C2, we introduce Vl(tr), which is given by (77) plus the

term
wt

Z(Ak + 0 Ag) sin (Pk vy

+ 5¢) . k=12 (78)
That is we now have three components. We model Vl(") (t) over the assimilation window T'=3h
assuming an ‘open’ passive boundary. Both the elevation and the velocity data are used si-
multaneously. We calculate the sensitivity for a trivial ‘guess value’, Figure 9a, Case C1, and
for a nontrivial ‘guess value’, Figure 9b, Case C2. Here, line 1 shows 6V;(t) and line 2 shows
€énu(t). The experiments show no sign of a cumulative error. Therefore, the duration of the
assimilation experiment is only limited by machine memory (we must keep the forward solution).
The convergence rate for these examples is estimated as ||e||,j21 = 15, that is a little bit worse
than in the previous examples. This is mostly due to the presence of a wave component with a
period P, = 88sec. In the present case we have a well-developed nonuniform in-depth u-velocity
profile in both parts of the channel. This numerical experiment shows that the method works
well to produce sensitivities and that no accumulation of error occurs even for complex flows and
multicomponent data.

amplitude, n/d

time, sec.

(a) Case Cl. (b) Case C2.

Figure 9. Multicomponent variable control. Estimation error §V;(t)—line 1 and
solution from the adjoint model: remainder €, , (t)—line 2.

It is worth looking at the patterns of the adjoint pressure generated by 7, and 74, which are
shown in Figures 10a,b, respectively. The adjoint pressure field is calculated for a trivial ‘guess
value’. The field values are taken at z’ = 1/2. When it is driven by r,, the adjoint pressure is
a discontinuous function of z at the location of sensors. It can be seen that the wave and the
antiwave are going in antipodal directions. For a straight channel p* is a perfectly antisymmetrical
function of z, V¢. It is not quite so for the chosen bathymetry, because we have standing adjoint
waves in the shallow part. We can also clearly see the difference in the adjoint wave celerity for
deep and shallow regions with a transition near the step at z = 1500 m. In contrast, when driven
by 7 adjoint fields are continuous, with discontinuity only in %. Thus, the adjoint solution
based on 7, can be obtained on a coarser grid and may require less computational work.
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Figure 10. Adjoint pressure field p* at 2/ = 1/2 generated by r. (a), and by rp (b).
8.3. Verification of the Correctness of the Adjoint Model

To check that the adjoint model is correct and it is coded correctly we use the ‘gradient test’,
which is an already-established method to test adjoint models [30]. Let

JVi +a¥) = J(Vi) + a¥TVJ + 0 (a?)

be a Taylor expansion of the objective functional (9). Here a is a small scalar and U(t) is a
vector-function of unit length. Rewriting the above formula we can define a function of « as

(a) = JW ';g‘_’l_’)v; J(V1)

=1+0(a?). (79)

When o decreases, the term O(a?) vanishes and ¢(a) — 1. In a numerical implementation,
however, this behavior is no longer valid as o approaches the machine zero. Considering J(V1)
at the point V; = Vl(gs) and assuming that

vJ

YO = o0

we can rewrite (79) as follows:

T (V) +avI/IV | ) - 7 (W)
oV Tz,

P(a) = (80)

We use in (80) J(-) which is based on the numerical solution of the forward model, and VJ,
which is based on the numerical solution of the adjoint problem. For a consistent adjoint model
(adjoint of the discretized model equations) discretization errors eliminate each other, and if
everything is coded correctly, then one can achieve ¢(c) being as close to unity as the machine
accuracy allows. Obviously, for an inconsistent adjoint model the value ¢(a) must be grid-
and-case dependent, and serves actually as a consistency criterion between the two models. It
shows whether the adjoint model is derived correctly, coded correctly, and, if both are true, the
relative accuracy of the gradients. Now we consider the two cases which correspond to those
shown in Figure 9. The results of the gradient test are presented in Figure 11. The solid line
here corresponds to Case C1, and the dotted line to Case C2. One can see that as o decreases
®(a) := log(|¢(cr) — 1|) also decreases because of vanishing O(a?). Then we have a flat shelf area
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when ®(a) is insensitive to any change in . The level of this shelf shows the relative accuracy of
the gradients achievable for the inconsistent adjoint model. Then it starts to grow again and this
happens because we approach the limits of the machine accuracy. In contrast, a typical result for
a consistent adjoint model would be perfectly V-shaped without a shelf area, with a minimum
value about 1078-10"19, In conclusion we should mention that the level of relative accuracy
of the gradients about ®(c) &~ 1072 — 1072 is sufficient to build a fast-converging minimization
procedure. In fact, many optimization techniques, such as quasi-Newton methods, require only
approximate gradients.

1-5 T T T T T T

1 1

-2
log (|$(e)-1))
-2.5

-3+

-35 1 L L L L
-10 -8 -6 -4 -2 0

log(a)

Figure 11. Results from the gradient test.

9. CONCLUSION

In this paper we present the continuous (inconsistent) adjoint model for barotropic Navier-
Stokes equations including the free surface. The procedure for deriving the adjoint equations in
the present case is not trivial. The main difficulty consists of deriving the variation on the surface
elevation function h. We use a coordinate transformation in the vertical to shift the problem into
a domain with fixed boundaries and calculate the variation in A from the Jacobian matrix of
the transformation. This variation is then mapped back into the original coordinate system,
where the variations in the other flow parameters are calculated in the usual way. Then we
use scalar product formulas redefined for the domain with variable bounds to derive the adjoint
equations and the surface and the bed boundary conditions. The adjoint equations derived in
this way can be used in essentially nonhydrostatic cases such as sharp bed slopes and short waves.
Although we consider a particular case when the boundary shape h(z,t) is a one-valued function
of z, the whole procedure can be considered as a method of deriving the adjoint equations for
a general fluid flow problem with moving boundaries (at least for those cases where the domain
remains connected). In the present case the transformation is defined in advance; otherwise such
a transformation could be dynamically generated. In turn, the adjoint problem can be formulated
in terms of the general transformation coefficients.

Another important issue is how to specify ‘open’ lateral boundaries for the fsNSE. This requires
a rigorous characteristic analysis of the equations, even though they are not truly hyperbolic. We
assume instead that in the vicinity of lateral boundaries our equations actually describe a shallow-
water wave, and so they are locally hyperbolic. Therefore, we have used the characteristics of
the SWE to derive boundary conditions and the sensitivity. Of course, within the domain the
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full physics related to the fsNSE is properly represented. The numerical results validate this
approach. Thus, the ‘open’ boundary introduced in this manner allows consideration of long
waves and a uniform in-depth u-velocity profile at the boundary. As we already mentioned, the
method can be generalized by coupling the fsSNSE at the open boundary with a multilayer SWE
model. This will enable us to consider the baroclinic case and a nonuniform in depth u-velocity
profile.

The results of numerical experiments have validated the theory developed in this paper. The
adjoint solver is verified by performing the ‘gradient test’. In a case of a consistent adjoint model,
the gradient test shows merely the correctness of coding, see [30]. In the case of inconsistent
adjoint model, however, it shows:

(a) the correctness of derivation the adjoint equations, adjoint boundary conditions, and the
sensitivity formulas;

(b) the level of consistency between the continuous forward and the discretized forward;

(c) the level of consistency between the continuous adjoint and the discretized adjoint;

(d) the correctness of coding.

Thus, all these steps are validated for the model presented here.

APPENDIX
VISCOUS TERMS

We use the same procedure as before for deriving the adjoint to viscous terms in the right-hand
side of (3),(4). As the structure of these terms is similar for both equations we consider only the
u-momentum equation. Let us denote

0 Ou 0 Ou
Dz(u) = 5; (/‘Lha) ) Dz(u) = 5 (Nv&) .

First, we take the variations in D,(u) and D,(u) in respect to u in R. Then applying (15)-(17)

we obtain self-adjoint terms
7] ou* 7] ou*
B (*‘h%) * 5 <“va) (A1)

to be placed in the right-hand side of equation (46) and the following boundary set:

T rh Lo0 _ou\1*
/O/H[uh(u 8_:1,‘_“6.%)]0 dzdt (A.2)

T L - _ \
* o ou ~ ou* ou*
+/0 /o [u (Nu& - ez%g) - U (MW - ezﬂhE-ﬂ Y dzx dt. (A.3)

In the viscous case, we use no-slip boundary conditions for the channel bed, which are
u(z, H(z),t) = 0, w(z, H(z),t) = 0. These conditions yield similar conditions for the TLM,
i.e., 4(z, H(z),t) =0, w(z, H(z),t) = 0. Thus, we annul both (A.3) and (52) taken at z = H(z)

by assuming

w(z, H(z),t) =0,  w*(z,H(z),t)=0. (A.4)

Since we neglect the surface normal viscous stress by assuming that uz = 0, we also neglect (A.3)
taken at y = h. Next, for simplicity we will follow the assumption that

[#h]g—0,L = 0. (A.5)

Thus, the term (A.2) also vanishes. Although this assumption is somewhat artificial, it is perfectly
consistent with our treatment of lateral boundaries, where we have to assume a local hyperbolicity.
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In order to find the variations in D,(u) and D,(u) in respect to h we must transform the
viscous terms to R’. Let us denote e; = ej/(h — H). Thus, we obtain

Dy (u) > Dy + Dy + D3 + Dy,

where

0 ou’ o o’

Dy = 32 (“;‘F> , D; = 37 (Mﬁefsg) ,
0 ou 15} ou’

Dy= - (1435 ). Di=cips (uhesys ).

The derivatives of these terms in respect to h are

oD; oD, 0 , Ou’ 663 oDs 0 , Ou'\ Oej
=0, 2=-2 S =57 (Ha ) 3
oh oh oz haz' oh oh 8z’ \"" oz’ ) oh
oDy _ 0 y 363 te 0 , ou/ 663
oh 9z \I'r€ 33 T %57 \Fhaz an
Adding these derivatives and then using the inverse transformation we obtain
O0Dy(u) 0 Ou 0 Ou
= " 5a (Nh&‘FO) 3 (Nhé;) Fo, (A.6)
where
Oes z—H (0 0- e
— (h—H (25 S 7
Fy=:(h H)(ah) - H< +28> Py (A7)
Assuming (A.5) holds, i.e., no boundary set can appear, we calculate
OD:(u) _ 7 .
<u R >R.. (Fo.h,F1 (u,u )>R
0 (z—H .
<h % (mFl (u,u ))
9] z—H .
+'a—z (€2mF1 (u,u )) h_ HFI (u u )>R,
where Buou B o
u Ou uw\
Aw)=-mg 8z 9z 9z ('uhg) v (A8)

After integrating all with respect to z and using Leibniz’s integration rule as in deriving (54) we
finally obtain what is the contribution of D.(u) to the right-hand side of (48),

* H *
D7 (u,u*) = %2 / (h HF1(UU)> dz—h H/ eoF1 (u,u*) dz. (A.9)
Following similar steps as above we derive D} (u) as follows:
D* (u,u*) = / 0u) v d (A.10)
5 (u,u 5= | 55\, ) ude .

Thus, in presence of viscous terms the right-hand side of (48) must contain

D (u,u*) + D} (w,w") + D3 (u,u*) + D (w, w"). (A11)
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