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A class of translation planes of order q2, where q =pr, p is a prime, p I>7, p~=t=l (mod 10) 
and r is an odd natural number is constructed and the translation complements of these planes 
are determined. A property shared by all these planes is that the translation complement fixes a 
distinguished point and divides the remaining distinguished points into two orbits of lengths q 
and q2 _ q. The order of the translation complement is rq(q - 1) 2 except for q = 7 and q = 13. 
The translation complements of these exceptional cases are also briefly studied. The class of 
planes considered in this paper are distinct from the classes of translation planes of S.D. Cohen 
and M.J. Ganley [Quart. J. Math. Oxford, 35 (1984) 101-113]. 

1. Introduction 

The study and construction of translation planes of square order has received 
remarkable attention in recent years and several papers have been devoted to the 
study of translation planes which possess a particular coUineation group. 

In [9], Jha raised the following problem: 

Let F be a spread whose components are (n-dimensional) subspaces of 
V(2n, q). Suppose G <~AutF leaves a set A of q + 1 components 
invariant while acting transitively on F \  A. 

Find the possibilities for F or, more generally, the possibilities for (G, F, n, q). 
Special cases of the above problem were studied by several authors (see [2, 3, 

6, 7 and 8]). Jha [6] and Cohen et al. [3] considered (A-transitive) planes of order 
p2 which admit a linear autotopism group (a subgroup of the linear translation 
complement fixing at least two points on the line at infinity) having an orbit of 
length p2 _ p on the line at infinity. In this paper we have given a possibility for F 
of Jha's problem (above) when n = 2 by exhibiting a class of 1-spread sets over 
GF(q), where q is an odd power of a prime, in which 5 is a nonsquare and 
studied the translation planes associated with F and their translation comple- 
ments. A salient property shared by all these planes is that the translation 
complement fixes a distinguished point and divides the remaining distinguished 
points into two orbits of lengths q and q2 _ q. Further the order of the translation 
complement of each plane is rq(q-  1) 2 except for q = 7  and q = 13. The 
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translation complements of these exceptional cases are also studied. It is noticed 
that the group of all collineations that fix at least two distinguished points is not 
transitive on q 2 q  distinguished points. Thus the class of planes considered in 

isomorphic to the planes discussed by Jha [6] and Cohen et al. this paper are not 
[3]. 

The matter is presented as follows. In Section 2, the description of the 
translation planes associated with a class of 1-spread sets is given. Section 3 deals 
with some collineations. Section 4 is devoted to determine the translation 
complements. The translation complements of the exceptional cases are briefly 
given in Section 5. Finally, Section 6 is devoted to show that the class of 
translation planes discussed in this paper are not isomorphic to the translation 
planes considered by Jha [6] and Cohen et al. [3]. 

2. A class of 1-spread sets and the translation planes associated with them 

We begin with a criterion for 5 to be a square in GF(p), where p is a prime. 

Lemma 2.1. In GF(p), 5 is a square if  and only if p ~- +1 (mod 10). 

Proof. We quote the following number theoretic result [12, Problem 22.6, p. 

151]. 
Let b a n d p  be distinct odd primes with b -  1 (mod 4). Then (b /p )=  +1 if and 

only if p has the form 

p = - b + a ( b +  l) (mod2b),  

where (a /b)= +1. 
Taking a = +1, b = 5 in the above result we get that x 2 -= 5 (modp)  if and only 

if p -= 5 + 6 (mod 10). Hence the lemma. [] 

Le~ama 2.2. Let p be a prime, p @ + 1 (mod 10) and r be an odd natural number. 
Then 5 is a nonsquare in GF(q), where q = p r .  

Proof. Follows from Lemma 2.1 and the fact that r is an odd natural number. [] 

Throughout this paper q de~0tes p r, where p is a prime, p I> 7, p +1 
(mod 10) and r is an odd natural number. 

Let s be a nonzero element of GF(q) and M(a, b; s) be a 2 x 2 matrix over 
GF(q) defined by 

M ( a , b ; s ) -  _~s2b5 a + s b  3 ' a, beGF(q ) .  
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We observe that M(a, b; s) e GL(2, q) if (a, b) 4= (0, 0) and 

M(a, b; s) = aI + M(O, b; s) 

for all a, b • GF(q), where I is the 2 x 2 identity matrix. 
Let 

r(s)  = {M(a, b;s)  l a, b • GF(q)}.  

Lemma 2.3. The set F(s) is a 1-spread set over GF(q). 

177 

Proof. It is necessary to prove that the difference of any two distinct matrices of 
F(s) is nonsingular since the set F(s) has q2 matrices including the zero and 
identity matrices. Let D be the discriminant of the characteristic polynomial of 
the difference of the matrices M(0, b;s)  and M(0, d;s) of F(s). It is straight 
forward to see that 

D = ~s2(b - d)2(b 2 4- 3bd 4- d2) 2 

is a nonsquare in GF(q) if b e d .  Suppose that L, N eF(s) ,  
L = M(a, b; s), N = M(c, d; s). Then 

L -  N = (a - c ) I  + [M(0, b; s) - M(0, d; s)], 

L C N  and 

if b e d, then L - N  is nonsingular, since the characteristic polynomial of 
M(O, b; s ) -  M(O, d;s) is irreducible. If b = d then a ¢ c  and L -  N is obviously 
nonsingular. From this it follows that the difference of any two distinct matrices 
of F(s) is nonsingular. Thus the set F(s) is a 1-spread set over GF(q). 

Lemma 2'4. I f  s is a square in GF(q), then 

M I M e r ( s ) }  = r (1) .  

I f  s is a nonsquare in GF(q), then 

{V~-sS M IM • F(s)} = r(5). 
Further, 

- 

Proof. Let s be a square in GF(q) and let 

1 1 M 
v~F(1)  = { ~  s I M eF(1)} • 

Taking M = M(a, b; 1) in the above and putting x = a/V~ and y - b/V~, we find 

that 1 
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Let s be a nonsquare in GF(q) and let ~ s  r ( s ) =  {V~51s M(a, b;s)}. Taking 
x = V~51s a and y = ~ b, we get that 

r(s)= r(5). 

Finally 

b GF(q)} ={[_55;, 5a + Sb3] l a, b 

= {M(x, y; 5) Ix = 5a, y = b; a, b e GF(q)} 

= r(5). 

Hence the lemma. [] 

Define for every matrix M e F(s), 

V (M)=  {(w,x, y, z) l w, x e GF(q), (y, z )=(w ,x )M} ,  

and let  

V(oo) = (0, O, y, z) l y,  z ~ GF(q)}. 

Each V(M), M ~ F(s) and V(o0) are 2-dimensional subspaces of V(4, q), the 
4-dimensional vector space over GF(q). Thus 

5"= (V(M) I M ~ r (s)}  u {v(~))  

is a collection of 2-dimensional subspaces of V(4, q) having the property that 
each point of V(4, q) is contained in one and only one member of 6e. The 
incidence structure with 6e and their cosets in the additive group of V(4, q) as 
lines, the vectors of V(4, q) as points and inclusion as incidence relation is the 
translation (affine) plane ~t(s) of order q2 associated with the 1-spread set F(s) 
over GF(q). Since the 1-spread set F(s) is not a ring, the plane :r(s) is 
non-Desargusian [2, Section 11], [4, p. 220]. In view of [8, Proposition 3, p. 487] 
and Lemma 2.4 the plane :r(s) is isomorphic to ~r(1) for all s e GF(q), s ~ 0. It is 
therefore sufficient to consider the class of planes associated with F(1). In what 
follows, F ( 1 ) =  F, : t (1)= :t, M(a, b; 1 )=M(a ,  b) for all a, b e GF(q) and the 
distinguished point V(M) denotes the distinguished point associated with V(M). 
For convenience we denote V(M(O, 0)) and V(M(1, 0)) by V(0) and V(1) 
respectively. 

It is well known that any nonsingular linear transformation on V(4, q) induces 
a collineation of :r if and only if it permutes the subspaces of 6e among 
themselves. The group of all collineations of :r leaving the point corresponding to 
the zero vector of ~ invariant is called the translation complement of at. 
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3. Some colllneations of the class of planes 

In this section we give some collineations of the class of planes :r and indicate 
their actions on the set of distinguished points of :r. 

Let a(x)  be the mapping on F defined by 

te(x):M(a, b)---> M(a, b) + xL x e GF(q). 

It is already noticed that M(a, b)+xI  e F, for all M(a, b)e F and x e GF(q). 
Thus or(x) induces a collineation of :r and its action on the set of distinguished 
points of :r is given by: 

a(x) :  V(oo)---) V(oo), V(M(a, b))--.) V(M(a + x, b)). 

The eollineation group 

H = ( o~(x) l x e GF(q) ) 

fixes the distinguished point V(~) and is transitive on the set of distinguished 
points 

{V(M(a, b))la e GF(q)) ,  

for a fixed b e GF(q) and it is of order q. 
Let ~(c)  be the mapping on F defined by 

c3]M[0 , c e O F ( q ) ,  c:/:0, MeF. 

The relation 

[0 03]M(a' b)[Co2 ~] =M(ac3' bc)eF 

implies that ~(c) induces a collineation of :r which fixes V(oo) and V(O) and maps 
V(M(a, b)) onto V(M(ac 3, bc)). Let the group generated by 

(rp(c) [ c ~ GF(q), c:/:O} 

be denoted by W. By letting c run through the nonzero elements of GF(q), we 
find that W is transitive on the set of distinguished points 

{V(M(O, b ) ) [ b  e GF(q), b ~:0}. 

It now follows that the group of collineations G = (W, H )  fixes the distinguished 
point V(oo) and is transitive on each of the following sets of distinguished points 

Q = (V(M(a, 0)) ]a e GF(q)}, 

and 

R = {V(M(a, b))I a, b e GF(q), b 4=0}. 
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Let ~:x be the mapping from F defined by 

rx:M--,(xI)-lM(xI),  x eGF(q), x:/:0; M eF. 

This mapping ~:x induces a coUineation fixing all the distinguished points of at. 
However zx moves the affine points other than the zero vector. Let S be the 
subgroup of collineations generated by {r~:x e GF(q), x :/:0}. The group S is 
called the group of scalar collineations and it is of order (q - 1). 

Let 7 be the mapping on V(4, q) defined by 

y: (w, x, y, z)--> (w p, x p, yP, xP). 

Obviously the mapping 7 induces a collineation of at which fixes V(oo), 
V(M(a, 0)), a ~ GF(p) and maps V(M(a, b)) onto V(M(a p, bP)). Let the group 
generated by ], be denoted by K. Obviously K is of order r. Throughout this 
paper by a collineation, we mean a collineation from the translation complement 
of at other than a collineation induced by an automorphism of GF(q). 

It may be noted that this paper deals with the class of translation planes 
considered in [11] with a greater generality by considering a wider class of 
1-spread sets F(s) and determining the translation complements of the class of 
planes completely. This paper is in a way an elaboration of [11] with a different 
spirit than that of [11]. The reader is referred to [11] for the following results (see 
[11, Lemma 3.1 and Theorem 3.5]). 

Lemma 3.1. No coUineation of at fixes V(oo) and moves V(0) onto V(M(a, b)), 
b :/: O. 

Theorem 3.2. Every collineation of  at fixes V(oo). 

In view of Lemma 3.1, Theorem 3.2 and the collineation group G, we get that 
the translation complement (~ of at fixes a distinguished point and divides the 
remaining distinguished points into two orbits Q and R of lengths q and q 2 q  

respectively. 

4. Translation complement of 

In this section we determine the translation complements of the class of 
translation planes when q 4=7 and q 4= 13. We now find the group of all 
collineations of at that fix the distinguished points V(oo), V(O) and V(1), that is to 
find all collineations of at induced by conjugations on the 1-spread set F. To do 
this we have to partition F into classes consisting of similar matrices. We quote 
the following result which is used in the sequel. 

Result 4.1. The equation z 3= 1 has exactly one solution in GF(q) if p @ 1 
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(rood 3), where as it has exactly three distinct solutions 1, w, w 2 in GF(q)  i f p  - 1 
(rood 3). 

In view of Result  4.1 we divide the discussion into two cases: 

Case 1. p @ 1 (rood 3). 

Lemma 4.2. Every nonzero matrix M(y, x), x :/: 0 in F is conjugate to exactly two 
matrices in F. 

Proof.  It is evident  that M(O, x), x =/: 0 is conjugate to itself. From the relation 

E - 1 M ( O ' x ) E = M ( x 3 ' - x ) '  w h e r e E = [  lx 2 ? 1 ] '  (4.1) 

we get that M(0,  x)  is conjugate to M(x 3, - x ) .  Suppose that  M(0, x) is conjugate 
to M(a, b). Equat ing their traces and determinants we get 

23 + b 3 = x 3, (4.2) 

a 2 + ab 3 + Xsb6 = ½x 6, (4.3) 

solving the Eqs. (4.2) and (4.3) for a and b 3 w e  get a = 0 and b 3=  x 3 or a = x 3 
and b 3 = - x  3. Using Result 4.1, we get b = x if a = 0. Then M(a, b) = M(O, x). 
Taking a = x 3 and making use of Result  4.1, we get M(a, b) = M(x 3, - x ) .  Hence 
the lemma. [] 

Lemma 4.3. The general forms of  the matrices Ai(x) E GL(2, q), i = 1, 2 over 
GF(q)  satisfying the relations 

=[M(O,x) ,  i f i = l ,  (4.4) 
[Ai(x)]-lM(O' x)A'(x) tM(x3, -x), if i = 2, (4.5) 

are 

and 

[a ] 
AI(X) = - lx4b a + x2b 

AE(X) = x2 a + ½x4b 

where a, b e GF(q) ,  (a, b) ~ (0, 0). 

Proof.  The matrix M(O, x) is in the field F of matrices given by, 

a 

since the characteristic polynomial of M(O, x) is irreducible over GF(q).  Then by 
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Schur's Lemma [5, Chapter 4, p. 206] the centralizer of M(O, x) is the 
multiplieative group of the field containing M(0, x) and contained in GL(2, q), 
which is F, defined above. This proves the first part of the Lemma. 

In view of relation (4.1), the set of matrices A2(x)•  GL(2, q) satisfying the 
relation (4.5) is given by 

(AI (x )E  Ix • GF(q), x *O}. 

The general form of A2(x) satisfying (4.5) is therefore 

½X4S + rx 2 + X4S --r -- SX 2 r, s • GF(q), (r, s) ~ (0, 0) . 

Taking r + sx 2 = a, - s  = b and simplifying, we get the general form of A2(x) and 
it is given by 

[ a 
A2(x) = x2a + ½x4b , a, b eGF(q) ,  (a, b )=/:(O, O). 

Hence the lemma. [] 

It may be noted that 

[A2(x)l-lM(x 3, - x )Az (x )  = M(O, x) 

and the matrices Al(x)  and Az(x) work without any restriction on p. 

Lemma 4.4. Suppose that Xo is a fixed nonzero element o f  GF(q). Then 
(i) there are exactly two elements x in GF(q) such that Al(X) = Al(xo), if b ~ 0 

in the general form of  A~(x); 
(ii) there are exactly two elements x in GF(q) such that A2(x) = A2(xo), if b = 0 

in the general form of  A2(x), and 
(iii) there are at most four elements x in GF(q) such that A2(x)= A2(x0), if 

b 4=0 in the general form of  A2(x). 
The elements x may be the same or different for different values of  i. 

Proof. Taking b 4=0 in the general form of Al(x)  and equating the expressions 
for the corresponding elements of 'Al(x)  and Al(xo) and simplifying we get 
x 2 -  Xo 2 = 0, which has exactly two solutions for x in GF(q). 

Equating the expressions for the corresponding elements of A2(x) and A2(xo) 
we get 

 bx" + -  xgb - = o ,  

which has exactly two solutions for x if b = 0, and at most four solutions for x in 
GF(q) if b :/: 0. Hence the lemma. [] 

1,emma 4.5. If the mapping 

M--> L-1ML,  M e F (4.6) 
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for some L • GL(2, q), induces a collineation of  :r, then L assumes one or both the 
forms stated in Lemma 4.3. 

Proof. Follows from Lemma 4.4. [] 

Theorem 4.6. The scalar collineations are the only collineations induced by 
conjugation mappings on F. 

Proof. Suppose that the mapping (4.6) induces a collineation of :r then L 
assumes one or both the forms. 

Suppose b = 0 in the general form of A~. If L = A~(xo) for some x0 #: 0, then the 
mapping (4.6) is za and it induces a coilineation of :t. If L = A2(xo) for some 
Xo :/: 0, then by the second part of Lemma 4.4, there are exactly two nonzero 
elements x e GF(q) such that L is of the form A2(x). But GF(q) contains more 
than two elements. Hence the mapping (4.6) does not induce a collineation if L 
assumes the second form and b = 0. 

Let b ~ 0 in the general form of Aj. Suppose that there exist nonzero elements 
x~, x2 • GF(q) such that L = A~(x~) = A2(x2). For all other nonzero x in GF(q), L 
must be Ai(x~) for i = 1 or 2. But by Lemma 4.4 there are exactly two elements x 
in GF(q) such that Ax(x) = A~(x~) and there are at most four elements x in GF(q) 
such that A2(x) = A2(x2). Thus there are at most six nonzero elements x in GF(q) 
such that L is of the form A~(x). Since GF(q) has more than six nonzero 
elements, the mapping (4.6) does not induce a collineation in this case. The 
theorem now follows. [] 

Lemma 4.7. The group J1 o f  all collineations incuded by the mappings M---> 
A - 1 M B  on F is generated by W and S and it is o f  order (q - 1) 2. 

Proof. Obviously (W, S) cJ~. It is already noted that (W)  fixes V(oo), V(0) and 
it is transitive on 

{V(M(a, 0))la e GF(q), a :/: 0}. 

By Theorem 4.6 we have that S is the group of all collineations that fix V(oo), 
V(0) and V(1). A coset decomposition of Jx by S is now given by 

q--1 

J I = U S y i ,  
i=1  

where Yi is a collineation from J1 sending V(1) onto V(M(i, 0)). The coUineation 
yi may be taken from (W) .  Thus ./1 = (W, S) and the order of Jx is the product of 
(q - 1) and the order of S. 

Lenmm 4.8. The group J o f  all collineations which fix V(oo) and V(O)/s generated 
by J1 and K and it is o f  order r(q - 1) 2. 
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Proof. Follows from Lemma 4.7. [] 

Theorem 4.9. The translation complement G is generated by J and H and it is o f  
order rq(q - 1) 2. 

Proof. It is observed that the translation complement (~ fixes V(oo) and is 
transitive on Q. The subgroup J consists of all collineations from (~ which fix one 
distinguished point V(0) e Q and therefore a coset decomposition of t~ by J is 
thus given by 

-" 6 Jxi , 
i=1 

where x i is an element of t~ such that X i fixes V(0o) and maps V(0) onto 
V(M(i, 0)). The elements xi may be taken from H and thus t~ = (J, H) .  The 
order of (~ is given by 

[(~J = q x (order of J) = rq(q - 1) 2. 

Hence the theorem. [] 

Case 2. p - 1 (mod 3) 
It is easy to see that the mapping 

is a collineation of :r and its action on the set of distinguished points of :r is given 
by 

V(oo)---> V(oo), V(M(a, 0))---> V(M(a, 0)), 
6w" V(M(a, b))---> V(M(a, bw)), 

we denote the group generated by % and 6w by $1. 

Lemma 4.10. Every nonzero matrix M(y, x), x :/: 0 in F is conjugate to exactly six 
matrices in F. 

Proof. From the relations, 

C-kM(O,  x ) C  k -- M(O, xwk), 0 <<- k <~ 2 

and 
(ECk)-IM(O, x )EC k = M(x 3, -xwk) ,  O<-k <~2, 

we get that M(0, x) is conjugate to the following six matrices: 

M(O,  x w k ) ,  M(X 3, - -xwk) ,  0 <~ k <<- 2. 

Suppose that M(O,x) is conjugate to M(a, b). Equating their traces and 
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determinants as in the proof of Lemma 4.2 we get the Eqs. (4.2) and (4.3) and 
solving them for a and b 3 we get a = 0 and b 3--  X 3 or a = x 3 and b 3 =  - x  3. By 
Result 4.1 the Eqs. b 3 = x  3 and b 3 =  - x  3 have solutions b =x,  xw, xw 2 and 
b = - x ,  - x w  2, - x w  2 respectively. Therefore M(a, b) is one of the following six 
matrices 

M(O, xwk), M(X 3, --xwk), 0 <<- k <- 2. 

Hence the lemma. [] 

Lemma 4.11. The general forms o f  the matrices Bi(x) ~ GL(2, q), 1 ~< i ~< 6 such 
that 

BiI(x)M(O, x )Bi (x)= M(O, xwi-1), 1 <<-i <~3, 

B31i(x)g(O, x)B3+i(x)= M(x 3, -xwi-1), 1 <<-i <<-3 

are 

B~(x) = [ a b ] 1<~ i < 3, 
-- ½x4bw 1-i wi-1  a 4" x2b , 

[ a b ] 1<~i~<3" B3+i(x ) --. x2 a + ~x'bw 1-i _wi - la  , 

Proof.  The general forms of B1 and /34 are same as A1 and A 2 (Case 1) 
respectively and we can deduce the other  forms of B~ by using Lemma 4.3 and the 
matrices C k, k = 1, 2 in the place of E in the proof of Lemma 4.3. [] 

Lemma 4.12. Suppose that Xo is a fixed nonzero element o f  GF(q).  Then 
(i) there are exactly two elements x in GF(q)  such that Bi(x)=Bi(xo), 

1~<i~<3, if  b ~ 0 in the general form of  Bi(x); 
(ii) there are exactly two elements x in GF(q)  such that Bi(x)=Bi(xo), 

4 <<- i <<- 6, i f  b = 0 in the general form of  Bi(x), and 
( i i i )  there are at most four elements x in GF(q)  such that Bi(x)= Bi(xo), 

4 <~ i <- 6, i f  b =/: 0 in the general form of  Bi(x  ). 

Proof.  Equating the expressions for the corresponding elements of Bi(x) and 
Bi(xo) and simplifying, we get the following: 

( i )  
( i i )  

( i i i )  

The lemma now follows. 

X 2 - -"  X 2 when b :/: 0 in the general form of Bi(x), 1 <~ i <~ 3; 
x 2 = x 2 when b = 0 in the general form of Bi(x), 4 <~ i <~ 6, and 

_ 1 4- k _ x~a 0 when b :/: 0 in the general form of Bi(x), ½x4bw k 4" x2a 3XoOW -- 

4~<i~<6. 
[] 

Lemma 4.113. I f  the mapping 

M---> L-1ML,  M e F (4.6) 



186 M.L. Narayana Rao et al. 

for some L e GL(2, q) induces a collineation of  :r, then L assumes one or more 
forms stated in Lemma 4.11. 

Proof. Follows from Lemma 4.12. [] 

Theorem 4.14. The group of  all collineations induced by conjugation mappings on 
F is $1 and it is o f  order 3(q - 1). 

Proof. Suppose that in the general forms Bi, 1 <~ i <<- 6, a 4:0 and b = O. Then 

Bi(x) = Bi(1), 1~<i ~<3, 

for all x in GF(q), x 4= 0. Taking L = B/(1) the mapping (4.6) is rabw and hence 
induces a collineation of ~. If L = Bi(xo) for some x0 4: 0, 4 ~< i ~< 6 and in view of 
the second part of Lemma 4.12, there are exactly six nonzero elements x e GF(q) 
such that L is of the form Bi(x), 4 ~< i <~ 6. The mapping (4.6) does not induce a 
collineation of :r if L is of the form Bi(x), 4 <~ i ~< 6, since GF(q) contains more 
than 6 nonzero elements. 

Suppose that b 4= 0 in the general form of Bi(x), 1 ~< i ~< 6 and suppose that 
there exist nonzero elements xi, 1 <~ i ~< 6 in GF(q) such that L = Bi(x~) for 
1 ~< i ~< 6. For the remaining nonzero x in GF(q), L must be B~(x~) for some or 
other i = 1, 2 , . . . ,  6. By using the first and third part of Lemma 4.12, we deduce 
that there are at most 18 nonzero elements x in GF(q) such that L is of the form 
Bi(x). The mapping (4.6) does not induce a collineation of :r if L is of the form 
Bi(x), 1 ~< i ~< 6 since the smallest prime power q in this case is 23. 

In the above proof, it may very well happen that L may not assume some of the 
forms. The estimates given in the above proof are under the assumption that L 
assumes all forms. If L assumes fewer forms then the estimates may still come 
down. It may be noted that q = 7 and q = 13 have been excluded from the 
discussion. These two cases are discussed in Section 5. Thus we get that the group 
of all collineations that fix V(0), V(oo) and V(1) is generated by ra and 6w which 
is $1 and it is of order 3(q - 1) and S ~- $1. 

Lemma 4.15. The group J1 of  all collineations induced by the mappings 

M---~ A-1MB,  M ~ F, 

for some A, B ~ GL(2, q) fixes the distinguished points V(oo), V(O) and partitions 

{V(M(a, 0)) I a ~ GF(q), a ~ 0} 

into three orbits each of  length ~ ( q -  1). 

Proof. The translation complement divides the set of distinguished points into 
three orbits, the first consisting of V(oo), the second consisting of V(M(a,  0)), 
a e GF(q) and the third consisting of V(M(a, b)), a, b ~ GF(q), b ~e O. However 
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the subgroup J1 fixes V(oo) and V(0) and maps the distinguished points 
V(M(a, 0)), a e GF(q), a :#0 among themselves. Thus for a given a ~ GF(q), 
a :#0, 

A-1M(a, O)B = M(b, 0), 

for some b e GF(q), b :# 0. This forces B = nA for some n e GF(q), n #: 0. We 
now look for the possible values of n. Suppose the mapping 

rI:M--.->nA-1MA, M ~F (4.7) 

induces a collineation of az. Choosing M = M ( - ½ x  3, X), X :# 0 and using the fact 
that nA-1MA ~ F, we get that the trace and determinant of nA-1MA should be 0 
and -n2x6/20 respectively. Any nonzero matrix in F with trace 0 is of the form 
M(-½y 3, y) whose determinant is -_~y6. From this we obtain that -n2x6/20 = 
-y6/20, for some y :# 0. This forces n to be a cube in GF(q). 

If the mapping (4.7) induces a collineation of :t then r/maps V(M(a, 0)) onto 
V(M(an, 0)) where n is a cube in GF(q). If n is a cube of a generator of the 
multiplicative group of GF(q), then n divides the set of distinguished points 
{V(M(a, 0)) [a ~ GF(q), a :# 0} into three orbits each of length !3(q - 1) irrespec- 
tive of the choice of n. Any other choice of n permutes the elements of any orbit 
among themselves. Choosing 

A = [ 0  2 ~ ] a n d n = c  3, foranyceGF(q),c:#O, 

we get the already known collineations qg(c), constituting W. In particular W fixes 
V(0) and V(oo) and is transitive on the set of distinguished points 

T= {V(M(g 3k, o)) [ < }(q - 1)}, 

where g is a generator of GF(q). Hence the lemma. [] 

[,emma 4.16. The subgroup J1 of all coUineations induced by the mapping 
M--->A-1MB on F is generated by $1 and W and it is of order (q - 1) 2, q :#7, 
q :# 13. 

Proof. Obviously (W, $1) c J1 and J1 fixes V(0) and V(oo) and it is transitive on 
the set T of the distinguished points. The set T contains V(1) and the group of all 
coUineations fixing V(oo), V(0) and V(1) is S~ when q 4:7, q :# 13. A coset 
decomposition of J~ by S~ is therefore 

q--2 

= U slq (g'), 
i=O 

which in turn implies that Jx = (W, S~) and J1 = JTI ISxl = ( q -  1) 2. Hence the 
lemma. [] 

We have the following lemma and theorem as in Case 1. 
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Lemma 4.17. The subgroup J of  all collineations which fix V(oo) and V(0) is 
generated by J, H and it is o f  order r(q - 1) 2, q :/: 7, 13. 

Theorem 4.18. The translation complement G is generated by J, H and it is o f  
order rq(q - 1) 2, q :/: 7, 13. 

5. The exceptional cases 

In this section we outline the collineations of the translation plane :r when 
q = 7 and 13. We observe that all the collineations exhibited in Case 2 of Section 
4 also work in these two cases. However we find that there are some extra 
collineations. We list below all the collineations of the plane :r for the cases q = 7 
and 13 respectively. The proofs and techniques are similar to those employed in 
Case 2 of Section 4. The details are omitted for want of space. 

(a) The translation plane ~r when q = 7 
The translation complement (~ of ~r is generated by the following mappings: 

(i) rx:M--->(xl)-XM(xI), xeGF(7) ,x : / :O,  M e F ,  

(ii) ~(c) : M---~ c3]M[ 0 , ceGF(7),ceO, MeF, 

(iii) o ~ ( x ) : M ~ M + x I ,  x e G F ( 7 ) , M e F ,  

 iv, 

(v) O:M--'~A-1MA, A = 3 ' M e F. 

The extra collineations of ~r mentioned earlier are obtained as the combination of 
O with the other collineations. Finally t~ = (rx, cp(c), or(x), O, 62) is of order 
2016 and t~ divides the set of distinguished points into three orbits of lengths 1, 7 
and 42. 

(b) The translation plane ~r when q = 13 
The translation complement (~ of :r is generated by the following mappings. 

(i) 

(~) 

(i~) 

(iv) 

(v) 

r: : M---> (x l ) - lM(xI) ,  x e GF(13), x :k O, M e F, 

[o c ]M[o , c OF(X3),c.O,M r, 

ot (x ) :M-- .M +xI,  x e G F ( 1 3 ) , M  eF,  
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The extra collineations mentioned earlier are obtained as the combinations of 
with the other collineations. The translation complement t~ is of order 3744 and 
t~ divides the set of distinguished points into three orbits of lengths 1, 13 and 156. 

6. Conclusion 

This section is devoted to show that the class of planes considered in this paper 
are distinct from the translation planes constructed by Jha [6] and Cohen et al. 
[31. 

Theorem 6.1. The group of all collineations that fix at least two distinguished 
points is not transitive on q 2 _ q  distinguished points, while fixing the remaining 
(q + 1) distinguished points setwise. 

Proof. As we have already seen that the translation complement is invariant on 
A = Q u {V(oo)} and is transitive on S(=F\A) ,  we have to consider the group of 
all collineations that fix at least two distinguished points of A. Since the 
translation complement fixes V(oo) and is transitive on A ' =  A\{V(o0)}, we have 
to consider coUineations which fix V(oo) and some distinguished points of A'. We 
can choose V(oo) as the first distinguished point and V(0) as the second and 
possibly some other distinguished points of A' as the fixed points. We now show 
that the theorem is true in the case of collineations that fix V(oo) and V(0). These 
collineations are in J =  (W, S, K)  or (W, $1, K) ,  according as p ~ 1 (rood 3) or 
p - 1  (rood3) respectively except q = 7  and q = 1 3 .  Consider the set of 
distinguished points 

{V(M(O, b ) ) l b  e GV(q), b ~0}.  

This set of distinguished points is invariant under J. Thus J cannot be transitive 
on F \ A .  Now the group of all collineations that fix the distinguished points V(o0), 
V(0) and some other points of A' is a subgroup of J and therefore cannot act 
transitively o n  q 2 _ q  distinguished points. The proof of the theorem may be 
completed, using the transitivity of the translation complement on A. 

In the case of q = 7 and q = 13 the set of distinguished points 

{V(M(0, bwk)), V ( M ( b a - b w k ) ) l b  e GF(q), b #:0} 

is invariant under J and therefore G cannot act transitively o n  q 2  _ q distinguised 
points while fixing the remaining q + 1 distinguished points setwise. [] 

"l~eorem 6.2. The class of  translation planes considered in this paper are not 
isomorphic to the translation planes constructed by Jha [6] and Cohen et al. [3]. 

Proof. The translation planes of Jha and Cohen et al. have the property that the 
subgroup of all collineations of the translation complement which fix at least two 
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distinguished points is transitive on q2_q distinguished points while fixing the 
remaining distinguished points setwise. Now the theorem follows from the 
Theorem 6.1. [] 
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