
J Formos Med Assoc | 2007 • Vol 106 • No 10 799

Autosomal dominant hypercholesterolemia

(ADH) is an inherited disorder of cholesterol

metabolism characterized by a high concentration

of plasma low-density lipoprotein cholesterol

(LDL-C), deposition of cholesterol in tendons and

skin, and increased risk of premature coronary

heart disease (CHD). ADH is most commonly

caused by mutations in the LDL receptor (LDLR)

gene, which can lead to reduced hepatic clearance

of LDL from the blood. The estimated prevalence

of LDLR gene mutation is 1 in 500 in its heterozy-

gous form.1 To date, more than 800 mutations in
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Background/Purpose: Autosomal dominant hypercholesterolemia (ADH) is an autosomal dominant 
inherited disease characterized by an increase in low-density lipoprotein cholesterol levels and premature
coronary heart disease, which can be caused by mutations in genes encoding the low-density lipoprotein
receptor (LDLR), apolipoprotein B (APOB) and proprotein convertase subtilisin/kexin type 9 (PCSK9).
There is scant information with regard to the role played by each gene in the Taiwanese ADH population,
especially the newly discovered PCSK9 gene.
Methods: We used coupling heteroduplex analysis based on a denaturing high performance liquid chro-
matography system and DNA sequencing to screen for the LDLR gene, APOB gene and PCSK9 gene in 87
ADH cases recruited from 30 unrelated Taiwanese families.
Results: We did not find any mutation-causing variant of the PCSK9 gene in our cases and thus excluded
PCSK9 as the major culprit mutation in these families. On the other hand, we identified six previously 
reported LDLR gene mutations (C107Y, D69N, R385W, W462X, G170X, V408M), two novel LDLR gene
mutations (FsG631 and splice junction mutation of intron 10), and one known mutation (R3500W) and
one novel missense mutation (T3540M) in the APOB gene that were present in 55 members from 18 ADH
families (60%). R3500W, rather than R3500Q, could be the principle mutation responsible for familial
defective apolipoprotein B in Taiwanese.
Conclusion: The results of our study reveal a characteristic mutation pattern of ADH in Taiwan, mainly in
the LDLR and APOB genes. However, PCSK9 gene mutation may not be a major cause of ADH in our study
population. [J Formos Med Assoc 2007;106(10):799–807]
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the LDLR gene have been reported.2 ADH can

also be caused by certain mutations in the

apolipoprotein B (APOB) gene, which encodes

for the ligand for LDLR, named familial defective

apolipoprotein B (FDB). The prevalence of FDB is

1 in 1000 in most populations.3,4 Until recently,

a third locus responsible for ADH (FH3) was

identified at 1p34.1-p32 in several large ADH kin-

dreds without mutations in the LDLR or APOB

genes.5,6 The proprotein convertase subtilisin/

kexin type 9 (PCSK9) gene, localized to the third

FH locus, has been proposed to be the third gene

with pathogenic mutations accounting for ADH.7,8

PCSK9 encodes for neural-apoptosis-regulated

convertase-1, a novel protein that may play a cru-

cial role in cholesterol homeostasis, though the

exact molecular mechanisms are still obscure.9

Although heterozygous ADH is presumed to

be a common disorder resulting in atherosclero-

sis in Asians,10 there are limited epidemiologic

and genetic data with regard to Taiwanese ADH

patients.11 The role of the PCSK9 gene in causing

ADH in Taiwanese especially needs to be clarified

so that a large-scale ADH screening program in

Taiwan can be designed in the future. To confirm

the role of the PCSK9 gene in Taiwanese with ADH

and to determine the molecular basis of ADH 

in Taiwan, we investigated the LDLR, APOB

and PCSK9 genes in Taiwanese ADH patients for

mutations.

Methods

Subjects
Patients attending the Lipid Clinic at National

Taiwan University Hospital, diagnosed as having

ADH, were recruited into our study. The diagnostic

criteria of ADH included: (1) fasting plasma total

cholesterol and LDL-C levels above the 95th per-

centiles for adult Taiwanese after adjustments for

age and gender,12,13 and triglycerides < 220 mg/dL

(2.5mmol/L); (2) presence of tendon xanthomata/

xantholesma/corneal arcus or premature CHD in

the index case or a first degree relative, or a family

history of hypercholesterolemia consistent with

an autosomal dominant inheritance pattern.

Patients with secondary causes of hypercholes-

terolemia, such as hypothyroidism, renal or he-

patic disease, and those with clinically suspected

familial combined hyperlipidemia were excluded.

Family members of the index ADH case were in-

vited to participate in the screening program and

those who met the diagnostic criteria for ADH

were also recruited.

Control subjects were healthy adult volunteers

without known underlying dyslipidemia, cardio-

vascular disease, active inflammation or malig-

nancy. We collected blood samples from 50 control

subjects for genetic analysis (described later).

Lipid measurements
Blood samples from fasting patients without

concurrent lipid-lowering therapy were obtained

for measurements. The concentration of plasma

total cholesterol, high-density lipoprotein choles-

terol, and triglycerides were determined with com-

mercially available kits (Boehringer Mannheim).

LDL-C was estimated with the aid of the Friede-

wald formula.14

Molecular analysis
DNA preparation

Genomic DNA was isolated from EDTA whole

blood with the Puregene DNA Isolation Kit

(Gentra Systems Inc., Minneapolis, MN, USA)

according to the manufacturer’s instructions.

Polymerase chain reaction

Polymerase chain reaction (PCR) amplification

of the LDLR gene (including the promoter, 18

coding exons and flanking intron regions), APOB

gene (exon 26 of the APOB gene containing

codons 3473–3561, which harbors two known

pathogenic mutation sites, R3500Q and R3500W,

as well as four other known genetic variants of

potential pathogenic importance15–18), and PCSK9

gene (the 12 exons and flanking intron regions)

were performed with the primers as shown in

Table 1. Each PCR mixture, with a total volume of

25mL, contained 50ng of genomic DNA, 0.12mM

of each primer, 100 mM dNTPs, 0.5 units of
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AmpliTaq GoldTM enzyme (PE Applied Biosystems,

Foster City, CA, USA), and 2.5 mL of GeneAmp

10X buffer II (10 mM Tris-HCl; pH, 8.3; 50 mM

KCl), in 2 mM MgCl2 as provided by the manu-

facturer. Amplification was performed in a multi-

block system thermocycler (ThermoHybaid,

Ashford, UK). PCR amplification was performed

with an initial denaturation step at 95°C for 10

minutes, followed by 35 cycles consisting of 

denaturation at 94°C for 30 seconds, annealing

at 55–57°C for 60 seconds (specific annealing

temperatures for each PCR product are listed in

Table 1), extension at 72°C for 30 seconds, and

then a final extension step at 72°C for 10 minutes.

ADH in Taiwanese
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Table 1. Primers used for polymerase chain reaction of the LDLR gene, 26th exon of the APOB gene, and the
PCSK9 gene, and denaturing high performance liquid chromatography (DHPLC) temperatures

Forward primer Reverse primer
Annealing DHPLC 

temperature (°C) temperature (°C)

LDLR
Exon 1 5�tttccagctaggacacagca3� 5�ctcaccctgtggagacttgg3� 57 60
Exon 2 5�tgggttccttctttgtgtcc3� 5�tggcgagaccctgtctctat3� 56 58
Exon 3 5�tcttgaacccctgacctcac3� 5�caggaccccgtagagacaaa3� 57 62
Exon 4-1 5�gacttcacacggtgatggtg3� 5�ccccttggaacacgtaaaga3� 57 65
Exon 4-2 5�aagtgcatctctcggcagtt3� 5�ccagggacaggtgataggac3� 57 65
Exon 5 5�caggctggtcttgaactcct3� 5�agcagcaaggcacagagaat3� 55 62.5
Exon 6 5�ctcccaaagtgctgggatta3� 5�ttcccaaaaccctacagcac3� 57 62
Exon 7 5�cagctacttgggaggctgag3� 5�gttttccatgcaggtggaat3� 57 63.5
Exon 8 5�cttcgaaggtgtgggttttg3� 5�gcaagcccaagtcctaacag3� 57 62
Exon 9 5�gaggcactcttggttccatc3� 5�tctctgctgatgacggtgtc3� 57 64
Exon 10 5�ggtctgacctgtcccagaga3� 5�cttcctgctccctccattc3� 57 62
Exon 11 5�aagccacatttggagtttgg3� 5�aaaccttcagggagcagctt3� 57 62
Exon 12 5�ccaggtgcttttctgctagg3� 5�caaccagttttctgcgttca3� 57 61.5
Exon 13 5�cgagattgggccactgtact3� 5�tccacaaggaggtttcaagg3� 57 62
Exon 14 5�caagaggtaagggtgggtca3� 5�gagcagagagaggctcagga3� 57 64
Exon 15 5�cctcccaaggtcatttgaga3� 5�gtcagcaagggagtgaggac3� 57 64
Exon 16 5�tgtggcctctcacagacttg3� 5�ttccctgtccaggagaaaaa3� 57 63
Exon 17 5�tatggtacgatgcccgtgtt3� 5�cgcacagaagcattcaccta3� 57 61
Exon 18 5�cggtgggaagtgactgaatc3� 5�ggcaatgctttggtcttctc3� 57 62
Prom 5�cagctcttcaccggagaccc3� 5�acctgctgtgtcctagctgg3� 57 61.5

APOB
Exon 26 5�tgtcaagggttcggttcttt3� 5�gggtggctttgcttgtatgt3� 56 58.5

PCSK9
Exon 1 5�cttcagctcctgcacagtc3� 5�gaaactgaggcccgagag3� 57 62
Exon 2 5�aggggtgagataaagtacacct3� 5�aagcacagtccccagtgtat3� 56 60.5
Exon 3 5�gggacaggtttgatcaggta3� 5�tcagtggaggtgctgagtc3� 57 61
Exon 4 5�tgtgctctgtagtttgtgtgtg3� 5�atgctctggggtggcagt3� 57 59
Exon 5 5�ctgtactcctgggttgcac3� 5�cacagcattcttggttagga3� 57 64
Exon 6 5�ccatcactctgtgcctgtaa3� 5�ggaacgtgccacaagaag3� 57 62
Exon 7 5�aaggcctgagtctgcctct3� 5�ccatcaggcctacttcatct3� 55 60
Exon 8 5�gtgtatgtgtgtgcgtgtgt3� 5�agggagaagggagagactgt3� 57 63.5
Exon 9 5�cctcctctctcctaccatga3� 5�acagaagagctggagtctgg3� 57 61
Exon 10 5�atgagggtgcttgagttgat3� 5�gatcacacttgtgaggacca3� 57 62
Exon 11 5�agctcttgcctcagacctta3� 5�ggcacaaactgacacagaaa3� 56 63
Exon 12 5�gagggagaaatgaagtgtgg3� 5�agtcggaaccattttaaagc3� 57 62



Denaturing high performance liquid

chromatography analysis

Mutation analysis was performed on a Transge-

nomic Wave Nucleic Acid Fragment Analysis

System (Transgenomic Inc., San Jose, CA, USA).

Denaturing high performance liquid chromatog-

raphy (DHPLC) was carried out on an automated

HPLC instrument equipped with a DNASep col-

umn (Transgenomic Inc.). DHPLC-grade acetoni-

trile (9017-03; JT Baker, Phillipsburg, NJ, USA)

and triethylammonium acetate (TEAA; Transge-

nomic Inc., Crewe, UK) were used to constitute

the mobile phase. The mobile phases comprised

0.05% acetonitrile in 0.1 M TEAA (eluent A) and

25% acetonitrile in 0.1 M TEAA (eluent B). For

heteroduplex detection of crude PCR products,

they were subjected to an additional 3-minute

95°C denaturing step followed by gradual rean-

nealing from 95°C to 65°C over a period of 30

minutes prior to analysis, and were eluted at a flow

rate of 0.9 mL/min. The start- and end-points of

the gradient obtained by mixing eluents A and B

and the temperature required for successful reso-

lution of heteroduplex molecules, were deduced

from the WAVEmaker system control software

version 4.1.42 (Transgenomic Inc.). Eight micro-

liters of PCR product were injected for analysis in

each run. The DHPLC temperatures for each PCR

product are listed in Table 1. Heterozygous pro-

files were identified by visual inspection of the

chromatograms on the basis of the appearance

of additional earlier eluting peaks. Corresponding

homozygous profiles are shown as only one peak.

Direct sequencing analysis

The PCR products from index cases of ADH who

showed abnormal DHPLC heteroduplex patterns

compared with controls were sequenced. Ampli-

cons were purified by solid-phase extraction and

bidirectionally sequenced with the PE Applied

Biosystems Taq DyeDeoxy terminator cycle se-

quencing kit according to the manufacturer’s 

instructions. Sequencing reactions were separated

on a PE Applied Biosystems 373A/3100 sequencer.

Mutation was defined as base alterations that

were not found in volunteer samples, while sin-

gle nucleotide polymorphisms (SNPs) were de-

fined as base alterations that were found in control

samples (50 control blood samples were screened

utilizing DHPLC for mutation/SNP confirmation).

Results

Clinical characteristics
Thirty unrelated ADH families, with a total of 87

members, were recruited. The demographic data,

clinical features and lipid profiles of the subjects

are shown in Table 2. Eighteen (20.7%) of the ADH

cases had a history of CHD. Pretreatment plasma

K.C. Yang, et al
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Table 2. Clinical and biochemical characteristics of the autosomal dominant hypercholesterolemia cases*

All (N = 87) Men (N = 46) Women (N = 41)

Age (yr) 42.3 ± 14.3 (14–70) 40.4 ± 14.0 (14–56) 44.2 ± 15.0 (18–70)
Hypertension† 18 (21) 12 (26) 6 (15)
Total cholesterol (mg/dL)‡ 316.0 ± 68.5 (268–500) 312.0 ± 79.3 (268–500) 320.8 ± 59.8 (278–475)
LDL-C (mg/dL)‡ 220.6 ± 52.6 (172–400) 208.4 ± 17.6 (172–400) 231.4 ± 70.5 (174–389)
HDL-C (mg/dL)‡ 48.3 ± 11.6 (29–73) 38.9 ± 5.6 (29–47) 55.6 ± 9.5 (42–73)
Triglyceride (mg/dL)‡ 108.8 ± 52.2 (18–219) 118.2 ± 36.7 (77–186) 99.3 ± 65.1 (18–219)
CHD history 18 (20.7) 12 (26.1) 6 (14.6)
Presence of tendon 14 (16.1) 9 (19.5) 5 (12.2)
xanthomata/corneal 
arcus/xantholesma

*Data are presented as mean ± standard deviation (range) or n (%); †none of the included subjects had diabetes mellitus; ‡to convert
total cholesterol, LDL-C and HDL-C in mg/dL to mmol/L, divide by 38.7, and to convert triglyceride in mg/dL to mmol/L, divide by
88.6. LDL-C = low-density lipoprotein cholesterol; HDL-C = high-density lipoprotein cholesterol; CHD = coronary heart disease.



total cholesterol ranged from 268 to 500 mg/dL

(6.9–12.9 mmol/L), and LDL-C ranged from 172

to 400 mg/dL (4.5–10.3 mmol/L).

LDLR gene variants
Using DHPLC analysis, we discovered a total of

14 nucleotide changes in the LDLR gene. Direct

DNA sequencing of the amplicons confirmed

eight mutations and six polymorphisms (Table

33,19–24 and Table 425–28). The discovered LDLR

gene mutations included four missense mutations

(C107Y, D69N, R385W, V408M), two nonsense

mutations (G170X, W462X), one novel deletion

(c.1954_1955 del AT) leading to frameshift

(FsG631), and one novel splice site mutation at

intron 10 (c.1586 + 5G > C). Both of the newly-

discovered LDLR gene mutations were shown to

co-segregate well with the clinical ADH phenotype

and were not found in control subjects. Among

the identified LDLR gene polymorphisms, two

have been reported previously (C > T at 1617 and

C > T at 81) and two are novel (A > G at 1415 and

C > T at 2558). The number of families carrying

these polymorphisms is listed in Table 4.25–28

APOB gene variants
Four of our study families were discovered to carry

mutations in the APOB gene. Three of them were

heterozygous carriers of FDB causing missense

mutation of R3500W, and the other one carried

a novel missense mutation of T3540M. Missense

mutation of R3500Q and the other four APOB

genetic variants of pathogenic importance in hy-

percholesterolemia were not identified in our ADH

families.15–18 The T3540M mutation was found to

co-segregate with the hypercholesterolemia trait

in this family.

PCSK9 gene variants
PCSK9 mutations were not detected in any of the

30 ADH probands. DHPLC and sequence analysis

of the PCSK9 gene revealed only three previously

described polymorphisms (Table 5).29,30

ADH in Taiwanese
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Table 3. Mutations identified in the LDLR, APOB and PCSK9 genes among the autosomal dominant
hypercholesterolemia families

Family* Exon Nucleotide change Amino acid change Mutation class† Reference

LDLR gene
F1, F12 4 C�T571 G170X Class 1 Chinese [19]
F3, F13 3 G�A268 D69N Class 2B UK [20]; Chinese [19]
F4, F15 9 G�A1285 V408M Class 5 South African [21]
F5 9 C�T1216 R385W Class 5 Israel [22]
F7 4 G�A383 C107Y Class 3 French [23]
F10 10 G�A1448 W462X Class 2B/5 Chinese; Austrian [24]
F16, F28, F30 13 delAT1954 FsG631 Class 5 Novel
F20, F29 Intron 10 G�C1586 + 5 Skipping of exon 10 Class 2B/5 Novel

APOB gene
F23, F25, F27 26 C�T10707 R3500W Gaffney et al [3]
T1 26 C�T10828 T3540M Novel

*The numbering system for autosomal dominant hypercholesterolemia families consisted of a capitalized F or T, which denotes family,
and a following digit, which indicates the number assigned to the autosomal dominant hypercholesterolemia family; †mutation class
was assigned according to the functional domains described in the references.

Table 4. Polymorphisms identified in the LDLR
gene among 30 Taiwanese autosomal
dominant hypercholesterolemia probands

Exon
Nucleotide Families carrying 

Reference
change the SNP, n

2 C�T81 1 25
10 G�A1413 1 26
10 A�G1415 3 Novel
11 C�T1617 4 27
13 C�T1959 1 28
16 C�T2258 1 Novel

SNP = single nucleotide polymorphism.



Discussion

We identified eight mutations in the LDLR gene

and two mutations in the APOB gene among 55

members from 18 out of 30 ADH families in this

study. None of our cases were found to harbor

mutations in the PCSK9 gene. All the mutations

we identified were confirmed in at least two of

the recruited ADH families. This is the first com-

prehensive mutation study of the three known

genes causing ADH in Taiwanese.

Among the identified LDLR gene mutations,

only three (D69N, W462X, G170X) have previ-

ously been reported in Chinese.19,24 The novel

deletion of AT at nucleotide 1954–1955 results in

a frameshift from codon 631 of the EGF precursor

homology region. This novel deletion was identi-

fied in three of our ADH families (F16, F28, F30),

in which affected members all had markedly ele-

vated plasma LDL-C levels. Another novel muta-

tion was identified at the splice site c.1586 + 5G > C

of the LDLR gene in families F20 and F29, which

may result in an erroneous skipping of exon 10,

since the G nucleotide, a 5� splice donor, is essen-

tial for proper splicing.31 The co-segregation of

mutations and hypercholesterolemia in ADH

probands and their family members implied that

the newly identified genetic variants were pre-

sumably responsible for ADH. However, further

expression studies are needed to confirm the

functional role of the two novel LDLR gene

mutations. Interestingly, these two recurrent

novel mutations accounted for 17% (5 of 30) of

the recruited ADH families, which may suggest

the presence of characteristic common mutations

due to a founder effect in the Taiwanese ADH

population. It is necessary to screen a larger num-

ber of ADH subjects to confirm the hypothesis in

the future.

Among the 30 recruited ADH families, three

were found to have the R3500W mutation in the

APOB gene. Interestingly, the prevalent R3500Q

mutation in Caucasians was not identified in our

ADH population. This finding is consistent with

one previous study that evaluated the prevalence

of FDB among hypercholesterolemic subjects in

Taiwan,32 in which the R3500W allele is far more

prevalent than the R3500Q one (2.4% vs. 0.3%)

among those with moderate hypercholesterolemia.

In family T1, we identified a c.10828C > T nu-

cleotide change in the APOB gene, which results

in a substitution of threonine to methionine at

codon 3540 (T3540M). This novel missense mu-

tation is, to our knowledge, the seventh APOB

genetic variant to be associated with hypercho-

lesterolemia. However, even some well-known

APOB mutations (such as R3531C) are not con-

sistently found to be related to hypercholes-

terolemia.33 The pathogenic role and clinical

significance of the T3540M mutation require 

further investigation.

Unexpectedly, we failed to find mutation-

causing PCSK9 gene variants other than polymor-

phism in our study subjects. PCSK9 gene mutations

were found in 12.5% of the families without

LDLR/APOB mutation in the original French 

series.7 However, in a recent Danish study,34 the

PCSK9 gene was excluded to be responsible for

ADH in 20 LDLR/APOB mutation-negative fami-

lies. The results suggest that the genetic variants

of PCSK9 may not play a significant role in caus-

ing ADH in certain ethnic groups. Or at the very

least, the prevalence of ADH families carrying 

a PCSK9 mutation could be very low among these

populations.

Tendon xanthomata, corneal arcus or xan-

tholesma was present in 16.1% (14 of 87) of our

study subjects (Table 2). Several of these cases

were found to have mutations in the LDLR gene

(three had delAT1954, two had G�C 1586 + 5,

four had R385W, W462X, V408M and C107Y).

K.C. Yang, et al
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Table 5. Polymorphisms identified in the PCSK9
gene among 30 Taiwanese autosomal
dominant hypercholesterolemia probands

Exon/ Nucleotide Families carrying
Reference

Intron change the SNP, n

5 C�T658 –7 1 29
9 G�A1624 1 30

10 A�G1680 +64 1 29

SNP = single nucleotide polymorphism.



None of these cases were associated with APOB

gene mutation. Although cases with such patho-

gnomonic physical findings were more often

found to have a mutation in the LDLR gene

(64.3%, 9 of 14), there were still five cases 

without an identifiable mutation in the LDLR,

APOB or PCSK9 genes.

We failed to identify mutations responsible for

ADH among 35 of our cases (from 12 different

families), making a mutation detection rate of

60%, while the mutation detection rate was 41% in

another report on Taiwanese familial hypercho-

lesterolemia patients (without taking the PCSK9

gene into consideration).11 The mutation detection

rate in Taiwanese ADH patients was relatively low

in comparison with previous studies.19 One rea-

son for the result is probably the technical prob-

lems. The sensitivity and specificity of DHPLC

are approximately 95%, irrespective of sequence

variations, except for some high-melting regions

surrounded by lower-melting sequences. The op-

timal size of an amplicon varies between 150 bp

and 700 bp, depending on GC content. Any dele-

tion beyond that size will not be detected by

DHPLC, and alternative methods such as long

PCR or Southern blotting would be required to

exclude large deletions or rearrangements. We

could have missed some mutations like these in

our analyses, if they had occurred in the LDLR

and PCSK9 genes.

Another reason for this result could be the ex-

istence of additional monogenic or polygenic

causes responsible for the ADH phenotype due

to ethnic differences. For example, despite an 

extensive search for mutations in the LDLR and

APOB genes, the underlying genetic changes still

could not be identified in a significant portion of

ADH patients in the United Kingdom20 and

Malaysia.35 The molecular basis of the ethnic dif-

ferences will require further effort to determine.

A third reason could be due to the relatively less

strict lipid criteria for ADH. Take the US MEDPED

(Make Early Diagnosis to Prevent Early Death)

program36 cut points for ADH diagnosis as an ex-

ample: adult patients older than 30 years need to

have a serum cholesterol level of 290–340 mg/dL

(7.5–9.3 mmol/L) to be diagnosed as an index

case of ADH. However, the cut point for total

cholesterol used in this study was 260 mg/dL

(6.8 mmol/L) for Taiwanese of the same age.

Although the lower absolute levels of cholesterol

and LDL-C in Taiwanese could be due to a differ-

ent diet and lifestyle from that in Western coun-

tries and would not affect the diagnostic power

of the percentile criteria, we cannot exclude the

possibility that some non-ADH probands would

still be included due to frank hypercholes-

terolemia and an ambiguous family history.

In conclusion, the genetic background of

Taiwanese ADH patients is highly heterogeneous,

consisting of a variety of different mutations in

the LDLR and APOB genes. However, there may

be some common mutations responsible for a

significant portion of the ADH population in

Taiwan. The mutations of the PCSK9 gene seem

not to play a significant role in causing ADH in

Taiwanese. These observations reflect the hetero-

geneous ethnic origins of Taiwanese and a char-

acteristic mutation pattern that is different from

that in other countries. A larger screening program

is required to clarify the epidemiologic features

of ADH in Taiwan. In vitro expression study is also

needed to confirm the functional implications of

the newly identified mutations in ADH patients.
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