Castelnuovo-Mumford regularity for complexes and weakly Koszul modules

Kohji Yanagawa*
Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Received 21 February 2005; received in revised form 22 August 2005
Available online 28 November 2005
Communicated by A.V. Geramita

Abstract

Let A be a noetherian AS-regular Koszul quiver algebra (if A is commutative, it is essentially a polynomial ring), and gr A the category of finitely generated graded left A-modules. Following Jørgensen, we define the Castelnuovo-Mumford regularity reg $\left(M^{\bullet}\right)$ of a complex $M^{\bullet} \in D^{b}(\mathrm{gr} A)$ in terms of the local cohomologies or the minimal projective resolution of M^{\bullet}. Let $A^{!}$be the quadratic dual ring of A. For the Koszul duality functor $\mathcal{G}: D^{b}(\operatorname{gr} A) \rightarrow D^{b}\left(\operatorname{gr} A^{!}\right)$, we have $\operatorname{reg}\left(M^{\bullet}\right)=\max \left\{i \mid H^{i}\left(\mathcal{G}\left(M^{\bullet}\right)\right) \neq 0\right\}$. Using these concepts, we interpret results of Martinez-Villa and Zacharia concerning weakly Koszul modules (also called componentwise linear modules) over $A^{!}$. As an application, refining a result of Herzog and Römer, we show that if J is a monomial ideal of an exterior algebra $E=\bigwedge\left\langle y_{1}, \ldots, y_{d}\right\rangle, d \geq 3$, then the $(d-2)$ nd syzygy of E / J is weakly Koszul.

(C) 2005 Elsevier B.V. All rights reserved.

MSC: primary 16 E 05 ; secondary $13 \mathrm{~F} 55,16 \mathrm{~S} 37,16 \mathrm{~W} 50$

1. Introduction

Let $S=K\left[x_{1}, \ldots, x_{d}\right]$ be a polynomial ring over a field K. We regard S as a graded ring with $\operatorname{deg} x_{i}=1$ for all i. The following is a well-known result.

[^0]0022-4049/\$ - see front matter © 2005 Elsevier B.V. All rights reserved.

Theorem 1.1 (cf. [4]). Let M be a finitely generated graded S-module. For an integer r, the following conditions are equivalent.
(1) $H_{\mathfrak{m}}^{i}(M)_{j}=0$ for all $i, j \in \mathbb{Z}$ with $i+j>r$.
(2) The truncated module $M_{\geq r}:=\bigoplus_{i \geq r} M_{i}$ has an r-linear free resolution.

Here $\mathfrak{m}:=\left(x_{1}, \ldots, x_{d}\right)$ is the irrelevant ideal of S, and $H_{\mathfrak{m}}^{i}(M)$ is the ith local cohomology module.

If the conditions of Theorem 1.1 are satisfied, we say M is r-regular. For a sufficiently large r, M is r-regular. We call $\operatorname{reg}(M)=\min \{r \mid M$ is r-regular the Castelnuovo-Mumford regularity of M. This is a very important invariant in commutative algebra.

Let A be a noetherian AS-regular Koszul quiver algebra with the graded Jacobson radical $\mathfrak{m}:=\bigoplus_{i \geq 1} A_{i}$. If A is commutative, A is essentially a polynomial ring. When A is connected (i.e., $A_{0}=K$), it is the coordinate ring of a "noncommutative projective space" in noncommutative algebraic geometry. Let gr A be the category of finitely generated graded left A-modules and their degree preserving maps. (For a graded ring B, gr B means the similar category for B.) The local cohomology module $H_{\mathfrak{m}}^{i}(M)$ of $M \in \operatorname{gr} A$ behaves pretty much like in the commutative case. For example, we have the "Serre duality theorem" for the derived category $D^{b}(\operatorname{gr} A)$. See $[11,23]$ and Theorem 2.7 below. By virtue of this duality, we can show that Theorem 1.1 also holds for bounded complexes in gr A.

Theorem 1.2. For a complex $M^{\bullet} \in D^{b}(\operatorname{gr} A)$ and an integer r, the following conditions are equivalent.
(1) $H_{\mathfrak{m}}^{i}\left(M^{\bullet}\right)_{j}=0$ for all $i, j \in \mathbb{Z}$ with $i+j>r$.
(2) The truncated complex $\left(M^{\bullet}\right)_{\geq r}$ has an r-linear projective resolution.

Here $\left(M^{\bullet}\right)_{\geq r}$ is the subcomplex of M^{\bullet} whose ith term is $\left(M^{i}\right)_{\geq(r-i)}$.
For a sufficiently large r, the conditions of the above theorem are satisfied. The regularity $\operatorname{reg}\left(M^{\bullet}\right)$ of $M^{\bullet \bullet}$ is defined in the natural way. When A is connected, Jørgensen [10] has studied the regularity of complexes, and essentially proved the above result. See also $[9,15]$. (Even in the case when A is a polynomial ring, it seems that nobody had considered Theorem 1.2 before [10].) But his motivation and treatment are slightly different from ours.

For $M^{\bullet} \in D^{b}(\operatorname{gr} A)$, set $\mathcal{H}\left(M^{\bullet}\right)$ to be a complex such that $\mathcal{H}\left(M^{\bullet}\right)^{i}=H^{i}(M)$ for all i and the differential maps are zero. Then we have $\operatorname{reg}\left(\mathcal{H}\left(M^{\bullet}\right)\right) \geq \operatorname{reg}\left(M^{\bullet}\right)$. The difference $\operatorname{reg}\left(\mathcal{H}\left(M^{\bullet}\right)\right)-\operatorname{reg}\left(M^{\bullet}\right)$ is a theme of the last section of this paper.

Let A ! be the quadratic dual ring of A. For example, if $S=K\left[x_{1}, \ldots, x_{d}\right]$ is a polynomial ring, then $S^{!}$is an exterior algebra $E=\bigwedge\left\langle y_{1}, \ldots, y_{d}\right\rangle$. It is known that $A^{!}$is always Koszul, finite dimensional, and selfinjective. The Koszul duality functors $\mathcal{F}: D^{b}\left(\operatorname{gr} A^{!}\right) \rightarrow D^{b}(\operatorname{gr} A)$ and $\mathcal{G}: D^{b}(\operatorname{gr} A) \rightarrow D^{b}\left(\operatorname{gr} A^{!}\right)$give a category equivalence $D^{b}\left(\operatorname{gr} A^{!}\right) \cong D^{b}(\operatorname{gr} A)($ see [2] $)$. It is easy to check that

$$
\operatorname{reg}\left(M^{\bullet}\right)=\max \left\{i \mid H^{i}\left(\mathcal{G}\left(M^{\bullet}\right)\right) \neq 0\right\}
$$

for $M^{\bullet} \in D^{b}(\operatorname{gr} A)$.

Let gr A^{op} be the category of finitely generated graded right A-modules. The above results on gr A also hold for gr A^{OP}. Moreover, we have

$$
\operatorname{reg}\left(\underline{\mathbf{R}}_{\boldsymbol{H o m}}^{A}\left(M^{\bullet}, \mathcal{D}^{\bullet}\right)\right)=-\min \left\{i \mid H^{i}\left(\mathcal{G}\left(M^{\bullet}\right)\right) \neq 0\right\}
$$

for $M^{\bullet} \in D^{b}(\operatorname{gr} A)$. Here \mathcal{D}^{\bullet} is a balanced dualizing complex of A, which gives duality functors between $D^{b}(\operatorname{gr} A)$ and $D^{b}\left(\operatorname{gr} A^{\mathrm{OP}}\right)$.

Let B be a noetherian Koszul algebra. For $M \in \operatorname{gr} B$ and $i \in \mathbb{Z}, M_{\langle i\rangle}$ denotes the submodule of M generated by the degree i component M_{i} of M. We say M is weakly Koszul if $M_{\langle i\rangle}$ has a linear projective resolution for all i. This definition is different from the original one given in [13], but they are equivalent. (Weakly Koszul modules are also called "componentwise linear modules" by some commutative algebraists.) Martinez-Villa and Zacharia proved that if $N \in \operatorname{gr} A^{!}$then the i th syzygy $\Omega_{i}(N)$ of N is weakly Koszul for $i \gg 0$. For $N \in \operatorname{gr} A^{!}$, set

$$
\operatorname{lpd}(N):=\min \left\{i \in \mathbb{N} \mid \Omega_{i}(N) \text { is weakly Koszul }\right\}
$$

Let $N \in \operatorname{gr} A^{!}$and $N^{\prime}:=\underline{\operatorname{Hom}}_{A^{!}}\left(N, A^{!}\right) \in \operatorname{gr}\left(A^{!}\right)^{\text {op }}$ its dual. In Theorem 4.4, we show that N is weakly Koszul if and only if $\operatorname{reg}\left(\mathcal{H} \circ \mathcal{F}^{\text {op }}\left(N^{\prime}\right)\right)=0$, where $\mathcal{F}^{\text {op }}$: $D^{b}\left(\operatorname{gr}\left(A^{!}\right)^{\mathrm{OP}}\right) \rightarrow D^{b}\left(\operatorname{gr} A^{\mathrm{OP}}\right)$ is the Koszul duality functor. (Since $\operatorname{reg}\left(\mathcal{F}^{\mathrm{OP}}\left(N^{\prime}\right)\right)=0$, we have $\operatorname{reg}\left(\mathcal{H} \circ \mathcal{F}^{\circ \mathrm{Op}}\left(N^{\prime}\right)\right) \geq 0$ in general.) Moreover, we have

$$
\operatorname{lpd}(N)=\operatorname{reg}\left(\mathcal{H} \circ \mathcal{F}^{\circ \mathrm{OP}}\left(N^{\prime}\right)\right)
$$

(Theorem 4.7). As an application of this formula, we refine a result of Herzog and Römer on monomial ideals of an exterior algebra. Among other things, in Proposition 4.15, we show that if J is a monomial ideal of an exterior algebra $E=\bigwedge\left\langle y_{1}, \ldots, y_{d}\right\rangle, d \geq 3$, then $\operatorname{lpd}(E / J) \leq d-2$.

Finally, we remark that Herzog and Iyengar [8] studied the invariant lpd and related concepts over noetherian commutative (graded) local rings. Among other things, they proved that $\operatorname{lpd}(N)$ is always finite over some "nice" local rings (e.g., complete intersections whose associated graded rings are Koszul).

2. Preliminaries

Let K be a field. The ring A treated in this paper is a (not necessarily commutative) K-algebra with some nice properties. More precisely, A is a noetherian AS-regular Koszul quiver algebra. If A is commutative, it is essentially a polynomial ring. But even in this case, most results in Section 4 and a few results in Section 3 are new. (In the polynomial ring case, many results in Section 3 were obtained in [3].) So one can read this paper assuming that A is a polynomial ring.

We sketch the definition and basic properties of graded quiver algebras here. See [5] for further information.

Let Q be a finite quiver. That is, $Q=\left(Q_{0}, Q_{1}\right)$ is an oriented graph, where Q_{0} is the set of vertices and Q_{1} is the set of arrows. Here Q_{0} and Q_{1} are finite sets. The path algebra $K Q$ is a positively graded algebra with grading given by the lengths of paths. We denote the graded Jacobson radical of $K Q$ by J. That is, J is the ideal generated by all arrows.

If $I \subset J^{2}$ is a graded ideal, we say $A=K Q / I$ is a graded quiver algebra. Of course, $A=\bigoplus_{i \geq 0} A_{i}$ is a graded ring such that the degree i component A_{i} is a finite-dimensional K-vector space for all i. The subalgebra A_{0} is a product of copies of the field K, one copy for each element of Q_{0}. If $A_{0}=K$ (i.e., Q has only one vertex), we say A is connected. Let $R=\bigoplus_{i \geq 0} R_{i}$ be a graded algebra with $R_{0}=K$ and $\operatorname{dim}_{K} R_{1}=: n<\infty$. If R is generated by R_{1} as a K-algebra, then it can be regarded as a graded quiver algebra over a quiver with one vertex and n loops. Let $\mathfrak{m}:=\bigoplus_{i \geq 1} A_{i}$ be the graded Jacobson radical of A. Unless otherwise specified, we assume that A is left and right noetherian throughout this paper.

Let $\mathrm{Gr} A$ (resp. Gr A^{op}) be the category of graded left (resp. right) A-modules and their degree-preserving A-homomorphisms. Note that the degree i component M_{i} of $M \in \operatorname{Gr} A$ (or $M \in \mathrm{Gr} A^{\mathrm{Op}}$) is an A_{0}-module for each i. Let $\mathrm{gr} A$ (resp. gr A^{op}) be the full subcategory of $\mathrm{Gr} A$ (resp. Gr A^{Op}) consisting of finitely generated modules. Since we assume that A is noetherian, gr A and $\operatorname{gr} A^{\mathrm{OP}}$ are abelian categories. In what follows, we will define several concepts for $\mathrm{Gr} A$ and $\mathrm{gr} A$. But the corresponding concepts for $\mathrm{Gr} A^{\mathrm{Op}}$ and $\mathrm{gr} A^{\mathrm{Op}}$ can be defined in the same way.

For $n \in \mathbb{Z}$ and $M \in \operatorname{Gr} A$, set $M_{\geq n}:=\bigoplus_{i \geq n} M_{i}$ to be a submodule of M, and $M_{\leq n}:=\bigoplus_{i \leq n} M_{i}$ to be a graded K-vector space. The nth shift $M(n)$ of M is defined by $M(n)_{i}=\bar{M}_{n+i}$. Set $\sigma(M):=\sup \left\{i \mid M_{i} \neq 0\right\}$ and $\iota(M):=\inf \left\{i \mid M_{i} \neq 0\right\}$. If $M=0$, we set $\sigma(M)=-\infty$ and $\iota(M)=+\infty$. Note that if $M \in \operatorname{gr} A$ then $\iota(M)>-\infty$. For a complex M^{\bullet} in Gr A, set

$$
\sigma\left(M^{\bullet}\right):=\sup \left\{\sigma\left(H^{i}\left(M^{\bullet}\right)\right)+i \mid i \in \mathbb{Z}\right\} \text { and } \iota\left(M^{\bullet}\right):=\inf \left\{\iota\left(H^{i}\left(M^{\bullet}\right)\right)+i \mid i \in \mathbb{Z}\right\}
$$

For $v \in Q_{0}$, we have the idempotent e_{v} associated with v. Note that $1=\sum_{v \in Q_{0}} e_{v}$. Set $P_{v}:=A e_{v}$ and ${ }_{v} P:=e_{v} A$. Then we have ${ }_{A} A=\bigoplus_{v \in Q_{0}} P_{v}$ and $A_{A}=\bigoplus_{v \in Q_{0}}\left({ }_{v} P\right)$. Each P_{v} and ${ }_{v} P$ are indecomposable projectives. Conversely, any indecomposable projective in Gr A (resp. Gr A^{OP}) is isomorphic to P_{v} (resp. ${ }_{v} P$) for some $v \in Q_{0}$ up to degree shifting. Set $K_{v}:=P_{v} /\left(\mathfrak{m} P_{v}\right)$ and ${ }_{v} K:={ }_{v} P /\left({ }_{v} P \mathfrak{m}\right)$. Each K_{v} and ${ }_{v} K$ are simple. Conversely, any simple object in $\mathrm{Gr} A$ (resp. Gr A^{OP}) is isomorphic to K_{v} (resp. ${ }_{v} K$) for some $v \in Q_{0}$ up to degree shifting.

We say a graded left (or right) A-module M is locally finite if $\operatorname{dim}_{K} M_{i}<\infty$ for all i. If $M \in \operatorname{gr} A$, then it is locally finite. Let lf A (resp. If A^{op}) be the full subcategory of $\mathrm{Gr} A$ (resp. Gr A^{Op}) consisting of locally finite modules.

Let $C^{b}(\operatorname{Gr} A)$ be the category of bounded cochain complexes in $\operatorname{Gr} A$, and $D^{b}(\mathrm{Gr} A)$ its derived category. We have similar categories for $\operatorname{Gr} A^{\mathrm{Op}}$, if A, If $A^{\mathrm{op}}, \operatorname{gr} A$ and $\operatorname{gr} A^{\mathrm{op}}$. For a complex M^{\bullet} and an integer p, let $M^{\bullet}[p]$ be the p th translation of M^{\bullet}. That is, $M^{\bullet}[p]$ is a complex with $M^{i}[p]=M^{i+p}$. Since $D^{b}(\operatorname{gr} A) \cong D_{\operatorname{gr} A}^{b}(\operatorname{Gr} A) \cong D_{\operatorname{gr} A}^{b}$ (lf $\left.A\right)$, we freely identify these categories. A module M can be regarded as a complex $\cdots \rightarrow 0 \rightarrow M \rightarrow$ $0 \rightarrow \cdots$ with M at the 0 th term. We can regard $\operatorname{Gr} A$ as a full subcategory of $C^{b}(\operatorname{Gr} A)$ and $D^{b}(\operatorname{Gr} A)$ in this way.

For $M, N \in \operatorname{Gr} A$, set $\underline{\operatorname{Hom}}_{A}(M, N):=\bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\operatorname{Gr} A}(M, N(i))$ to be a graded K-vector space with $\underline{\operatorname{Hom}}_{A}(M, N)_{i}=\operatorname{Hom}_{\operatorname{Gr} A}(M, N(i))$. Similarly, we can also define $\underline{\operatorname{Hom}}_{A}^{\bullet}\left(M^{\bullet}, N^{\bullet}\right), \underline{\operatorname{RHom}}\left(M^{\bullet}, N^{\bullet}\right)$, and $\underline{\operatorname{Ext}}_{A}^{i}\left(M^{\bullet}, N^{\bullet}\right)$ for $M^{\bullet}, N^{\bullet} \in D^{b}(\operatorname{Gr} A)$.

If V is a K-vector space, V^{*} denotes the dual vector space $\operatorname{Hom}_{K}(V, K)$. For $M \in \operatorname{Gr} A$ (resp. $M \in \operatorname{Gr} A^{\mathrm{OP}}$), $M^{\vee}:=\bigoplus_{i \in \mathbb{Z}}\left(M_{i}\right)^{*}$ has a graded right (resp. left) A-module structure given by $(f a)(x)=f(a x)($ resp. $(a f)(x)=f(x a))$ and $\left(M^{\vee}\right)_{i}=\left(M_{-i}\right)^{*}$. If $M \in \operatorname{lf} A$, then $M^{\vee} \in \operatorname{lf} A^{\mathrm{OP}}$ and $M^{\vee \vee} \cong M$. In other words, $(-)^{\vee}$ gives exact duality functors between If A and lf A^{op}, which can be extended to duality functors between C^{b} (lf A) and C^{b} (lf $\left.A^{\mathrm{op}}\right)$, or between D^{b} (lf A) and D^{b} (lf A^{op}). In this paper, when we say W is an $A-A$ bimodule, we always assume that $(a w) a^{\prime}=a\left(w a^{\prime}\right)$ for all $w \in W$ and $a, a^{\prime} \in A$. If W is a graded $A-A$ bimodule, then so is W^{\vee}.

It is easy to see that $I_{v}:=\left({ }_{v} P\right)^{\vee}$ (resp. $\left.{ }_{v} I:=\left(P_{v}\right)^{\vee}\right)$ is injective in Gr A (resp. Gr A^{op}). Moreover, I_{v} and ${ }_{v} I$ are graded injective hulls of K_{v} and ${ }_{v} K$ respectively. In particular, the $A-A$ bimodule A^{\vee} is injective both in $\operatorname{Gr} A$ and in $\operatorname{Gr} A^{\mathrm{OP}}$.

Let W be a graded $A-A$-bimodule. For $M \in \operatorname{Gr} A$, we can regard $\underline{\operatorname{Hom}}_{A}(M, W)$ as a graded right A-module by $(f a)(x)=f(x) a$. We can also define $\mathbf{R H o m}_{A}\left(M^{\bullet}, W\right) \in$ $D^{b}\left(\operatorname{Gr} A^{\mathrm{OP}}\right)$ and $\underline{\operatorname{Ext}}_{A}^{i}\left(M^{\bullet}, W\right) \in \operatorname{Gr} A^{\mathrm{OP}}$ for $M^{\bullet} \in D^{b}(\operatorname{Gr} A)$ in this way. Similarly, for $M^{\bullet} \in D^{b}\left(\operatorname{Gr} A^{\mathrm{OP}}\right)$, we can make $\mathbf{R H o m} A^{\text {op }}\left(M^{\bullet}, W\right)$ and $\underline{\operatorname{Ext}}_{A^{i}}^{i}\left(M^{\bullet}, W\right)$ (bounded complex of) graded left A-modules. For $M \in \operatorname{Gr} A$, we can regard $\underline{\operatorname{Hom}}_{A}(W, M)$ as a graded left A-module by $(a f)(x)=f(x a)$.

For the functor $\underline{\mathrm{Hom}}_{A}(-, W)$, we mainly consider the case when $W=A$ or $W=A^{\vee}$. But, we have $\underline{\operatorname{Hom}}_{A}\left(-, A^{\vee}\right) \cong(-)^{\vee}$. To see this, note that

$$
\begin{aligned}
\left(M^{\vee}\right)_{i}=\operatorname{Hom}_{K}\left(M_{-i}, K\right) & =\bigoplus_{v \in Q_{0}} \operatorname{Hom}_{K}\left(e_{v} M_{-i}, K\right) \\
& \cong \bigoplus_{v \in Q_{0}} \operatorname{Hom}_{K}\left(e_{v} M_{-i}, K_{v}\right) \\
& \cong \operatorname{Hom}_{A_{0}}\left(M_{-i}, A_{0}\right)
\end{aligned}
$$

Via the identification $\left(A^{\vee}\right)_{0} \cong\left(A_{0}\right)^{*} \cong A_{0}, f \in\left(M^{\vee}\right)_{i} \cong \operatorname{Hom}_{A_{0}}\left(M_{-i}, A_{0}\right)$ gives a morphism $f^{\prime}: M_{\geq-i} \rightarrow A^{\vee}(i)$ in $\operatorname{Gr} A$. Since $\operatorname{Hom}_{\text {Gr } A}\left(M / M_{\geq-i}, A^{\vee}(i)\right)=0$ and A^{\vee} is injective, the short exact sequence $0 \rightarrow M_{\geq-i} \rightarrow M \rightarrow M / M_{\geq-i} \rightarrow 0$ induces a unique extension $f^{\prime \prime}: M \rightarrow A^{\vee}(i)$ of f^{\prime}. From this correspondence, we have $\underline{\operatorname{Hom}}_{A}\left(M, A^{\vee}\right) \cong M^{\vee}$.

Let P^{\bullet} be a right bounded complex in gr A such that each P^{i} is projective. We say P^{\bullet} is minimal if $d\left(P^{i}\right) \subset \mathfrak{m} P^{i+1}$ for all i. Here d is the differential map. Any complex $M^{\bullet} \in C^{b}(\operatorname{gr} A)$ has a minimal projective resolution, that is, we have a minimal complex P^{\bullet} of projective objects and a graded quasi-isomorphism $P^{\bullet} \rightarrow M^{\bullet}$. A minimal projective resolution of $M^{\bullet \bullet}$ is unique up to isomorphism. We denote a graded module A / \mathfrak{m} by A_{0}. Set $\beta^{i, j}\left(M^{\bullet}\right):=\operatorname{dim}_{K} \operatorname{Ext}_{A}^{-i}\left(M^{\bullet}, A_{0}\right)_{-j}$. Let P^{\bullet} be a minimal projective resolution of M^{\bullet}, and $P^{i}:=\bigoplus_{l=1}^{m} T^{i, l}$ an indecomposable decomposition. Then we have

$$
\beta^{i, j}\left(M^{\bullet}\right)=\#\left\{l \mid T^{i, l}(j) \cong P_{v} \text { for some } v\right\} .
$$

We can also define $\beta^{i, j}\left(M^{\bullet}\right)$ as the dimension of $\operatorname{Tor}_{-i}^{A}\left(A_{0}, M^{\bullet}\right){ }_{j}$. This definition must be much more familiar to commutative algebraists. Note that $\beta^{i, j}(-)$ is an invariant of isomorphism classes of the derived category $D^{b}(\operatorname{gr} A)$. Note that these facts on minimal projective resolutions also hold over any noetherian graded algebra.

Definition 2.1. Let A be a (not necessarily noetherian) graded quiver algebra. We say A is Artin-Schelter regular (AS-regular, for short), if

- A has finite global dimension d.
- $\underline{\operatorname{Ext}}_{A}^{i}\left(K_{v}, A\right)=\underline{\operatorname{Ext}}_{A}^{i}{ }^{\text {op }}\left({ }_{v} K, A\right)=0$ for all $i \neq d$ and all $v \in Q_{0}$.
- There are a permutation δ on Q_{0} and an integer n_{v} for each $v \in Q_{0}$ such that

Remark 2.2. The AS regularity is a very important concept in non-commutative algebraic geometry. In the original definition, it is assumed that an AS-regular algebra A is connected and there is a positive real number γ such that $\operatorname{dim}_{K} A_{n}<n^{\gamma}$ for $n \gg 0$, while some authors do not require the latter condition. We also remark that Martinez-Villa and coworkers called rings satisfying the conditions of Definition 2.1 generalized Auslander regular algebras in $[6,11]$.

Definition 2.3. For an integer $l \in \mathbb{Z}$, we say $M^{\bullet} \in \operatorname{gr} A$ has an l-linear (projective) resolution, if

$$
\beta^{i, j}\left(M^{\bullet}\right) \neq 0 \Rightarrow i+j=l .
$$

If M^{\bullet} has an l-linear resolution for some l, we say M^{\bullet} has a linear resolution.
Definition 2.4. We say A is $K o s z u l$, if the graded left A-module A_{0} has a linear resolution.
In the definition of the Koszul property, we can regard A_{0} as a right A-module. (We get the equivalent definition.) That is, A is Koszul if and only if any simple graded left (or, right) A-module has a linear resolution.

Lemma 2.5. If A is noetherian, AS-regular, Koszul, and has global dimension d, then $\underline{\operatorname{Ext}}_{A}^{d}\left(K_{v}, A\right) \cong{ }_{\delta(v)} K(d)$ and $\left.\underline{\operatorname{Ext}}_{A}^{d}{ }^{d}{ }^{\circ}(v), A\right) \cong K_{\delta^{-1}(v)}(d)$ for all v. Here δ is the permutation of Q_{0} given in Definition 2.1.
Proof. Since A is Koszul, P^{-d} of a minimal projective resolution $P^{\bullet}: 0 \rightarrow P^{-d} \rightarrow$ $\cdots \rightarrow P^{0} \rightarrow 0$ of K_{v} is generated by its degree d-part $\left(P^{-d}\right)_{d}$ (more precisely, $\left.P^{-d}=P_{\delta(v)}(-d)\right)$.

In the rest of this paper, A is always a noetherian $A S$-regular Koszul quiver algebra of global dimension d.

Example 2.6. (1) A polynomial ring $K\left[x, \ldots, x_{d}\right]$ is clearly a noetherian AS-regular Koszul (quiver) algebra of global dimension d. Conversely, if a regular noetherian graded algebra is connected and commutative, it is a polynomial ring.
(2) Let $K\left\langle x_{1}, \ldots, x_{d}\right\rangle$ be the free associative algebra, and $\left(q_{i, j}\right)$ a $d \times d$ matrix with entries in K satisfying $q_{i, j} q_{j, i}=q_{i, i}=1$ for all i, j. Then the quotient ring $A=K\left\langle x_{1}, \ldots, x_{n}\right\rangle /\left\langle x_{j} x_{i}-q_{i, j} x_{i} x_{j} \mid 1 \leq i, j \leq d\right\rangle$ is a noetherian AS-regular Koszul algebra with global dimension d. This fact must be well-known to specialists, but we will sketch a proof here for the reader's convenience. Since $x_{1}, \ldots, x_{d} \in A_{1}$ form a regular normalizing sequence with the quotient ring $K=A /\left(x_{1}, \ldots, x_{d}\right), A$ is a noetherian ring with a balanced dualizing complex by [15, Lemma 7.3]. It is not difficult to construct a
minimal free resolution of the module $K=A / \mathfrak{m}$, which is a " q-analog" of the Koszul complex of a polynomial ring $K\left[x_{1}, \ldots, x_{d}\right]$. So A is Koszul and has global dimension d. Since A has finite global dimension and admits a balanced dualizing complex, it is ASregular (cf. [15, Remark 3.6 (3)]).

Artin et al. [1] classified connected AS-regular algebras of global dimension 3. (Their definition of AS regularity is stronger than ours. See Remark 2.2.) All of the algebras they listed are noetherian [1, Theroem 8.1]. But some are Koszul and some are not.
(3) A preprojective algebra is an important example of non-connected AS-regular algebras. See [6] and the references cited there for the definition of this algebra and further information. The preprojective algebra A of a finite quiver Q is a graded quiver algebra over the inverse completion \bar{Q} of Q. If the quiver Q is connected (of course, it does not mean A is connected), then A is (almost) always an AS-regular algebra of global dimension 2, but it is not Koszul in some cases, and not noetherian in many cases. Let G be the bipartite graph of Q in the sense of [6, Section 3]. If G is Euclidean, then A is a noetherian AS-regular Koszul algebra of global dimension 2.

For $M \in \operatorname{Gr} A$, set

$$
\Gamma_{\mathfrak{m}}(M)=\lim _{\rightarrow}^{\operatorname{Hom}_{A}}\left(A / \mathfrak{m}^{n}, M\right)=\left\{x \in M \mid A_{n} x=0 \text { for } n \gg 0\right\} \in \operatorname{Gr} A
$$

Then $\Gamma_{\mathfrak{m}}(-)$ gives a left exact functor from $\operatorname{Gr} A$ to itself. So we have a right derived functor $\mathbf{R} \Gamma_{\mathfrak{m}}: D^{b}(\operatorname{Gr} A) \rightarrow D^{b}(\operatorname{Gr} A)$. For $M^{\bullet} \in D^{b}(\operatorname{Gr} A), H_{\mathfrak{m}}^{i}\left(M^{\bullet}\right)$ denotes the i th cohomology of $\mathbf{R} \Gamma_{\mathfrak{m}}\left(M^{\bullet}\right)$, and we call it the i th local cohomology of M^{\bullet}. It is easy to see that $H_{\mathfrak{m}}^{i}\left(M^{\bullet}\right)=\lim _{\rightarrow \operatorname{Ext}_{A}^{i}}\left(A / \mathfrak{m}^{n}, M^{\bullet}\right)$. Similarly, we can define $\mathbf{R} \Gamma_{\mathfrak{m} \rho p}$: $D^{b}\left(\mathrm{Gr} A^{\mathrm{OP}}\right) \rightarrow D^{b}\left(\mathrm{Gr} A^{\mathrm{OP}}\right)$ and $H_{\mathrm{m} \mathrm{Pp}}^{i}: D^{b}\left(\mathrm{Gr} A^{\mathrm{OP}}\right) \rightarrow \mathrm{Gr} A^{\mathrm{Op}}$ in the same way. If M is an $A-A$ bimodule, $H_{\mathfrak{m}}^{i}(M)$ and $H_{\mathfrak{m p p}}^{i}(M)$ are also.

Let $I \in \mathrm{Gr} A$ be an indecomposable injective. Then $\Gamma_{\mathfrak{m}}(I) \neq 0$, if and only if $I \cong I_{v}(n)$ for some $v \in Q_{0}$ and $n \in \mathbb{Z}$, if and only if $\Gamma_{\mathfrak{m}}(I)=I$. Similarly, $\underline{\operatorname{Hom}}_{A}\left(A_{0}, I\right) \neq 0$ if and only if $I \cong I_{v}(n)$ for some $v \in Q_{0}$ and $n \in \mathbb{Z}$. In this case, $\underline{\operatorname{Hom}}_{A}\left(A_{0}, I\right)=K_{v}(n)$. The same is true for an indecomposable injective $I \in \operatorname{Gr} A^{\mathrm{op}}$.

Let I^{\bullet} be a minimal injective resolution of A in gr A. Since A is AS-regular, $I^{i}=0$ for all $i>d, \Gamma_{\mathfrak{m}}\left(I^{i}\right)=0$ for all $i<d$, and $\Gamma_{\mathfrak{m}}\left(I^{d}\right)=A^{\vee}(d)$. Hence $\mathbf{R} \Gamma_{\mathfrak{m}}(A) \cong$ $A^{\vee}(d)[-d]$ in $D^{b}(\operatorname{gr} A)$. By the same argument as [23, Proposition 4.4], we also have $\mathbf{R} \Gamma_{\mathfrak{m}}(A) \cong A^{\vee}(d)[-d]$ in $D^{b}\left(\mathrm{gr} A^{\mathrm{op}}\right)$. It does not mean that $H_{\mathfrak{m}}^{d}(A) \cong A^{\vee}(d)$ as $A-A$ bimodules. But there is an $A-A$ bimodule L such that $L \otimes_{A} H_{\mathfrak{m}}^{d}(A) \cong A^{\vee}(d)$ as $A-A$ bimodules. Here the underlying additive group of L is A, but the bimodule structure is give by $A \times L \times A \ni(a, l, b) \mapsto \phi(a) l b \in A=L$ for a (fixed) K-algebra automorphism ϕ of A. In particular, $L \cong A$ as left A-modules and as right A-modules (separately). Note that $\phi\left(e_{v}\right)=e_{\delta(v)}$ for all $v \in Q_{0}$, where δ is the permutation on Q_{0} appeared in Definition 2.1. If A is commutative, then ϕ is the identity map.

We give a new $A-A$ bimodule structure L^{\prime} to the additive group A by $A \times L^{\prime} \times A \ni$ $(a, l, b) \mapsto a l \phi(b) \in A=L^{\prime}$. Then $L^{\prime} \cong \underline{\operatorname{Hom}}_{A}(L, A)$. Set $\mathcal{D}^{\bullet}:=L^{\prime}(-d)[d]$. Note that \mathcal{D}^{\bullet} belongs both $D^{b}(\operatorname{gr} A)$ and $D^{b}\left(\operatorname{gr} A^{\circ \mathrm{p}}\right)$. We have $H_{\mathfrak{m}}^{i}\left(\mathcal{D}^{\bullet}\right)=H_{\mathfrak{m p p}}^{i}\left(\mathcal{D}^{\bullet}\right)=0$ for all $i \neq 0$ and $H_{\mathfrak{m}}^{0}\left(\mathcal{D}^{\bullet}\right) \cong H_{m^{\text {op }}}^{0}\left(\mathcal{D}^{\bullet}\right) \cong A^{\vee}$ as $A-A$ bimodules by the same argument as [23, Section 4]. Thus (an injective resolution of) \mathcal{D}^{\bullet} is a balanced dualizing complex of
A in the sense of [23] (the paper only concerns connect rings, but the definition can be generalized in the obvious way).

Easy computation shows that $\underline{\operatorname{Hom}}_{A}\left(P_{v}, L^{\prime}\right) \cong{ }_{\delta^{-1}(v)} P$ and $\underline{\operatorname{Hom}}_{A^{\circ \rho}(}\left({ }_{v} P, L^{\prime}\right) \cong P_{\delta(v)}$ for all $v \in Q_{0}$. Since $\mathbf{R H o m}_{A}\left(M^{\bullet}, \mathcal{D}^{\bullet}\right)$ (resp. $\underline{\mathbf{H o m}}_{A^{\text {op }}}\left(M^{\bullet}, \mathcal{D}^{\bullet}\right)$) for $M^{\bullet} \in \operatorname{gr} A$ (resp. $M^{\bullet} \in \operatorname{gr} A^{\mathrm{OP}}$) can be computed by a projective resolution of $M^{\bullet}, \mathbf{R H o m}_{A}\left(-, \mathcal{D}^{\bullet}\right)$ and $\mathbf{R H o m}_{A^{\circ \mathrm{p}}}\left(-, \mathcal{D}^{\bullet}\right)$ give duality functors between $D^{b}(\operatorname{gr} A)$ and $D^{b}\left(\mathrm{gr} A^{A \circ p}\right)$. (Of course, we can also prove this by the same argument as [23, Proposition 3.4].)

Theorem 2.7 (Yekutieli [23, Theorem 4.18], Martinez-Villa [11, Proposition 4.6]). For $M^{\bullet} \in D^{b}(\operatorname{gr} A)$, we have

$$
\mathbf{R} \Gamma_{\mathfrak{m}}\left(M^{\bullet}\right)^{\vee} \cong \mathbf{R H o m}_{A}\left(M^{\bullet}, \mathcal{D}^{\bullet}\right)
$$

In particular,

$$
\left(H_{\mathfrak{m}}^{i}\left(M^{\bullet}\right)_{j}\right)^{*} \cong \operatorname{Ext}_{A}^{-i}\left(M^{\bullet}, \mathcal{D}^{\bullet}\right)_{-j}
$$

Proof. The above result was proved by Yekutieli in the connected case. (In some sense, Martinez-Villa proved a more general result than ours, but he did not concern complexes.) But, the proof of [23, Theorem 4.18] only uses formal properties such as A is noetherian, $\mathbf{R H o m}_{A^{\text {op }}}\left(\mathbf{R H o m}_{A}\left(-, \mathcal{D}^{\bullet}\right), \mathcal{D}^{\bullet}\right) \cong \mathrm{Id}$, and $\mathbf{R} \Gamma_{\mathfrak{m}} \mathcal{D}^{\bullet} \cong A^{\vee}$. So the proof also works in our case.

Definition 2.8 (Jørgensen, [10]). For $M^{\bullet} \in D^{b}(\operatorname{gr} A)$, we say

$$
\operatorname{reg}\left(M^{\bullet}\right):=\sigma\left(\mathbf{R} \Gamma_{\mathfrak{m}}\left(M^{\bullet}\right)\right)=\sup \left\{i+j \mid H_{\mathfrak{m}}^{i}\left(M^{\bullet}\right)_{j} \neq 0\right\}
$$

is the Castelnuovo-Mumford regularity of M^{\bullet}.
By Theorem 2.7 and the fact that $\operatorname{RHom}_{A}\left(M^{\bullet}, \mathcal{D}^{\bullet}\right) \in D^{b}\left(\operatorname{gr} A^{\text {op }}\right)$, we have reg $\left(M^{\bullet}\right)<$ ∞ for all $M^{\bullet} \in D^{b}(\operatorname{gr} A)$.

Theorem 2.9 (Jørgensen, [10]). If $M^{\bullet} \in C^{b}(\operatorname{gr} A)$, then

$$
\begin{equation*}
\operatorname{reg}\left(M^{\bullet}\right)=\max \left\{i+j \mid \beta^{i, j}\left(M^{\bullet}\right) \neq 0\right\} . \tag{2.1}
\end{equation*}
$$

When A is a polynomial ring and M^{\bullet} is a module, the above theorem is a fundamental result obtained by Eisenbud and Goto [4]. In the non-commutative case, under the assumption that A is connected but not necessarily regular, this has been proved by Jørgensen [10, Corollary 2.8]. (If A is not regular, we have $\operatorname{reg}(A)>0$ in many cases. So one has to assume that $\operatorname{reg} A=0$ there.) In our case (i.e., A is AS-regular), we have a much simpler proof. So we will give it here. This proof is also different from one given in [4].

Proof. Set $Q^{\bullet}:=\underline{\operatorname{Hom}}_{A}^{\bullet}\left(P^{\bullet}, L^{\prime}(-d)[d]\right)$. Here P^{\bullet} is a minimal projective resolution of M^{\bullet}, and L^{\prime} is the $A-A$ bimodule given in the construction of the dualizing complex \mathcal{D}^{\bullet}. Recall that $\underline{\operatorname{Hom}}_{A}\left(P_{v}, L^{\prime}\right) \cong{ }_{\delta^{-1}(v)} P$ for all $v \in Q_{0}$. Let s be the right-hand side of (2.1), and l the minimal integer with the property that $\beta^{l, s-l}\left(M^{\bullet}\right) \neq 0$. Then
$\iota\left(Q^{-d-l}\right)=l-s+d$, and $\left(Q^{-d-l+1}\right)_{\leq(l-s+d-1)}=0\left(\right.$ Note that $\beta^{l-1, m}\left(M^{\bullet}\right)=0$ for all $m \geq s-l+1$.) Since Q^{\bullet} is a minimal complex, we have

$$
0 \neq H^{-d-l}\left(Q^{\bullet}\right)_{l-s+d}=\underline{\operatorname{Ext}}_{A}^{-d-l}\left(M^{\bullet}, \mathcal{D}^{\bullet}\right)_{l-s+d}=\left(H_{\mathfrak{m}}^{d+l}\left(M^{\bullet}\right)_{-l+s-d}\right)^{*}
$$

Thus $\operatorname{reg}\left(M^{\bullet}\right) \geq \max \left\{i+j \mid \beta^{i, j}\left(M^{\bullet}\right) \neq 0\right\}$.
On the other hand, if $H_{\mathfrak{m}}^{d+l}\left(M^{\bullet}\right)_{-l+r-d} \neq 0$, we have that $\beta^{l, t-l}\left(M^{\bullet}\right) \neq 0$ for some $t \geq r$ by an argument similar to the above. Hence $\operatorname{reg}\left(M^{\bullet}\right) \leq \max \left\{i+j \mid \beta^{i, j}\left(M^{\bullet}\right) \neq 0\right\}$, and we are done.

For $M^{\bullet} \in D^{b}(\operatorname{gr} A)$, set $\mathcal{H}\left(M^{\bullet}\right)$ to be the complex such that $\mathcal{H}\left(M^{\bullet}\right)^{i}=H^{i}\left(M_{)}\right.$for all i and all differential maps are zero.

Lemma 2.10. We have $\beta^{i, j}\left(\mathcal{H}\left(M^{\bullet}\right)\right) \geq \beta^{i, j}\left(M^{\bullet}\right)$ for all $M^{\bullet} \in D^{b}(\operatorname{gr} A)$ and all $i, j \in \mathbb{Z}$. In particular, $\operatorname{reg}\left(\mathcal{H}\left(M^{\bullet}\right)\right) \geq \operatorname{reg}\left(M^{\bullet}\right)$.

The difference between $\operatorname{reg}\left(M^{\bullet}\right)$ and $\operatorname{reg}\left(\mathcal{H}\left(M^{\bullet}\right)\right)$ can be arbitrary large. In the last section, we will study the relation between this difference and a work of Martinez-Villa and Zacharia [13].

Proof. The assertion easily follows from the spectral sequence

$$
E_{2}^{p, q}=\underline{\operatorname{Ext}}_{A}^{p}\left(H^{-q}\left(N^{\bullet}\right), A_{0}\right) \longrightarrow \underline{\operatorname{Ext}}_{A}^{p+q}\left(N^{\bullet}, A_{0}\right)
$$

For a complex $M^{\bullet} \in C^{b}(\operatorname{gr} A)$ and an integer $r,\left(M^{\bullet}\right)_{\geq r}$ denotes the subcomplex of M^{\bullet} whose i th term is $\left(M^{i}\right)_{\geq(r-i)}$. Even if $M^{\bullet} \cong N^{\bullet}$ in $D^{b}(\operatorname{gr} A)$, we have $\left(M^{\bullet}\right)_{\geq r} \neq\left(N^{\bullet}\right)_{\geq r}$ in general.

In the module case, the following is a well-known property of Castelnuovo-Mumford regularity.

Proposition 2.11. Let $M^{\bullet} \in C^{b}(\operatorname{gr} A)$. Then $\left(M^{\bullet}\right)_{\geq r}$ has an r-linear resolution if and only if $r \geq \operatorname{reg}\left(M^{\bullet}\right)$.

To prove the proposition, we need the following lemma.
Lemma 2.12. For a module $M \in \operatorname{gr} A$ with $\operatorname{dim}_{K} M<\infty$, we have $H_{\mathfrak{m}}^{0}(M)=M$ and $H_{\mathfrak{m}}^{i}(M)=0$ for all $i \neq 0$. In particular, $\operatorname{reg}(M)=\sigma(M)$ in this case.

Proof. If P^{\bullet} is a minimal projective resolution of $M^{\vee} \in \operatorname{gr} A^{\mathrm{op}}$, then $I^{\bullet}:=\left(P^{\bullet}\right)^{\vee}$ is a minimal injective resolution of M. Since each indecomposable summand of I^{i} is isomorphic to $I_{v}(n)$ for some $v \in Q_{0}$ and $n \in \mathbb{Z}$, we have $\Gamma_{\mathfrak{m}}\left(I^{\bullet}\right)=I^{\bullet}$.

Proof of Proposition 2.11. For a complex $T^{\bullet} \in D^{b}(\operatorname{gr} A)$, it is easy to see that $\iota\left(T^{\bullet \bullet}\right)=$ $\min \left\{i+j \mid \beta^{i, j}\left(T^{\bullet}\right) \neq 0\right\}$. In particular, $\iota\left(T^{\bullet}\right) \leq \operatorname{reg}\left(T^{\bullet}\right)$. Hence T^{\bullet} has an l-linear projective resolution if and only if $\iota\left(T^{\bullet}\right)=\operatorname{reg}\left(T^{\bullet}\right)=l$.

Consider the short exact sequence of complexes

$$
\begin{equation*}
0 \rightarrow\left(M^{\bullet}\right)_{\geq r} \rightarrow M^{\bullet} \rightarrow M^{\bullet} /\left(M^{\bullet}\right)_{\geq r} \rightarrow 0, \tag{2.2}
\end{equation*}
$$

and set $N^{\bullet}:=M^{\bullet} /\left(M^{\bullet}\right)_{\geq r}$. Note that $\operatorname{dim}_{K} H^{i}(N)<\infty$ for all i. By Lemmas 2.10 and 2.12, we have

$$
r>\sigma\left(N^{\bullet}\right)=\max \left\{\operatorname{reg}\left(H^{i}\left(N^{\bullet}\right)\right)+i \mid i \in \mathbb{Z}\right\}=\operatorname{reg}\left(\mathcal{H}\left(N^{\bullet}\right)\right) \geq \operatorname{reg}\left(N^{\bullet}\right)
$$

By the long exact sequence of $\underline{\operatorname{Ext}}_{A}^{\bullet}\left(-, A_{0}\right)$ induced by (2.2), we have

$$
\begin{aligned}
r \leq \iota\left(\left(M^{\bullet}\right)_{\geq r}\right) \leq \operatorname{reg}\left(\left(M^{\bullet}\right)_{\geq r}\right) & \leq \max \left\{\operatorname{reg}\left(N^{\bullet}\right)+1, \operatorname{reg}\left(M^{\bullet}\right)\right\} \\
& \leq \max \left\{r, \operatorname{reg}\left(M^{\bullet}\right)\right\} .
\end{aligned}
$$

Moreover, if $r<\operatorname{reg}\left(M^{\bullet}\right)$ then we have $\operatorname{reg}\left(N^{\bullet}\right)+1<\operatorname{reg}\left(M^{\bullet}\right)$ and $\operatorname{reg}\left(\left(M^{\bullet}\right)_{\geq r}\right)=$ $\operatorname{reg}\left(M^{\bullet}\right)>r$. Hence $\left(M^{\bullet}\right) \geq r$ has an r-linear resolution if and only if $r \geq \operatorname{reg}\left(M^{\bullet}\right)$.

The following is one of the most basic results on Castelnuovo-Mumford regularity (see [4]). Jørgensen [9] proved the same result for $M \in \operatorname{gr} A$.

Let $S=K\left[x_{1}, \ldots, x_{d}\right]$ be a polynomial ring. If $M \in \operatorname{gr} S$ satisfies $H_{\mathfrak{m}}^{0}(M)_{\geq r+1}=0$ and $H_{\mathfrak{m}}^{i}(M)_{r+1-i}=0$ for all $i \geq 1$, then $r \geq \operatorname{reg}(M)$ (i.e., $H_{\mathfrak{m}}^{i}(M)_{\geq r+1-i}=0$ for all $i \geq 1$).

The similar result also holds for $M^{\bullet} \in D^{b}(\operatorname{gr} A)$. Since a minor adaptation of the proof of [9, Theorem 2.4] also works for complexes, we leave the proof to the reader.

Proposition 2.13. If $M^{\bullet} \in D^{b}(\operatorname{gr} A)$ with $t:=\max \left\{i \mid H^{i}\left(M^{\bullet}\right) \neq 0\right\}$ satisfies

- $H_{\mathfrak{m}}^{i}\left(M^{\bullet}\right)_{\geq r+1-i}=0$ for all $i \leq t$
- $H_{\mathfrak{m}}^{i}\left(M^{\bullet}\right)_{r+1-i}=0$ for all $i>t$,
then $r \geq \operatorname{reg}\left(M^{\bullet}\right)\left(\right.$ i.e., $H_{\mathfrak{m}}^{i}\left(M^{\bullet}\right)_{\geq r+1-i}=0$ for all $\left.i>t\right)$.

3. Koszul duality

In this section, we study the relation between the Castelnuovo-Mumford regularity of complexes and the Koszul duality. For precise information of this duality, see [2, Section 2]. There, the symbol A (resp. $A^{!}$) basically means a finite-dimensional (resp. noetherian) Koszul algebra. This convention is opposite to ours. So the reader should be careful.

Recall that $A=K Q / I$ is a graded quiver algebra over a finite quiver Q. Let Q^{op} be the opposite quiver of Q. That is, $Q_{0}^{\mathrm{OP}}=Q_{0}$ and there is a bijection from Q_{1} to Q_{1}^{oD} which sends an arrow $\alpha: v \rightarrow u$ in Q_{1} to the arrow $\alpha^{\mathrm{op}}: u \rightarrow v$ in Q_{1}^{OP}. Consider the bilinear form $\langle-,-\rangle:(K Q)_{2} \times\left(K Q^{\text {op }}\right)_{2} \rightarrow A_{0}$ defined by

$$
\left\langle\alpha \beta, \gamma^{\mathrm{op}} \delta^{\mathrm{op}}\right\rangle= \begin{cases}e_{u} & \text { if } \alpha=\delta \text { and } \beta=\gamma \\ 0 & \text { otherwise }\end{cases}
$$

for all $\alpha, \beta, \gamma, \delta \in Q_{1}$. Here $u \in Q_{0}$ is the vertex with $\beta \in A e_{u}$. Let $I^{\perp} \subset K Q^{\text {op }}$ be the ideal generated by

$$
\left\{y \in\left(K Q^{\mathrm{Op}}\right)_{2} \mid\langle x, y\rangle=0 \text { for all } x \in I_{2}\right\} .
$$

We say $K Q^{\mathrm{OP}} / I^{\perp}$ is the quadratic dual ring of A, and denote it by $A^{!}$. Clearly, $\left(A^{!}\right)_{0}=A_{0}$. Since A is Koszul, so is $A^{!}$. Since A is AS-regular, $A^{!}$is a finite-dimensional selfinjective
algebra with $A=\bigoplus_{i=0}^{d} A_{i}$ by [12, Theorem 5.1]. If A is a polynomial ring, then $A^{!}$is the exterior algebra $\bigwedge\left(A_{1}\right)^{*}$.

Since $A^{!}$is selfinjective, $\mathbf{D}_{A^{!}}:=\underline{\operatorname{Hom}}_{A^{!}}\left(-, A^{!}\right)$and $\mathbf{D}_{\left(A^{!}\right) \text {op }}:=\underline{\operatorname{Hom}}_{\left(A^{!}\right) \text {op }}\left(-, A^{!}\right)$give exact duality functors between $\operatorname{gr} A^{!}$and $\operatorname{gr}\left(A^{!}\right)^{\mathrm{op}}$. They induce duality functors between $D^{b}\left(\operatorname{gr} A^{!}\right)$and $D^{b}\left(\operatorname{gr}\left(A^{!}\right)^{\mathrm{OP}}\right)$, which are also denoted by $\mathbf{D}_{A^{\prime}}$ and $\mathbf{D}_{\left(A^{\prime}\right)}$ op. It is easy to see that $\mathbf{D}_{A^{!}}(N) \cong \operatorname{Hom}_{K}(N, K)(-d)$.

We say a complex $F^{\bullet} \in C\left(\operatorname{gr} A^{!}\right)$is a projective (resp. injective) resolution of a complex $N^{\bullet} \in C^{b}\left(\operatorname{gr} A^{!}\right)$, if each term F^{i} is projective (= injective), F^{\bullet} is right (resp. left) bounded, and there is a graded quasi-isomorphism $F^{\bullet} \rightarrow N^{\bullet}\left(\right.$ resp. $\left.N^{\bullet} \rightarrow F^{\bullet}\right)$. We say a projective (or, injective) resolution $F^{\bullet} \in C^{b}\left(\operatorname{gr} A^{!}\right)$is minimal if $d^{i}\left(F^{i}\right) \subset \mathfrak{n} F^{i+1}$ for all i, where \mathfrak{n} is the graded Jacobson radical of $A^{!}$. (The usual definition of a minimal injective resolution is different from the above one. But they coincide in our case.) A bounded complex $N^{\bullet} \in C^{b}\left(\operatorname{gr} A^{!}\right)$has a minimal projective resolution and a minimal injective resolution, and they are unique up to isomorphism. If F^{\bullet} is a minimal projective (resp. injective) resolution of N^{\bullet} then $\mathbf{D}_{A^{\prime}}\left(F^{\bullet}\right)$ is a minimal injective (resp. projective) resolution of $\mathbf{D}_{A^{!}}\left(N^{\bullet}\right)$.

For $N^{\bullet} \in D^{b}\left(\operatorname{gr} A^{!}\right)$, set

$$
\mu^{i, j}\left(N^{\bullet}\right):=\operatorname{dim}_{K} \underline{\operatorname{Exx}}_{A^{!}}^{i}\left(A_{0}, N^{\bullet}\right){ }_{j} .
$$

Then $\mu^{i, j}\left(N^{\bullet}\right)$ measures the size of a minimal injective resolution of N^{\bullet}. More precisely, if F^{\bullet} is a minimal injective resolution of N^{\bullet}, and $F^{i}:=\bigoplus_{l=1}^{m} T^{i, l}$ is an indecomposable decomposition, then we have

$$
\begin{aligned}
\mu^{i, j}\left(N^{\bullet}\right) & =\#\left\{l \mid \operatorname{soc}\left(T^{i, l}\right)=\left(T^{i, l}\right)_{j}\right\} \\
& =\#\left\{l \mid T^{i, l}(j) \text { is isomorphic to a direct summand of } A^{!}(d)\right\} .
\end{aligned}
$$

Let V be a finitely generated left A_{0}-module. Then $\operatorname{Hom}_{A_{0}}\left(A^{!}, V\right)$ is a graded left $A^{!}$module with $(a f)\left(a^{\prime}\right)=f\left(a^{\prime} a\right)$ and $\operatorname{Hom}_{A_{0}}\left(A^{!}, V\right)_{i}=\operatorname{Hom}_{A_{0}}\left(\left(A^{!}\right)_{-i}, V\right)$. Since $A^{!}$is selfinjective, we have $\operatorname{Hom}_{A_{0}}\left(A^{!}, A_{0}\right) \cong A^{!}(d)$. Hence $\operatorname{Hom}_{A_{0}}\left(A^{!}, V\right)$ is a projective (and injective) left $A^{!}$-module for all V. If V has degree i (e.g., $V=M_{i}$ for some $M \in \operatorname{gr} A$), then we set $\operatorname{Hom}_{A_{0}}\left(A^{!}, V\right)_{j}=\operatorname{Hom}_{A_{0}}\left(A_{-j-i}^{!}, V\right)$.

For $M^{\bullet} \in C^{b}(\operatorname{gr} A)$, let $\mathcal{G}\left(M^{\bullet}\right):=\operatorname{Hom}_{A_{0}}\left(A^{!}, M^{\bullet}\right) \in C^{b}\left(\operatorname{gr} A^{!}\right)$be the total complex of the double complex with $\mathcal{G}\left(M^{\bullet}\right)^{i, j}=\operatorname{Hom}_{A_{0}}\left(A^{!}, M_{j}^{i}\right)$ whose vertical and horizontal differentials d^{\prime} and $d^{\prime \prime}$ are defined by

$$
d^{\prime}(f)(x)=\sum_{\alpha \in Q_{1}} \alpha f\left(\alpha^{\mathrm{op}} x\right), \quad d^{\prime \prime}(f)(x)=\partial_{M} \cdot(f(x))
$$

for $f \in \operatorname{Hom}_{A_{0}}\left(A^{!}, M_{j}^{i}\right)$ and $x \in A^{!}$. The gradings of $\mathcal{G}\left(M^{\bullet}\right)$ is given by

$$
\mathcal{G}\left(M^{\bullet}\right)_{q}^{p}:=\bigoplus_{p=i+j, q=-l-j} \operatorname{Hom}_{A_{0}}\left(\left(A^{!}\right)_{l}, M_{j}^{i}\right)
$$

Each term of $\mathcal{G}\left(M^{\bullet}\right)$ is injective. For a module $M \in \operatorname{gr} A, \mathcal{G}(M)$ is a minimal complex. Thus we have

$$
\mu^{i, j}(\mathcal{G}(M))= \begin{cases}\lim _{K} M_{i} & \text { if } i+j=0, \tag{3.1}\\ 0 & \text { otherwise } .\end{cases}
$$

Similarly, for a complex $N^{\bullet} \in C^{b}\left(\operatorname{gr} A^{\prime}\right)$, we can define a new complex $\mathcal{F}\left(N^{\bullet}\right):=$ $A \otimes_{A_{0}} N^{\bullet} \in C^{b}(\operatorname{gr} A)$ as the total complex of the double complex with $\mathcal{F}\left(N^{\bullet}\right)^{i, j}=$ $A \otimes_{A_{0}} N_{j}^{i}$ whose vertical and horizontal differentials d^{\prime} and $d^{\prime \prime}$ are defined by
for $a \otimes x \in A \otimes_{A_{0}} N^{i}$. The gradings of $\mathcal{F}\left(N^{\bullet}\right)$ is given by

$$
\mathcal{F}\left(N^{\bullet}\right)_{q}^{p}:=\bigoplus_{p=i+j, q=l-j} A_{l} \otimes_{A_{0}} N_{j}^{i}
$$

Clearly, each term of $\mathcal{F}\left(N^{\bullet}\right)$ is a projective A-module. For a module $N \in \operatorname{gr} A^{!}, \mathcal{F}(N)$ is a minimal complex. Hence we have

$$
\beta^{i, j}(\mathcal{F}(N))= \begin{cases}\operatorname{dim}_{K} N_{i} & \text { if } i+j=0 \tag{3.2}\\ 0 & \text { otherwise }\end{cases}
$$

It is well known that the operations \mathcal{F} and \mathcal{G} define functors $\mathcal{F}: D^{b}\left(\operatorname{gr} A^{!}\right) \rightarrow D^{b}(\operatorname{gr} A)$ and $\mathcal{G}: D^{b}(\operatorname{gr} A) \rightarrow D^{b}\left(\operatorname{gr} A^{!}\right)$, and they give an equivalence $D^{b}(\operatorname{gr} A) \cong D^{b}\left(\operatorname{gr} A^{!}\right)$ of triangulated categories. This equivalence is called the Koszul duality. When A is a polynomial ring, this equivalence is called Bernstein-Gel'fand-Gel'fand correspondence. See, for example, [3].

We have the functors $\mathcal{F}^{\mathrm{op}}: D^{b}\left(\operatorname{gr}\left(A^{!}\right)^{\mathrm{op}}\right) \rightarrow D^{b}\left(\mathrm{gr} A^{\mathrm{op}}\right)$ and $\mathcal{G}^{\mathrm{op}}: D^{b}\left(\mathrm{gr} A^{\mathrm{op}}\right) \rightarrow$ $D^{b}\left(\operatorname{gr}\left(A^{!}\right)^{\mathrm{OP}}\right)$ giving $D^{b}\left(\operatorname{gr} A^{\mathrm{OP}}\right) \cong D^{b}\left(\operatorname{gr}\left(A^{!}\right)^{\mathrm{OP}}\right)$.

Proposition 3.1 (cf. [3, Proposition 2.3]). In the above situation, we have

$$
\beta^{i, j}\left(M^{\bullet}\right)=\operatorname{dim}_{K} H^{i+j}\left(\mathcal{G}\left(M^{\bullet}\right)\right)_{-j} \quad \text { and } \quad \mu^{i, j}\left(N^{\bullet}\right)=\operatorname{dim}_{K} H^{i+j}\left(\mathcal{F}\left(N^{\bullet}\right)\right)_{-j}
$$

Proof. While the assertion follows from Proposition 3.4 below, we give a direct proof here. We have

$$
\begin{aligned}
\underline{\operatorname{Ext}}_{A^{!}}^{i}\left(A_{0}, N^{\bullet}\right)_{j} & \cong \operatorname{Hom}_{D^{b}\left(\operatorname{gr} A^{\prime}\right)}\left(A_{0}, N^{\bullet}[i](j)\right) \\
& \cong \operatorname{Hom}_{D^{b}(\operatorname{gr} A)}\left(\mathcal{F}\left(A_{0}\right), \mathcal{F}\left(N^{\bullet}[i](j)\right)\right) \\
& \cong \operatorname{Hom}_{D^{b}(\operatorname{gr} A)}\left(A, \mathcal{F}\left(N^{\bullet}\right)[i+j](-j)\right) \\
& \cong H^{i+j}\left(\mathcal{F}\left(N^{\bullet}\right)\right)_{-j} .
\end{aligned}
$$

Since $\mu^{i, j}\left(N^{\bullet}\right)=\operatorname{dim}_{K} \underline{\operatorname{Ext}}_{A^{i}}^{i}\left(A_{0}, N^{\bullet}\right)_{j}$, the second equation of the proposition follows. We can prove the first equation by a similar argument. But this time we use the contravariant functor $\mathbf{D}_{A^{!}} \circ \mathcal{G}: D^{b}(\operatorname{gr} A) \rightarrow D^{b}\left(\operatorname{gr}\left(A^{!}\right)^{\circ \mathrm{P}}\right)$ and the fact that $\mathbf{D}_{A^{!}} \circ \mathcal{G}\left(A_{0}\right) \cong$ $\mathbf{D}_{A^{!}}\left(A^{!}(d)\right) \cong A^{!}(-d)$.

Corollary 3.2. $\operatorname{reg}\left(M^{\bullet}\right)=\max \left\{i \mid H^{i}\left(\mathcal{G}\left(M^{\bullet}\right)\right) \neq 0\right\}$.
Proof. Follows Theorem 2.9 and Proposition 3.1.
Recall that $\mathbf{D}_{A}:=\underline{\mathbf{R H o m}}_{A}\left(-, \mathcal{D}^{\bullet}\right)$ is a duality functor from $D^{b}(\mathrm{gr} A)$ to $D^{b}\left(\mathrm{gr} A^{\mathrm{Op}}\right)$.

Proposition 3.3. $\operatorname{reg}\left(\mathbf{D}_{A}\left(M^{\bullet}\right)\right)=-\min \left\{i \mid H^{i}\left(\mathcal{G}\left(M^{\bullet}\right)\right) \neq 0\right\}$.
Proof. Let L^{\prime} be the $A-A$ bimodule given in the construction of the dualizing complex \mathcal{D}^{\bullet}. Note that $\mathbf{D}_{A}\left(M^{\bullet}\right) \cong \underline{\operatorname{Hom}}_{A}^{\bullet}\left(P^{\bullet}, L^{\prime}(-d)[d]\right)=: Q^{\bullet}$ for a projective resolution P^{\bullet} of M^{\bullet}. Since $\mathbf{D}_{A}\left(P_{v}\right)={ }_{\delta^{-1}(v)} P(-d)[d], Q^{\bullet}$ is a complex of projectives. And Q^{\bullet} is a minimal complex if and only if P^{\bullet} is. Hence $\beta^{-i-d,-j+d}\left(\mathbf{D}_{A}\left(M^{\bullet}\right)\right)=\beta^{i, j}\left(M^{\bullet}\right)$. Therefore, the assertion follows from Proposition 3.1.

We can refine Proposition 3.1 using the notion of linear strands of projective (or injective) resolutions, which was introduced by Eisenbud et al. (See [3, Section 3].) First, we will generalize this notion to our rings. Let B be a noetherian Koszul algebra (e.g., $B=A$ or $A^{!}$) with the graded Jacobson radical \mathfrak{m}, and P^{\bullet} a minimal projective resolution of a bounded complex $M^{\bullet} \in D^{b}(\operatorname{gr} B)$. Consider the decomposition $P^{i}:=\bigoplus_{j \in \mathbb{Z}} P^{i, j}$ such that any indecomposable summand of $P^{i, j}$ is isomorphic to a summand of $B(-j)$. For an integer l, we define the l-linear strand $\operatorname{proj}^{\left(\mathrm{lin}_{l}\left(M^{\bullet}\right) \text { of a projective resolution }\right.}$ of M^{\bullet} as follows. The term proj. $\operatorname{lin}_{l}\left(M^{\bullet}\right)^{i}$ of cohomological degree i is $P^{i, l-i}$ and the differential $P^{i, l-i} \rightarrow P^{i+1, l-i-1}$ is the corresponding component of the differential $P^{i} \rightarrow P^{i+1}$ of P^{\bullet}. So the differential of $\operatorname{proj} . \operatorname{lin}_{l}\left(M^{\bullet}\right)$ is represented by a matrix whose entries are elements in B_{1}. Set proj. $\operatorname{lin}\left(M^{\bullet}\right):=\bigoplus_{l \in \mathbb{Z}}$ proj. $\operatorname{lin}_{l}\left(M^{\bullet}\right)$. It is obvious that $\beta^{i, j}\left(M^{\bullet}\right)=\beta^{i, j}\left(\operatorname{proj} . \operatorname{lin}\left(M^{\bullet}\right)\right)$ for all i, j.

Using a spectral sequence argument, we can construct proj. $\operatorname{lin}\left(M^{\bullet}\right)$ from a (not necessarily minimal) projective resolution Q^{\bullet} of M^{\bullet}. Consider the \mathfrak{m}-adic filtration $Q^{\bullet}=$ $F_{0} Q^{\bullet} \supset F_{1} Q^{\bullet} \supset \cdots$ of Q^{\bullet} with $F_{p} Q^{i}=\mathfrak{m}^{p} Q^{i}$ and the associated spectral sequence $\left\{E_{r}^{*, *}, d_{r}\right\}$. The associated graded object $\operatorname{gr}_{\mathfrak{m}} M:=\bigoplus_{p \geq 0} \mathfrak{m}^{p} M / \mathfrak{m}^{p+1} M$ of $M \in \operatorname{gr} B$ is a module over $\mathrm{gr}_{\mathfrak{m}} B=\bigoplus_{p \geq 0} \mathfrak{m}^{p} / \mathfrak{m}^{p+1} \cong B$. Since $\mathfrak{m}^{p} M$ is a graded submodule of M, we can make $\mathrm{gr}_{\mathfrak{m}} M$ a graded module using the original grading of M (so $\left(\operatorname{gr}_{\mathfrak{m}} M\right)_{i}$ is not $\mathfrak{m}^{i} M / \mathfrak{m}^{i+1} M$ here). Under the identification $\operatorname{gr}_{\mathfrak{m}} B$ with B, we have $\operatorname{gr}_{\mathfrak{m}} M \not \equiv M$ in general. But if each indecomposable summand N of M is generated by $N_{l(N)}$ then $\mathrm{gr}_{\mathfrak{m}} M \cong$ M. Since Q^{t} is a projective B-module, $Q_{0}^{t}:=\bigoplus_{p+q=t} E_{0}^{p, q}=\bigoplus_{p \geq 0} \mathfrak{m}^{p} Q^{t} / \mathfrak{m}^{p+1} Q^{t}=$ $\operatorname{gr}_{\mathfrak{m}} Q^{t}$ is isomorphic to Q^{t}. The maps $d_{0}^{p, q}: E_{0}^{p, q} \rightarrow E_{0}^{p, q+1}$ make Q_{0}^{\bullet} a cochain complex of projective $\mathrm{gr}_{\mathfrak{m}} B$-modules. Consider the decomposition $Q^{\bullet}=P^{\bullet} \oplus C^{\bullet}$, where P^{\bullet} is minimal and C^{\bullet} is exact. (We always have such a decomposition.) If we identify Q_{0}^{t} with $Q^{t}=P^{t} \oplus C^{t}$, the differential d_{0} of Q_{0}^{\bullet} is given by $\left(0, d_{C} \bullet\right)$. Hence we have $Q_{1}^{t}=\bigoplus_{p+q=t} E_{1}^{p, q} \cong P^{t}$. The maps $d_{1}^{p, q}: E_{1}^{p, q}=\mathfrak{m}^{p} P^{t} / \mathfrak{m}^{p+1} P^{t} \rightarrow E_{1}^{p+1, q}=$ $\mathfrak{m}^{p+1} P^{t+1} / \mathfrak{m}^{p+2} P^{t+1}$ make Q_{1}^{\bullet} a cochain complex of projective $\operatorname{gr}_{\mathfrak{m}} B(\cong B)$-modules whose differential is the "linear component" of the differential $d_{P} \bullet$ of P^{\bullet}. Thus the complex (Q_{1}^{\bullet}, d_{1}) is isomorphic to proj. $\operatorname{lin}\left(M^{\bullet}\right)$.

Since A is selfinjective, we can consider the linear strands of an injective resolution. More precisely, starting from a minimal injective resolution of $N^{\bullet} \in D^{b}\left(\mathrm{gr} A^{!}\right)$, we can construct its l-linear strand $\operatorname{inj}^{\text {. }} \operatorname{lin}_{l}\left(N^{\bullet}\right)$ in a similar way. Here, if I^{i} is the cohomological degree i th term of inj. $\operatorname{lin}_{l}\left(N^{\bullet}\right)$, then the socle of I^{i} coincides with $\left(I^{i}\right)_{l-i}$. In other words, any indecomposable summand of I^{i} is isomorphic to a summand of $A^{!}(i-l+d)$. Set $\operatorname{inj} . \operatorname{lin}\left(N^{\bullet}\right)=\bigoplus_{l \in \mathbb{Z}} \operatorname{inj} . \operatorname{lin}_{l}\left(N^{\bullet}\right)$. This complex can also be constructed using spectral sequences.

We have that $\mathbf{D}_{A^{!}}\left(\operatorname{inj} \cdot \operatorname{lin}\left(N^{\bullet}\right)\right) \cong \operatorname{proj} \cdot \operatorname{lin}\left(\mathbf{D}_{A^{!}}\left(N^{\bullet}\right)\right)$ and $\mathbf{D}_{A^{!}}\left(\operatorname{proj} \cdot \operatorname{lin}\left(N^{\bullet}\right)\right) \cong$ $\operatorname{inj} . \operatorname{lin}\left(\mathbf{D}_{A^{!}}\left(N^{\bullet}\right)\right)$.

Proposition 3.4 (cf. [3, Corollary 3.6]). For $M^{\bullet} \in D^{b}(\operatorname{gr} A)$ and $N^{\bullet} \in D^{b}\left(\operatorname{gr} A^{!}\right)$, we have

$$
\operatorname{proj} \cdot \operatorname{lin}\left(\mathcal{F}\left(N^{\bullet}\right)\right)=\mathcal{F}\left(\mathcal{H}\left(N^{\bullet}\right)\right) \quad \text { and } \quad \operatorname{inj} \cdot \operatorname{lin}\left(\mathcal{G}\left(M^{\bullet}\right)\right)=\mathcal{G}\left(\mathcal{H}\left(M^{\bullet}\right)\right)
$$

More precisely,

$$
\operatorname{proj} \cdot \operatorname{lin}_{l}\left(\mathcal{F}\left(N^{\bullet}\right)\right)=\mathcal{F}\left(H^{l}\left(N^{\bullet}\right)\right)[-l] \quad \text { and } \quad \operatorname{inj} \cdot \operatorname{lin}_{l}\left(\mathcal{G}\left(M^{\bullet}\right)\right)=\mathcal{G}\left(H^{l}\left(M^{\bullet}\right)\right)[-l]
$$

Proof. Set $Q^{\bullet}=\mathcal{F}\left(N^{\bullet}\right)$. Note that Q^{\bullet} is a (non-minimal) complex of projective modules. We use the above spectral sequence argument (and the notation there). Then the differential $d_{0}^{t}: Q_{0}^{t} \cong \mathcal{F}^{t}\left(N^{\bullet}\right) \rightarrow Q_{0}^{t+1} \cong \mathcal{F}^{t+1}\left(N^{\bullet}\right)$ is given by $\pm \partial_{N^{\bullet}}$. Thus

$$
Q_{1}^{t} \cong \bigoplus_{t=i+j} A \otimes_{A_{0}} H^{i}\left(N^{\bullet}\right)_{j}=\bigoplus_{t=i+j} \mathcal{F}^{j}\left(H^{i}\left(N^{\bullet}\right)\right)
$$

and the differential of Q_{1}^{\bullet} is induced by that of $\mathcal{F}\left(N^{i}\right)$. Hence we can easily check that Q_{1}^{\bullet}, which can be identified with proj. $\operatorname{lin}\left(\mathcal{F}\left(N^{\bullet}\right)\right)$, is isomorphic to $\mathcal{F}\left(\mathcal{H}\left(N^{\bullet}\right)\right) \cong$ $\bigoplus_{i \in \mathbb{Z}} \mathcal{F}\left(H^{i}\left(N^{\bullet}\right)\right)[-i]$. We can prove the statement for $\operatorname{inj} . \operatorname{lin}\left(\mathcal{G}\left(M^{\bullet}\right)\right)$ in the same way.

4. Weakly Koszul modules

Let B be a noetherian Koszul algebra (e.g., $B=A$ or $A^{!}$) with the graded Jacobson radical \mathfrak{m}. For $M \in \operatorname{gr} B$ and an integer $i, M_{\langle i\rangle}$ denotes the submodule of M generated by its degree i component M_{i}.

Proposition 4.1. In the above situation, the following are equivalent.
(1) $M_{\langle i\rangle}$ has a linear projective resolution for all i.
(2) $H^{i}(\operatorname{proj} \cdot \operatorname{lin}(M))=0$ for all $i \neq 0$.
(3) All indecomposable summands of $\operatorname{gr}_{\mathfrak{m}} M$ have linear resolutions as $B\left(\cong \operatorname{gr}_{\mathfrak{m}} B\right)$ modules.

Proof. This result was proved in [20, Proposition 4.9] under the assumption that B is a polynomial ring. (Römer also proved this for a commutative Koszul algebra. See [18, Theorem 3.2.8].) In this proof, only the Koszul property of a polynomial ring is essential, and the proof also works in our case. But, to refer this, the reader should be careful with the following points.
(a) In [20], the grading of $\operatorname{gr}_{\mathfrak{m}} M$ is given by a different way. There, $\left(\operatorname{gr}_{\mathfrak{m}} M\right)_{i}=$ $\mathfrak{m}^{i} M / \mathfrak{m}^{i+1} M$. It is easy to see that $\operatorname{gr}_{\mathfrak{m}} M$ has a linear resolution in this grading if and only if the condition (3) of the proposition is satisfied in our grading.
(b) In the proof of [20, Proposition 4.9], the regularity $\operatorname{reg}(N)$ of $N \in \operatorname{gr} B$ is an important tool. Unless B is AS-regular, one cannot define $\operatorname{reg}(N)$ using the local cohomologies of N. But if we set $\operatorname{reg}(N):=\sup \left\{i+j \mid \beta^{i, j}(N) \neq 0\right\}$, then everything
works well. It is not clear whether $\operatorname{reg}(N)<\infty$ for all $N \in \operatorname{gr} B$ (cf. [10]). But modules appearing in the argument similar to the proof of [20, Proposition 4.9] have finite regularities.
(c) In the proof of [20, Proposition 4.9], a few basic properties of the Castelnuovo-Mumford regularity (over a polynomial ring) are used. But reg (N) of $N \in$ $\operatorname{gr} B$ also has these properties, if we define $\operatorname{reg}(N)$ as (b). For example, if $N \in \operatorname{gr} B$ satisfies $\operatorname{dim}_{K} N<\infty$, then reg $(N)=\sigma(N)$. This can be proved by induction on $\operatorname{dim}_{K} N$. Using the short exact sequence $0 \rightarrow N_{\geq r} \rightarrow N \rightarrow N / N_{\geq r} \rightarrow 0$, we can also prove that $N_{\geq r}$ has an r linear resolution if and only if $r \geq \operatorname{reg}(N)$ (see also Proposition 2.11).
(d) For the implication (2) $\Rightarrow(3)$, [20] refers to another paper. But this implication can be proved by a spectral sequence argument, since proj. $\operatorname{lin}(M)$ can be constructed using a spectral sequence as we have seen in the previous section.

Definition 4.2 ([5,13]). In the above situation, we say $M \in \operatorname{gr} B$ is weakly Koszul, if it satisfies the equivalent conditions of Proposition 4.1.

Remark 4.3. (1) If $M \in \operatorname{gr} B$ has a linear resolution, then it is weakly Koszul.
(2) The notion of weakly Koszul modules was first introduced by Green and MartinezVilla [5]. But they used the name "strongly quasi Koszul modules". Weakly Koszul modules are also called "componentwise linear modules" by some commutative algebraists (see [7]).

Theorem 4.4. Let $0 \neq N \in \operatorname{gr} A^{!}$and set $N^{\prime}:=\mathbf{D}_{A^{!}}(N)$. Then the following are equivalent.
(1) N is weakly Koszul.
(2) $H^{i}\left(\mathcal{F}^{\mathrm{Op}}\left(N^{\prime}\right)\right)$ has a (-i)-linear projective resolution for all i.
(3) $\operatorname{reg}\left(\mathcal{H} \circ \mathcal{F}^{\text {op }}\left(N^{\prime}\right)\right)=0$.
(4) $\operatorname{reg}\left(\mathcal{H} \circ \mathcal{F}^{\mathrm{Op}}\left(N^{\prime}\right)\right) \leq 0$.

Proof. Since $\iota\left(\mathcal{H} \circ \mathcal{F}^{\mathrm{Op}}\left(N^{\prime}\right)\right) \geq 0$ (i.e., $\iota\left(H^{i}\left(\mathcal{F}^{\mathrm{Op}}\left(N^{\prime}\right)\right)\right) \geq-i$ for all $\left.i\right)$, the equivalence among (2), (3) and (4) follows from Proposition 2.11. So it suffices to prove (1)
 $H^{i}\left(\operatorname{inj} . \operatorname{lin}\left(N^{\prime}\right)\right)=0$ for all $i>0$. By Proposition 3.4, we have

$$
\operatorname{inj} \cdot \operatorname{lin}\left(N^{\prime}\right)=\operatorname{inj} \cdot \operatorname{lin}\left(\mathcal{G}^{\mathrm{op}} \circ \mathcal{F}^{\mathrm{op}}\left(N^{\prime}\right)\right)=\mathcal{G}^{\mathrm{op}} \circ \mathcal{H} \circ \mathcal{F}^{\mathrm{op}}\left(N^{\prime}\right)
$$

Therefore, by Corollary 3.2, $H^{i}\left(\operatorname{inj} . \operatorname{lin}\left(N^{\prime}\right)\right)=0$ for all $i>0$ if and only if the condition (4) holds.

Remark 4.5. Martinez-Villa and Zacharia proved that if N is weakly Koszul then there is a filtration

$$
U_{0} \subset U_{1} \subset \cdots \subset U_{p}=N
$$

such that U_{i+1} / U_{i} has a linear resolution for each i (see [13, pp. 676-677]). We can interpret this fact using Theorem 4.4 in our case.

Let $N \in \operatorname{gr} A^{!}$be a weakly Koszul module. Set $N^{\prime}:=\mathbf{D}_{A^{!}}(N)$ and $T^{\bullet}:=\mathcal{F}^{\text {op }}\left(N^{\prime}\right)$. Assume that N does not have a linear resolution. Then $H^{i}\left(T^{\bullet}\right) \neq 0$ for several i. Set $n=\min \left\{i \mid H^{i}\left(T^{\bullet}\right) \neq 0\right\}$. Consider the truncation

$$
\sigma_{>n} T^{\bullet}: \cdots \longrightarrow 0 \longrightarrow \operatorname{im} d^{n} \longrightarrow T^{n+1} \longrightarrow T^{n+2} \longrightarrow \cdots
$$

of T^{\bullet}. Then we have $H^{i}\left(T^{\bullet}\right)=H^{i}\left(\sigma_{>n} T^{\bullet}\right)$ for all $i>n$ and $H^{i}\left(\sigma_{>n} T^{\bullet}\right)=0$ for all $i \leq n$. We have a triangle

$$
\begin{equation*}
H^{n}\left(T^{\bullet}\right)[-n] \rightarrow T^{\bullet} \rightarrow \sigma_{>n} T^{\bullet} \rightarrow H^{n}\left(T^{\bullet}\right)[-n+1] . \tag{4.1}
\end{equation*}
$$

By Theorem 4.4, $H^{n}\left(T^{\bullet}\right)[-n]$ has a 0 -linear resolution. On the other hand,

$$
0=\operatorname{reg}\left(\mathcal{H}\left(\sigma_{>n} T^{\bullet}\right)\right) \geq \operatorname{reg}\left(\sigma_{>n} T^{\bullet}\right) \geq \iota\left(\sigma_{>n} T^{\bullet}\right) \geq 0 .
$$

Hence $\sigma_{>n} T^{\bullet}$ also has a 0-linear resolution. Therefore, both $\mathbf{D}_{\left(A^{\prime}\right) \text { op }} \circ \mathcal{G}^{\mathrm{op}}\left(\sigma_{>n} T^{\bullet}\right)$ and $\mathbf{D}_{\left(A^{\prime}\right) \text { op }} \circ \mathcal{G}^{\mathrm{OP}}\left(H^{n}\left(T^{\bullet}\right)[-n]\right)$ are acyclic complexes (that is, the i th cohomology vanishes for all $i \neq 0$). Set

$$
U:=H^{0}\left(\mathbf{D}_{\left.\left(A^{\prime}\right)\right)^{\text {op }}} \circ \mathcal{G}^{\mathrm{op}}\left(\sigma_{>n} T^{\bullet}\right)\right) \quad \text { and } \quad V:=H^{0}\left(\mathbf{D}_{\left(A^{\prime}\right) \text { op }} \circ \mathcal{G}^{\mathrm{op}}\left(H^{n}\left(T^{\bullet}\right)[-n]\right)\right)
$$

Since $N=\mathbf{D}_{\left(A^{\prime}\right) \text { op }} \circ \mathcal{G}^{\mathrm{OP}}\left(T^{\bullet}\right)$, the triangle (4.1) induces a short exact sequence $0 \rightarrow$ $U \rightarrow N \rightarrow V \rightarrow 0$ in gr $A^{!}$. It is easy to see that V has a linear resolution. Since $\mathcal{H} \circ \mathcal{F}^{\mathrm{OP}} \circ \mathbf{D}_{A^{!}}(U)=\mathcal{H}\left(\sigma_{>n} T^{\bullet}\right), U$ is weakly Koszul by Theorem 4.4. Repeating this procedure, we can get the expected filtration.

Let $N \in \operatorname{gr} A^{!}$and $\cdots \xrightarrow{f_{2}} P^{-1} \xrightarrow{f_{1}} P^{0} \xrightarrow{f_{0}} N \rightarrow 0$ its minimal projective resolution. For $i \geq 1$, we call $\Omega_{i}(N):=\operatorname{ker}\left(f_{i-1}\right)$ the i th syzygy of N. Note that $\Omega_{i}(N)=\operatorname{im}\left(f_{i}\right)=\operatorname{coker}\left(f_{i+1}\right)$.

By the original definition of a weakly Koszul module given in [5,13], if $N \in \operatorname{gr} A^{!}$is weakly Koszul then so is $\Omega_{i}(N)$ for all $i \geq 1$.

Definition 4.6 (Herzog-Römer, [18]). For $0 \neq N \in \operatorname{gr} A^{!}$, set

$$
\operatorname{lpd}(N):=\inf \left\{i \in \mathbb{N} \mid \Omega_{i}(N) \text { is weakly Koszul }\right\},
$$

and call it the linear part dominates of N.
Since A is a noetherian ring of finite global dimension, $\operatorname{lpd}(N)$ is finite for all $N \in \operatorname{gr} A^{!}$ by [13, Theorem 4.5].

Theorem 4.7. Let $N \in \operatorname{gr} A^{!}$and set $N^{\prime}:=\mathbf{D}_{A^{!}}(N)$. Then we have

$$
\begin{aligned}
\operatorname{lpd}(N) & =\operatorname{reg}\left(\mathcal{H} \circ \mathcal{F}^{\mathrm{op}}\left(N^{\prime}\right)\right) \\
& =\max \left\{\operatorname{reg}\left(H^{i}\left(\mathcal{F}^{\mathrm{op}}\left(N^{\prime}\right)\right)\right)+i \mid i \in \mathbb{Z}\right\} .
\end{aligned}
$$

Proof. Note that $P^{\bullet}:=\mathbf{D}_{\left(A^{\prime}\right) \text { op }} \circ \mathcal{G}^{\mathrm{OP}} \circ \mathcal{F}^{\mathrm{OP}}\left(N^{\prime}\right)$ is a projective resolution of N, and $Q^{\bullet}:=\mathbf{D}_{\left(A^{\prime}\right) \text { op }} \circ \mathcal{G}^{\mathrm{op}}\left(\mathcal{F}^{\mathrm{op}}\left(N^{\prime}\right)_{\geq i}\right)$ is the truncation $\cdots \rightarrow P^{-i-1} \rightarrow P^{-i} \rightarrow 0 \rightarrow \cdots$ of P^{\bullet} for each $i \geq 1$. Hence we have $H^{j}\left(Q^{\bullet}\right)=0$ for all $j \neq-i$ and there is a projective
module P such that $H^{-i}\left(Q^{\bullet}\right) \cong \Omega_{i}(N) \oplus P$. Since P is weakly $\operatorname{Koszul}, \Omega_{i}(N)$ is weakly Koszul if and only if so is $Q:=H^{-i}\left(Q^{\bullet}\right)$. We have

$$
\operatorname{proj} \cdot \operatorname{lin}(Q)[i] \cong \mathbf{D}_{\left(A^{\prime}\right) \text { op }} \circ \mathcal{G}^{\mathrm{op}} \circ \mathcal{H}\left(\mathcal{F}^{\mathrm{op}}\left(N^{\prime}\right)_{\geq i}\right)
$$

By Theorem 4.4, Q is weakly Koszul if and only if $\mathcal{H}\left(\mathcal{F}^{\mathrm{op}}\left(N^{\prime}\right)_{\geq i}\right)$ has an i-linear resolution, that is, $H^{j}\left(\mathcal{F}^{\mathrm{op}}\left(N^{\prime}\right)_{\geq i}\right)$ has an $(i-j)$-linear resolution for all j. But there is some $L \in \operatorname{gr}\left(A^{!}\right)^{\mathrm{op}}$ such that $L=L_{i-j}$ and $H^{j}\left(\mathcal{F}^{\mathrm{op}}\left(N^{\prime}\right)_{\geq i}\right) \cong H^{j}\left(\mathcal{F}^{\mathrm{op}}\left(N^{\prime}\right)\right)_{\geq i-j} \oplus L$. Note that L has an $(i-j)$-linear resolution. Therefore, $H^{j}\left(\mathcal{F}^{\circ \mathrm{OP}}\left(N^{\prime}\right)_{\geq i}\right)$ has an $(i-j)$ linear resolution if and only if so does $H^{j}\left(\mathcal{F}^{\mathrm{Op}}\left(N^{\prime}\right)\right)_{\geq i-j}$. Summing up the above facts, we have that $\Omega_{i}(N)$ is weakly Koszul if and only if $\left(\mathcal{H} \circ \mathcal{F}^{\mathrm{Op}}\left(N^{\prime}\right)\right)_{\geq i}$ has an i-linear resolution. By Proposition 2.11, the last condition is equivalent to the condition that $i \geq \operatorname{reg}\left(\mathcal{H} \circ \mathcal{F}^{\mathrm{op}}\left(N^{\prime}\right)\right)$.

Remark 4.8. Assume that A is noetherian, Koszul, and has finite global dimension, but not necessarily AS-regular. Then $A^{!}$is a finite-dimensional Koszul algebra, but not necessarily selfinjective. Even in this case, $\mathcal{G}\left(M^{\bullet}\right)$ for $M^{\bullet} \in D^{b}(\operatorname{gr} A)$ is a complex of injective $A^{!}$-modules, and the results in Section 3 and Theorem 4.7 also hold. But now we should set $\operatorname{reg}\left(M^{\bullet}\right):=\sup \left\{i+j \mid \beta^{i, j}\left(M^{\bullet}\right) \neq 0\right\}$ for $M^{\bullet} \in D^{b}(\operatorname{gr} A)$ (local cohomology is not helpful to define the regularity). Since A is noetherian and has finite global dimension, we have $\operatorname{reg}\left(M^{\bullet}\right)<\infty$ for all M^{\bullet}. In particular, we have $\operatorname{lpd}(N)<\infty$ for all $N \in \operatorname{gr} A^{!}$(if A is right noetherian) as proved in [13, Theorem 4.5].

If $\operatorname{lpd}(N) \geq 1$ for some $N \in \operatorname{gr} A^{!}$, then $\sup \left\{\operatorname{lpd}(T) \mid T \in \operatorname{gr} A^{!}\right\}=\infty$. In fact, if $\Omega_{-i}(N)$ is the i th cosyzygy of N (since $A^{!}$is selfinjective, we can consider cosyzygies), then $\operatorname{lpd}\left(\Omega_{-i}(N)\right)>i$. But Herzog and Römer proved that if J is a monomial ideal of an exterior algebra $E=\bigwedge\left\langle y_{1}, \ldots, y_{d}\right\rangle$ then $\operatorname{lpd}(E / J) \leq d-1$ (cf. [18, Section 3.3]). We will refine their results using Theorem 4.7.

In what follows, we regard the polynomial ring $S=K\left[x_{1}, \ldots, x_{d}\right], d \geq 1$, as an \mathbb{N}^{d} graded ring with $\operatorname{deg} x_{i}=(0, \ldots, 0,1,0, \ldots, 0)$, where 1 is at the i th position. Similarly, the exterior algebra $E=S^{!}=\bigwedge\left\langle y_{1}, \ldots, y_{d}\right\rangle$ is also an \mathbb{N}^{d}-graded ring. Let ${ }^{*} \operatorname{Gr} S$ be the category of \mathbb{Z}^{d}-graded S-modules and their degree preserving S-homomorphisms, and ${ }^{*}$ gr S its full subcategory consisting of finitely generated modules. We have a similar category *gr E for E. For S-modules and graded E-modules, we do not have to distinguish left modules from right modules. Since \mathbb{Z}^{d}-graded modules can be regarded as \mathbb{Z}-graded modules in the natural way, we can discuss reg $\left(M^{\bullet}\right)$ for $M^{\bullet} \in D^{b}\left({ }^{*} \operatorname{gr} S\right)$ and $\operatorname{lpd}(N)$ for $N \in{ }^{*} \operatorname{gr} E$.

Note that $\mathbf{D}_{E}(-)=\bigoplus_{\mathbf{a} \in \mathbb{Z}^{d}} \operatorname{Hom}^{*}{ }^{\text {gr }} E(-, E(\mathbf{a}))$ gives an exact duality functor from ${ }^{*}$ gr E to itself. Sometimes, we simply denote $\mathbf{D}_{E}(N)$ by N^{\prime}. Set $\mathbf{1}:=(1,1, \ldots, 1) \in \mathbb{Z}^{d}$. Then $\mathcal{D}_{S}^{\bullet}:=S(-\mathbf{1})[d] \in D^{b}\left({ }^{*} \operatorname{gr} S\right)$ is a \mathbb{Z}^{d}-graded normalized dualizing complex and $\mathbf{D}_{S}(-):=\mathbf{R H o m}_{S}\left(-, \mathcal{D}_{S}^{\bullet}\right)=\bigoplus_{\mathbf{a} \in \mathbb{Z}^{d}} \mathbf{R} \operatorname{Hom}^{*}$ Gr $S\left(-, \mathcal{D}_{S}^{\bullet}(\mathbf{a})\right)$ gives a duality functor from $D^{b}\left({ }^{*} \operatorname{gr} S\right)$ to itself. As shown in [21, Theorem 4.1], we have the \mathbb{Z}^{d}-graded Koszul duality functors \mathcal{F}^{*} and \mathcal{G}^{*} giving an equivalence $D^{b}\left({ }^{*} \operatorname{gr} S\right) \cong D^{b}\left({ }^{*} \operatorname{gr} E\right)$. These functors are defined in the same way as in the \mathbb{Z}-graded case.

For $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{Z}^{d}$, set $\operatorname{supp}(\mathbf{a}):=\left\{i \mid a_{i}>0\right\} \subset[d]:=\{1, \ldots, d\}$. We say $\mathbf{a} \in \mathbb{Z}^{d}$ is squarefree if $a_{i}=0,1$ for all $i \in[d]$. When $\mathbf{a} \in \mathbb{Z}^{d}$ is squarefree, we sometimes
identify a with $\operatorname{supp}(\mathbf{a})$. For example, if $F \subset[d]$, then $S(-F)$ means the free module $S(-\mathbf{a})$, where $\mathbf{a} \in \mathbb{N}^{d}$ is the squarefree vector with $\operatorname{supp}(\mathbf{a})=F$.

Definition 4.9 ([20]). We say $M \in{ }^{*}$ gr S is squarefree, if M has a presentation of the form

$$
\bigoplus_{F \subset[d]} S(-F)^{m_{F}} \rightarrow \bigoplus_{F \subset[d]} S(-F)^{n_{F}} \rightarrow M \rightarrow 0
$$

for some $m_{F}, n_{F} \in \mathbb{N}$.
The above definition seems different from the original one given in [20], but they coincide. Stanley-Reisner rings (that is, the quotient rings of S by squarefree monomial ideals) and many modules related to them are squarefree. Here we summarize the basic properties of squarefree modules. See [20,21] for further information. $\operatorname{Let} \mathrm{Sq}(S)$ be the full subcategory of ${ }^{*} \mathrm{gr} S$ consisting of squarefree modules. Then $\mathrm{Sq}(S)$ is closed under kernels, cokernels, and extensions in *gr S. Thus $\mathrm{Sq}(S)$ is an abelian category. Moreover, we have $D^{b}(\mathrm{Sq}(S)) \cong D_{\mathrm{Sq}(S)}^{b}\left({ }^{*} \mathrm{Gr} S\right)$. If M is squarefree, then each term in a \mathbb{Z}^{d}-graded minimal free resolution of M is of the form $\bigoplus_{F \subset[d]} S(-F)^{n_{F}}$. Hence we have $\operatorname{reg}(M) \leq d$. Moreover, $\operatorname{reg}(M)=d$ if and only if M has a summand which is isomorphic to $S(\mathbf{- 1})$.

Definition 4.10 (Römer [16]). We say $N \in{ }^{*}$ gr E is squarefree, if $N=\bigoplus_{F \subset[d]} N_{F}$ (i.e., if $\mathbf{a} \in \mathbb{Z}^{d}$ is not squarefree, then $N_{\mathbf{a}}=0$).

A monomial ideal of E is always a squarefree E-module. Let $\operatorname{Sq}(E)$ be the full subcategory of ${ }^{*}$ gr E consisting of squarefree modules. Then $\mathrm{Sq}(E)$ is an abelian category with $D^{b}(\mathrm{Sq}(E)) \cong D_{\mathrm{Sq}(E)}^{b}\left({ }^{*} \operatorname{gr} E\right)$. If N is a squarefree E-module, then so is $\mathbf{D}_{E}(N)$. That is, \mathbf{D}_{E} gives an exact duality functor from $\mathrm{Sq}(E)$ to itself. We have functors $\mathcal{S}: \mathrm{Sq}(E) \rightarrow$ $\mathrm{Sq}(S)$ and $\mathcal{E}: \mathrm{Sq}(S) \rightarrow \mathrm{Sq}(E)$ giving an equivalence $\mathrm{Sq}(S) \cong \mathrm{Sq}(E)$. Here $\mathcal{S}(N)_{F}=N_{F}$ for $N \in \operatorname{Sq}(E)$ and $F \subset[d]$, and the multiplication map $\mathcal{S}(N)_{F} \ni z \mapsto x_{i} z \in \mathcal{S}(N)_{F \cup\{i\}}$ for $i \notin F$ is given by $\mathcal{S}(N)_{F}=N_{F} \ni z \mapsto(-1)^{\alpha(i, F)} y_{i} z \in N_{F \cup\{i\}}=\mathcal{S}(N)_{F \cup\{i\}}$, where $\alpha(i, F)=\#\{j \in F \mid j<i\}$. See $[16,21]$ for details. Since a free module $E(\mathbf{a})$ is not squarefree unless $\mathbf{a}=0$, the syzygies of a squarefree E-module are not squarefree.

Proposition 4.11 (Herzog-Römer, [18, Corollary 3.3.5]). If N is a squarefree E-module (e.g., $N=E / J$ for a monomial ideal J), then we have $\operatorname{lpd}(N) \leq d-1$.

This result easily follows from Theorem 4.7 and the fact that $H^{i}\left(\mathcal{F}^{*}\left(N^{\prime}\right)\right)(-\mathbf{1})$ is a squarefree S-module for all i and $H^{i}\left(\mathcal{F}^{*}\left(N^{\prime}\right)\right)=0$ unless $0 \leq i \leq d$. (Recall the remark on the regularity of squarefree modules given before Definition 4.10, and note that $M:=H^{d}\left(\mathcal{F}^{*}\left(N^{\prime}\right)\right)(-\mathbf{1})$ is generated by M_{0}.)

We also remark that $[18$, Corollary 3.3.5] just states that $\operatorname{lpd}(N) \leq d$. But their argument actually proves that $\operatorname{lpd}(N) \leq d-1$. In fact, they showed that

$$
\operatorname{lpd}(N) \leq \operatorname{proj} \cdot \operatorname{dim}_{S} \mathcal{S}(N)
$$

But, if proj. $\operatorname{dim}_{S} \mathcal{S}(N)=d$ then $\mathcal{S}(N)$ has a summand which is isomorphic to $K=$ $S /\left(x_{1}, \ldots, x_{d}\right)$ and hence N has a summand which is isomorphic to $K=E /\left(y_{1}, \ldots, y_{d}\right)$. But $K \in \operatorname{Sq}(E)$ has a linear resolution and irrelevant to $\operatorname{lpd}(N)$.

To refine Proposition 4.11, we need further properties of squarefree modules.
If $M^{\bullet} \in D^{b}(\mathrm{Sq}(S))$, then $\operatorname{Ext}_{S}^{i}\left(M^{\bullet}, \mathcal{D}_{S}^{\bullet}\right)$ is squarefree for all i. Hence $\mathcal{D}_{S}^{\bullet}$ gives a duality functor on $D^{b}(\mathrm{Sq}(S))$. On the other hand, $\mathbf{A}:=\mathcal{S} \circ \mathbf{D}_{E} \circ \mathcal{E}$ is an exact duality functor on $\mathrm{Sq}(S)$ and it induces a duality functor on $D^{b}(\mathrm{Sq}(S))$. Miller [14, Corollary 4.21] and Römer [17, Corollary 3.7] proved that $\operatorname{reg}(\mathbf{A}(M))=$ proj. $\cdot \operatorname{dim}_{S} M$ for all $M \in \operatorname{Sq}(S)$. I generalized this equation to a complex $M^{\bullet} \in D^{b}(\mathrm{Sq}(S))$ in [22, Corollary 2.10].

Lemma 4.12. Let $N \in \operatorname{Sq}(E)$ and set $N^{\prime}:=\mathbf{D}_{E}(N)$. Then we have

$$
\begin{equation*}
\operatorname{reg}\left(H^{i}\left(\mathcal{F}^{*}\left(N^{\prime}\right)\right)\right)=-\operatorname{depth}_{S}\left(\operatorname{Ext}_{S}^{d-i}\left(\mathcal{S}\left(N^{\prime}\right), S\right)\right) \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{lpd}(N)=\max \left\{i-\operatorname{depth}_{S}\left(\operatorname{Ext}_{S}^{d-i}\left(\mathcal{S}\left(N^{\prime}\right), S\right)\right) \mid 0 \leq i \leq d\right\} \tag{4.3}
\end{equation*}
$$

Here we set the depth of the 0 module to be $+\infty$.
If $M:=\operatorname{Ext}_{S}^{d-i}\left(\mathcal{S}\left(N^{\prime}\right), S\right) \neq 0$, then $\operatorname{depth}_{S} M \leq \operatorname{dim}_{S} M \leq i$. Therefore all members in the set of the right side of (4.3) are non-negative or $-\infty$.

Proof. By Theorem 4.7, (4.3) follows from (4.2). So it suffices to show (4.2). By [21, Proposition 4.3], we have $\mathcal{F}^{*}\left(N^{\prime}\right) \cong\left(\mathbf{A} \circ \mathbf{D}_{S} \circ \mathcal{S}\left(N^{\prime}\right)\right)(\mathbf{1})$. (The degree shifting "(1)" does not occur in [21, Proposition 4.3]. But E is a negatively graded ring there, and we need the degree shifting in the present convention.) Since \mathbf{A} is exact, we have

$$
\begin{aligned}
H^{i}\left(\mathcal{F}^{*}\left(N^{\prime}\right)\right) \cong H^{i}\left(\mathbf{A} \circ \mathbf{D}_{S} \circ \mathcal{S}\left(N^{\prime}\right)\right)(\mathbf{1}) & \cong \mathbf{A}\left(H^{-i}\left(\mathbf{D}_{S} \circ \mathcal{S}\left(N^{\prime}\right)\right)\right)(\mathbf{1}) \\
& =\mathbf{A}\left(\underline{\operatorname{Ext}}_{S}^{-i}\left(\mathcal{S}\left(N^{\prime}\right), \mathcal{D}_{S}^{*}\right)\right)(\mathbf{1})
\end{aligned}
$$

Recall that $\operatorname{reg}(\mathbf{A}(M))=$ proj. $\cdot \operatorname{dim}_{S} M$ for $M \in \operatorname{Sq}(S)$. On the other hand, since M is finitely generated, the underlying module of $\operatorname{Ext}_{S}^{-i}\left(M, \mathcal{D}_{S}^{\bullet}\right)$ is isomorphic to $\operatorname{Ext}_{S}^{d-i}(M, S)$. So (4.2) follows from these facts and the Auslander-Buchsbaum formula.

Corollary 4.13. For $N \in \operatorname{Sq}(E), N$ is weakly Koszul (over E) if and only if $\mathcal{S}(N)$ is weakly Koszul (over S).

In [17, Corollary 1.3], it was proved that N has a linear resolution if and only if so does $\mathcal{S}(N)$. Corollary 4.13 also follows from this fact and (the squarefree module version of) [7, Proposition 1.5].

Proof. We say $M \in \operatorname{gr} S$ is sequentially Cohen-Macaulay, if for each $i \operatorname{Ext}_{S}^{i}(M, S)$ is either the zero module or a Cohen-Macaulay module of dimension $d-i$ (cf. [19, III. Theorem 2.11]). By Lemma 4.12, N is weakly Koszul if and only if $\mathcal{S}\left(N^{\prime}\right)(\cong \mathbf{A} \circ \mathcal{S}(N)$) is sequentially Cohen-Macaulay. By [17, Theorem 4.5], the latter condition holds if and only if $\mathcal{S}(N)$ is weakly Koszul.

Many examples of squarefree monomial ideals of S which are weakly Koszul (dually, Stanley-Reisner rings which are sequentially Cohen-Macaulay) are known. So we can obtain many weakly Koszul monomial ideals of E using Corollary 4.13.

Proposition 4.14. For an integer i with $1 \leq i \leq d-1$, there is a squarefree E-module N such that $\operatorname{lpd} N=$ proj. $\operatorname{dim}_{S} \mathcal{S}(N)=i$. In particular, the inequality of Proposition 4.11 is optimal.
Proof. Let M be the \mathbb{Z}^{d}-graded i th syzygy of $K=S / \mathfrak{m}$. Note that M is squarefree. We can easily check that $N:=\mathbf{D}_{E} \circ \mathcal{E}(M) \in \mathrm{Sq}(E)$ satisfies the expected condition. In fact, proj. $\operatorname{dim}_{S} \mathcal{S}(N)=$ proj. $\operatorname{dim}_{S} \mathbf{A}(M)=\operatorname{reg} M=i$. On the other hand, since $\operatorname{Ext}_{S}^{d-i}\left(\mathcal{S}\left(N^{\prime}\right), S\right)=\operatorname{Ext}_{S}^{d-i}(M, S)=K, \operatorname{Ext}_{S}^{j}\left(\mathcal{S}\left(N^{\prime}\right), S\right)=0$ for all $j \neq d-i, 0$, and $\operatorname{depth}_{S}\left(\operatorname{Hom}_{S}\left(\mathcal{S}\left(N^{\prime}\right), S\right)\right)=d-i+1$, we have $\operatorname{lpd} N=i$.

The above result also says that the inequality $\operatorname{lpd}(N) \leq \operatorname{proj} \cdot \operatorname{dim}_{S} \mathcal{S}(N)$ of $[18$, Corollary 3.3.5] is also optimal. But for a monomial ideal $J \subset E$, the situation is different.

Proposition 4.15. If $d \geq 3$, then we have $\operatorname{lpd}(E / J) \leq d-2$ for a monomial ideal J of E.
Proof. If $d=3$, then easy computation shows that any squarefree monomial ideal $I \subset S$ is weakly Koszul. Hence J is weakly Koszul by Corollary 4.13. So we may assume that $d \geq 4$.

Note that $\mathbf{A} \circ \mathcal{S}(E / J)$ is isomorphic to a squarefree monomial ideal of S. We denote it by I. By Lemma 4.12, it suffices to show that $\operatorname{depth}_{S}\left(\operatorname{Hom}_{S}(I, S)\right) \geq 2$ and $\operatorname{depth}_{S}\left(\operatorname{Ext}_{S}^{1}(I, S)\right) \geq 1$. Recall that $\operatorname{Hom}_{S}(I, S)$ satisfies Serre's condition $\left(S_{2}\right)$, hence its depth is at least 2 . Since $\operatorname{Ext}_{S}^{1}(I, S) \cong \operatorname{Ext}_{S}^{2}(S / I, S)$, it suffices to prove that $\operatorname{depth}_{S}\left(\operatorname{Ext}_{S}^{2}(S / I, S)\right) \geq 1$.

If $\operatorname{ht}(I)>2$, then we have $\operatorname{Ext}_{S}^{2}(S / I, S)=0$. If $\operatorname{ht}(I)=2$, then $\operatorname{Ext}_{S}^{2}(S / I, S)$ satisfies $\left(S_{2}\right)$ as an S / I-module and $\operatorname{depth}_{S} \operatorname{Ext}_{S}^{2}(S / I, S) \geq \min \{2, \operatorname{dim}(S / I)\} \geq 2$. So we may assume that $\operatorname{ht}(I)=1$. If the heights of all associated primes of I are 1 , then I is a principal ideal and $\operatorname{Ext}_{S}^{i}(S / I, S)=0$ for all $i \neq 1$. So we may assume that I has an prime of larger height. Then we have ideals I_{1} and I_{2} of S such that $I=I_{1} \cap I_{2}$ and the heights of any associated prime of I_{1} (resp. I_{2}) is 1 (at least 2). Since I is a radical ideal, we have $\operatorname{ht}\left(I_{1}+I_{2}\right) \geq 3$. Hence $\operatorname{Ext}_{S}^{2}\left(S /\left(I_{1}+I_{2}\right), S\right)=0$ and $\operatorname{Ext}_{S}^{3}\left(S /\left(I_{1}+I_{2}\right), S\right)$ is either the zero module or it satisfies $\left(S_{2}\right)$ as an $S /\left(I_{1}+I_{2}\right)$-module. In particular, if $\operatorname{Ext}_{S}^{3}\left(S /\left(I_{1}+I_{2}\right), S\right) \neq 0$ (equivalently, if $\left.\operatorname{dim}\left(S /\left(I_{1}+I_{2}\right)\right)=d-3\right)$ then $\operatorname{depth}_{S}\left(\operatorname{Ext}_{S}^{3}\left(S /\left(I_{1}+I_{2}\right), S\right)\right) \geq \min \{2, d-3\} \geq 1$. Note that depth ${ }_{S}\left(\operatorname{Ext}_{S}^{2}\left(S / I_{2}, S\right)\right) \geq 2$. From the short exact sequence

$$
0 \rightarrow S / I \rightarrow S / I_{1} \oplus S / I_{2} \rightarrow S /\left(I_{1}+I_{2}\right) \rightarrow 0
$$

and the above argument, we have the exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Ext}_{S}^{2}\left(S / I_{2}, S\right) \rightarrow \operatorname{Ext}_{S}^{2}(S / I, S) \rightarrow \operatorname{Ext}_{S}^{3}\left(S /\left(I_{1}+I_{2}\right), S\right) \tag{4.4}
\end{equation*}
$$

We have $\operatorname{depth}_{S}\left(\operatorname{Ext}_{S}^{2}(S / I, S)\right) \geq 1$ by (4.4), since the modules beside this module have positive depth.

Acknowledgments

This research started during my stay at Instituto de Matemáticas de la UNAM (Morelia, Mexico) in the summer of 2004. I am grateful to JSPS and CONACYT for financial
support, and the institute for warm hospitality. Special thank are due to Professor Robert Martinez-Villa for stimulating discussion and encouragement. I also thank Professor Izuru Mori for valuable information on AS-regular algebras.

References

[1] M. Artin, J. Tate, M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves, in: The Grothendieck Festschrift, Vol. I, in: Progr. Math., vol. 86, Birkhauser Boston, Boston, MA, 1990, pp. 33-85.
[2] A. Beilinson, V. Ginzburg, W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996) 473-527.
[3] D. Eisenbud, G. Fløystad, F.-O. Schreyer, Sheaf cohomology and free resolutions over exterior algebra, Trans. Amer. Math. Soc. 355 (2003) 4397-4426.
[4] D. Eisenbud, S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984) 89-133.
[5] E.L. Green, R. Martinez-Villa, Koszul and Yoneda algebras, in: Representation Theory of Algebras (Cocoyoc, 1994), in: CMS Conf. Proc., vol. 18, Amer. Math. Soc., 1996, pp. 247-297.
[6] J.Y. Guo, R. Martinez-Villa, M. Takane, Koszul generalized Auslander regular algebras, in: Algebras and Modules, II (Geiranger, 1996), in: CMS Conf. Proc., vol. 24, Amer. Math. Soc., 1998, pp. 263-283.
[7] J. Herzog, T. Hibi, Componentwise linear ideals, Nagoya Math. J. 153 (1999) 141-153.
[8] J. Herzog, S. Iyengar, Koszul modules, J. Pure Appl. Algebra 201 (2005) 154-188.
[9] P. Jørgensen, Non-commutative Castelnuovo-Mumford regularity, Math. Proc. Cambridge Philos. Soc. 125 (1999) 203-221.
[10] P. Jørgensen, Linear free resolutions over non-commutative algebras, Compos. Math. 140 (2004) 1053-1058.
[11] R. Martinez-Villa, Serre duality for generalized Auslander regular algebras, in: Trends in the Representation Theory of Finite-Dimensional Algebras (Seattle, WA, 1997), in: Contemp. Math., vol. 229, Amer. Math. Soc., 1998, pp. 237-263.
[12] R. Martinez-Villa, Graded, selfinjective, and Koszul algebras, J. Algebra 215 (1999) 34-72.
[13] R. Martinez-Villa, D. Zacharia, Approximations with modules having linear resolutions, J. Algebra 266 (2003) 671-697.
[14] E. Miller, The Alexander duality functors and local duality with monomial support, J. Algebra 231 (2000) 180-234.
[15] I. Mori, Rationality of the Poincare series for Koszul algebras, J. Algebra 276 (2004) 602-624.
[16] T. Römer, Generalized Alexander duality and applications, Osaka J. Math. 38 (2001) 469-485.
[17] T. Römer, Cohen-Macaulayness and squarefree modules, Manuscripta Math. 104 (2001) 39-48.
[18] T. Römer, On Minimal Graded Free Resolutions, Thesis, University of Essen, 2001.
[19] R. Stanley, Combinatorics and Commutative Algebra, 2nd ed., Birkhäuser, 1996.
[20] K. Yanagawa, Alexander duality for Stanley-Reisner rings and squarefree \mathbb{N}^{n}-graded modules, J. Algebra 225 (2000) 630-645.
[21] K. Yanagawa, Derived category of squarefree modules and local cohomology with monomial ideal support, J. Math. Soc. Japan 56 (2004) 289-308.
[22] K. Yanagawa, BGG correspondence and Römer's theorem of an exterior algebra, Algebr. Represent. Theory. (math.AC/0402406) (in press).
[23] A. Yekutieli, Dualizing complexes over noncommutative graded algebras, J. Algebra 153 (1992) 41-84.

[^0]: * Tel.: +81 668505288.

 E-mail address: yanagawa@math.sci.osaka-u.ac.jp.

