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Abstract

Let A be a noetherian AS-regular Koszul quiver algebra (if A is commutative, it is essentially
a polynomial ring), and gr A the category of finitely generated graded left A-modules. Following
Jørgensen, we define the Castelnuovo–Mumford regularity reg(M•) of a complex M•

∈ Db(gr A)

in terms of the local cohomologies or the minimal projective resolution of M•. Let A! be the
quadratic dual ring of A. For the Koszul duality functor G : Db(gr A) → Db(gr A!), we have
reg(M•) = max{i | H i (G(M•)) 6= 0}. Using these concepts, we interpret results of Martinez-Villa
and Zacharia concerning weakly Koszul modules (also called componentwise linear modules) over
A!. As an application, refining a result of Herzog and Römer, we show that if J is a monomial ideal
of an exterior algebra E =

∧
〈y1, . . . , yd 〉, d ≥ 3, then the (d − 2)nd syzygy of E/J is weakly

Koszul.
c© 2005 Elsevier B.V. All rights reserved.

MSC: primary 16E05; secondary 13F55, 16S37, 16W50

1. Introduction

Let S = K [x1, . . . , xd ] be a polynomial ring over a field K . We regard S as a graded
ring with deg xi = 1 for all i . The following is a well-known result.
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Theorem 1.1 (cf. [4]). Let M be a finitely generated graded S-module. For an integer r ,
the following conditions are equivalent.

(1) H i
m(M) j = 0 for all i, j ∈ Z with i + j > r .

(2) The truncated module M≥r :=
⊕

i≥r Mi has an r-linear free resolution.

Here m := (x1, . . . , xd) is the irrelevant ideal of S, and H i
m(M) is the i th local

cohomology module.

If the conditions of Theorem 1.1 are satisfied, we say M is r -regular. For a
sufficiently large r , M is r -regular. We call reg(M) = min{r | M is r -regular} the
Castelnuovo–Mumford regularity of M . This is a very important invariant in commutative
algebra.

Let A be a noetherian AS-regular Koszul quiver algebra with the graded Jacobson
radical m :=

⊕
i≥1 Ai . If A is commutative, A is essentially a polynomial ring. When A is

connected (i.e., A0 = K ), it is the coordinate ring of a “noncommutative projective space”
in noncommutative algebraic geometry. Let gr A be the category of finitely generated
graded left A-modules and their degree preserving maps. (For a graded ring B, gr B
means the similar category for B.) The local cohomology module H i

m(M) of M ∈ gr A
behaves pretty much like in the commutative case. For example, we have the “Serre duality
theorem” for the derived category Db(gr A). See [11,23] and Theorem 2.7 below. By virtue
of this duality, we can show that Theorem 1.1 also holds for bounded complexes in gr A.

Theorem 1.2. For a complex M•
∈ Db(gr A) and an integer r , the following conditions

are equivalent.

(1) H i
m(M•) j = 0 for all i, j ∈ Z with i + j > r .

(2) The truncated complex (M•)≥r has an r-linear projective resolution.

Here (M•)≥r is the subcomplex of M• whose i th term is (M i )≥(r−i).

For a sufficiently large r , the conditions of the above theorem are satisfied. The
regularity reg(M•) of M• is defined in the natural way. When A is connected, Jørgensen
[10] has studied the regularity of complexes, and essentially proved the above result.
See also [9,15]. (Even in the case when A is a polynomial ring, it seems that nobody
had considered Theorem 1.2 before [10].) But his motivation and treatment are slightly
different from ours.

For M•
∈ Db(gr A), set H(M•) to be a complex such that H(M•)i

= H i (M) for all i
and the differential maps are zero. Then we have reg(H(M•)) ≥ reg(M•). The difference
reg(H(M•)) − reg(M•) is a theme of the last section of this paper.

Let A! be the quadratic dual ring of A. For example, if S = K [x1, . . . , xd ] is a
polynomial ring, then S! is an exterior algebra E =

∧
〈y1, . . . , yd〉. It is known that

A! is always Koszul, finite dimensional, and selfinjective. The Koszul duality functors
F : Db(gr A!) → Db(gr A) and G : Db(gr A) → Db(gr A!) give a category equivalence
Db(gr A!) ∼= Db(gr A) (see [2]). It is easy to check that

reg(M•) = max{i | H i (G(M•)) 6= 0}

for M•
∈ Db(gr A).
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Let gr Aop be the category of finitely generated graded right A-modules. The above
results on gr A also hold for gr Aop. Moreover, we have

reg(RHomA(M•,D•)) = − min{i | H i (G(M•)) 6= 0}

for M•
∈ Db(gr A). Here D• is a balanced dualizing complex of A, which gives duality

functors between Db(gr A) and Db(gr Aop).
Let B be a noetherian Koszul algebra. For M ∈ gr B and i ∈ Z, M〈i〉 denotes the

submodule of M generated by the degree i component Mi of M . We say M is weakly
Koszul if M〈i〉 has a linear projective resolution for all i . This definition is different from
the original one given in [13], but they are equivalent. (Weakly Koszul modules are also
called “componentwise linear modules” by some commutative algebraists.) Martinez-Villa
and Zacharia proved that if N ∈ gr A! then the i th syzygy Ωi (N ) of N is weakly Koszul
for i � 0. For N ∈ gr A!, set

lpd(N ) := min{i ∈ N | Ωi (N ) is weakly Koszul}.

Let N ∈ gr A! and N ′
:= HomA!(N , A!) ∈ gr (A!)op its dual. In Theorem 4.4, we

show that N is weakly Koszul if and only if reg(H ◦ Fop(N ′)) = 0, where Fop
:

Db(gr (A!)op) → Db(gr Aop) is the Koszul duality functor. (Since reg(Fop(N ′)) = 0,
we have reg(H ◦ Fop(N ′)) ≥ 0 in general.) Moreover, we have

lpd(N ) = reg(H ◦ Fop(N ′))

(Theorem 4.7). As an application of this formula, we refine a result of Herzog and Römer
on monomial ideals of an exterior algebra. Among other things, in Proposition 4.15, we
show that if J is a monomial ideal of an exterior algebra E =

∧
〈y1, . . . , yd〉, d ≥ 3, then

lpd(E/J ) ≤ d − 2.
Finally, we remark that Herzog and Iyengar [8] studied the invariant lpd and related

concepts over noetherian commutative (graded) local rings. Among other things, they
proved that lpd(N ) is always finite over some “nice” local rings (e.g., complete
intersections whose associated graded rings are Koszul).

2. Preliminaries

Let K be a field. The ring A treated in this paper is a (not necessarily commutative)
K -algebra with some nice properties. More precisely, A is a noetherian AS-regular Koszul
quiver algebra. If A is commutative, it is essentially a polynomial ring. But even in this
case, most results in Section 4 and a few results in Section 3 are new. (In the polynomial
ring case, many results in Section 3 were obtained in [3].) So one can read this paper
assuming that A is a polynomial ring.

We sketch the definition and basic properties of graded quiver algebras here. See [5] for
further information.

Let Q be a finite quiver. That is, Q = (Q0, Q1) is an oriented graph, where Q0 is the
set of vertices and Q1 is the set of arrows. Here Q0 and Q1 are finite sets. The path algebra
K Q is a positively graded algebra with grading given by the lengths of paths. We denote
the graded Jacobson radical of K Q by J . That is, J is the ideal generated by all arrows.
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If I ⊂ J 2 is a graded ideal, we say A = K Q/I is a graded quiver algebra. Of course,
A =

⊕
i≥0 Ai is a graded ring such that the degree i component Ai is a finite-dimensional

K -vector space for all i . The subalgebra A0 is a product of copies of the field K , one copy
for each element of Q0. If A0 = K (i.e., Q has only one vertex), we say A is connected.
Let R =

⊕
i≥0 Ri be a graded algebra with R0 = K and dimK R1 =: n < ∞. If R is

generated by R1 as a K -algebra, then it can be regarded as a graded quiver algebra over
a quiver with one vertex and n loops. Let m :=

⊕
i≥1 Ai be the graded Jacobson radical

of A. Unless otherwise specified, we assume that A is left and right noetherian throughout
this paper.

Let Gr A (resp. Gr Aop) be the category of graded left (resp. right) A-modules and their
degree-preserving A-homomorphisms. Note that the degree i component Mi of M ∈ Gr A
(or M ∈ Gr Aop) is an A0-module for each i . Let gr A (resp. gr Aop) be the full subcategory
of Gr A (resp. Gr Aop) consisting of finitely generated modules. Since we assume that A is
noetherian, gr A and gr Aop are abelian categories. In what follows, we will define several
concepts for Gr A and gr A. But the corresponding concepts for Gr Aop and gr Aop can be
defined in the same way.

For n ∈ Z and M ∈ Gr A, set M≥n :=
⊕

i≥n Mi to be a submodule of M , and
M≤n :=

⊕
i≤n Mi to be a graded K -vector space. The nth shift M(n) of M is defined

by M(n)i = Mn+i . Set σ(M) := sup{ i | Mi 6= 0} and ι(M) := inf{i | Mi 6= 0}. If M = 0,
we set σ(M) = −∞ and ι(M) = +∞. Note that if M ∈ gr A then ι(M) > −∞. For a
complex M• in Gr A, set

σ(M•) := sup{σ(H i (M•)) + i | i ∈ Z} and ι(M•) := inf{ι(H i (M•)) + i | i ∈ Z}.

For v ∈ Q0, we have the idempotent ev associated with v. Note that 1 =
∑

v∈Q0
ev . Set

Pv := Aev and v P := ev A. Then we have A A =
⊕

v∈Q0
Pv and AA =

⊕
v∈Q0

(v P). Each
Pv and v P are indecomposable projectives. Conversely, any indecomposable projective in
Gr A (resp. Gr Aop) is isomorphic to Pv (resp. v P) for some v ∈ Q0 up to degree shifting.
Set Kv := Pv/(mPv) and v K := v P /(v P m). Each Kv and v K are simple. Conversely,
any simple object in Gr A (resp. Gr Aop) is isomorphic to Kv (resp. v K ) for some v ∈ Q0
up to degree shifting.

We say a graded left (or right) A-module M is locally finite if dimK Mi < ∞ for all i .
If M ∈ gr A, then it is locally finite. Let lf A (resp. lf Aop) be the full subcategory of Gr A
(resp. Gr Aop) consisting of locally finite modules.

Let Cb(Gr A) be the category of bounded cochain complexes in Gr A, and Db(Gr A) its
derived category. We have similar categories for Gr Aop, lf A, lf Aop, gr A and gr Aop. For
a complex M• and an integer p, let M•

[p] be the pth translation of M•. That is, M•
[p] is

a complex with M i
[p] = M i+p. Since Db(gr A) ∼= Db

gr A(Gr A) ∼= Db
gr A(lf A), we freely

identify these categories. A module M can be regarded as a complex · · · → 0 → M →

0 → · · · with M at the 0th term. We can regard Gr A as a full subcategory of Cb(Gr A)

and Db(Gr A) in this way.

For M, N ∈ Gr A, set HomA(M, N ) :=
⊕

i∈ZHomGr A(M, N (i)) to be a graded
K -vector space with HomA(M, N )i = HomGr A(M, N (i)). Similarly, we can also define
Hom•

A(M•, N •), RHomA(M•, N •), and ExtiA(M•, N •) for M•, N •
∈ Db(Gr A).
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If V is a K -vector space, V ∗ denotes the dual vector space HomK (V, K ). For M ∈ Gr A
(resp. M ∈ Gr Aop), M∨

:=
⊕

i∈Z(Mi )
∗ has a graded right (resp. left) A-module structure

given by ( f a)(x) = f (ax) (resp. (a f )(x) = f (xa)) and (M∨)i = (M−i )
∗. If M ∈ lf A,

then M∨
∈ lf Aop and M∨∨ ∼= M . In other words, (−)∨ gives exact duality functors

between lf A and lf Aop, which can be extended to duality functors between Cb(lf A) and
Cb(lf Aop), or between Db(lf A) and Db(lf Aop). In this paper, when we say W is an A–A
bimodule, we always assume that (aw)a′

= a(wa′) for all w ∈ W and a, a′
∈ A. If W is

a graded A–A bimodule, then so is W ∨.
It is easy to see that Iv := (v P)∨ (resp. v I := (Pv)

∨) is injective in Gr A (resp. Gr Aop).
Moreover, Iv and v I are graded injective hulls of Kv and v K respectively. In particular, the
A–A bimodule A∨ is injective both in Gr A and in Gr Aop.

Let W be a graded A–A-bimodule. For M ∈ Gr A, we can regard HomA(M, W ) as
a graded right A-module by ( f a)(x) = f (x)a. We can also define RHomA(M•, W ) ∈

Db(Gr Aop) and ExtiA(M•, W ) ∈ Gr Aop for M•
∈ Db(Gr A) in this way. Similarly,

for M•
∈ Db(Gr Aop), we can make RHomAop(M•, W ) and ExtiAop(M•, W ) (bounded

complex of) graded left A-modules. For M ∈ Gr A, we can regard HomA(W, M) as a
graded left A-module by (a f )(x) = f (xa).

For the functor HomA(−, W ), we mainly consider the case when W = A or W = A∨.
But, we have HomA(−, A∨) ∼= (−)∨. To see this, note that

(M∨)i = HomK (M−i , K ) =

⊕
v∈Q0

HomK (ev M−i , K )

∼=

⊕
v∈Q0

HomK (ev M−i , Kv)

∼= HomA0(M−i , A0).

Via the identification (A∨)0 ∼= (A0)
∗ ∼= A0, f ∈ (M∨)i ∼= HomA0(M−i , A0) gives

a morphism f ′
: M≥−i → A∨(i) in Gr A. Since HomGr A(M/M≥−i , A∨(i)) = 0

and A∨ is injective, the short exact sequence 0 → M≥−i → M → M/M≥−i → 0
induces a unique extension f ′′

: M → A∨(i) of f ′. From this correspondence, we have
HomA(M, A∨) ∼= M∨.

Let P• be a right bounded complex in gr A such that each P i is projective. We say
P• is minimal if d(P i ) ⊂ mP i+1 for all i . Here d is the differential map. Any complex
M•

∈ Cb(gr A) has a minimal projective resolution, that is, we have a minimal complex
P• of projective objects and a graded quasi-isomorphism P•

→ M•. A minimal projective
resolution of M• is unique up to isomorphism. We denote a graded module A/m by A0.
Set β i, j (M•) := dimK Ext−i

A (M•, A0)− j . Let P• be a minimal projective resolution of
M•, and P i

:=
⊕m

l=1 T i, l an indecomposable decomposition. Then we have

β i, j (M•) = #{l | T i,l( j) ∼= Pv for some v}.

We can also define β i, j (M•) as the dimension of TorA
−i (A0, M•) j . This definition must

be much more familiar to commutative algebraists. Note that β i, j (−) is an invariant of
isomorphism classes of the derived category Db(gr A). Note that these facts on minimal
projective resolutions also hold over any noetherian graded algebra.
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Definition 2.1. Let A be a (not necessarily noetherian) graded quiver algebra. We say A is
Artin–Schelter regular (AS-regular, for short), if

• A has finite global dimension d .
• ExtiA(Kv, A) = ExtiAop(v K , A) = 0 for all i 6= d and all v ∈ Q0.
• There are a permutation δ on Q0 and an integer nv for each v ∈ Q0 such that

ExtdA(Kv, A) ∼= δ(v)K (nv) (equivalently, ExtdAop(v K , A) ∼= Kδ−1(v)(nv)) for all v.

Remark 2.2. The AS regularity is a very important concept in non-commutative algebraic
geometry. In the original definition, it is assumed that an AS-regular algebra A is connected
and there is a positive real number γ such that dimK An < nγ for n � 0, while
some authors do not require the latter condition. We also remark that Martinez-Villa and
coworkers called rings satisfying the conditions of Definition 2.1 generalized Auslander
regular algebras in [6,11].

Definition 2.3. For an integer l ∈ Z, we say M•
∈ gr A has an l-linear (projective)

resolution, if

β i, j (M•) 6= 0 ⇒ i + j = l.

If M• has an l-linear resolution for some l, we say M• has a linear resolution.

Definition 2.4. We say A is Koszul, if the graded left A-module A0 has a linear resolution.

In the definition of the Koszul property, we can regard A0 as a right A-module. (We get
the equivalent definition.) That is, A is Koszul if and only if any simple graded left (or,
right) A-module has a linear resolution.

Lemma 2.5. If A is noetherian, AS-regular, Koszul, and has global dimension d, then
ExtdA(Kv, A) ∼= δ(v)K (d) and ExtdAop(v K , A) ∼= Kδ−1(v)(d) for all v. Here δ is the
permutation of Q0 given in Definition 2.1.

Proof. Since A is Koszul, P−d of a minimal projective resolution P•
: 0 → P−d

→

· · · → P0
→ 0 of Kv is generated by its degree d-part (P−d)d (more precisely,

P−d
= Pδ(v)(−d)). �

In the rest of this paper, A is always a noetherian AS-regular Koszul quiver algebra of
global dimension d.

Example 2.6. (1) A polynomial ring K [x, . . . , xd ] is clearly a noetherian AS-regular
Koszul (quiver) algebra of global dimension d. Conversely, if a regular noetherian graded
algebra is connected and commutative, it is a polynomial ring.

(2) Let K 〈x1, . . . , xd〉 be the free associative algebra, and (qi, j ) a d × d matrix
with entries in K satisfying qi, j q j,i = qi,i = 1 for all i, j . Then the quotient ring
A = K 〈x1, . . . , xn〉/〈x j xi − qi, j xi x j | 1 ≤ i, j ≤ d〉 is a noetherian AS-regular Koszul
algebra with global dimension d . This fact must be well-known to specialists, but we will
sketch a proof here for the reader’s convenience. Since x1, . . . , xd ∈ A1 form a regular
normalizing sequence with the quotient ring K = A/(x1, . . . , xd), A is a noetherian ring
with a balanced dualizing complex by [15, Lemma 7.3]. It is not difficult to construct a
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minimal free resolution of the module K = A/m, which is a “q-analog” of the Koszul
complex of a polynomial ring K [x1, . . . , xd ]. So A is Koszul and has global dimension d.
Since A has finite global dimension and admits a balanced dualizing complex, it is AS-
regular (cf. [15, Remark 3.6 (3)]).

Artin et al. [1] classified connected AS-regular algebras of global dimension 3. (Their
definition of AS regularity is stronger than ours. See Remark 2.2.) All of the algebras they
listed are noetherian [1, Theroem 8.1]. But some are Koszul and some are not.

(3) A preprojective algebra is an important example of non-connected AS-regular
algebras. See [6] and the references cited there for the definition of this algebra and further
information. The preprojective algebra A of a finite quiver Q is a graded quiver algebra
over the inverse completion Q of Q. If the quiver Q is connected (of course, it does not
mean A is connected), then A is (almost) always an AS-regular algebra of global dimension
2, but it is not Koszul in some cases, and not noetherian in many cases. Let G be the
bipartite graph of Q in the sense of [6, Section 3]. If G is Euclidean, then A is a noetherian
AS-regular Koszul algebra of global dimension 2.

For M ∈ Gr A, set

Γm(M) = lim
→

HomA(A/mn, M) = {x ∈ M | An x = 0 for n � 0} ∈ Gr A.

Then Γm(−) gives a left exact functor from Gr A to itself. So we have a right derived
functor RΓm : Db(Gr A) → Db(Gr A). For M•

∈ Db(Gr A), H i
m(M•) denotes the

i th cohomology of RΓm(M•), and we call it the i th local cohomology of M•. It is
easy to see that H i

m(M•) = lim→ ExtiA(A/mn, M•). Similarly, we can define RΓmop :

Db(Gr Aop) → Db(Gr Aop) and H i
mop : Db(Gr Aop) → Gr Aop in the same way. If M is

an A–A bimodule, H i
m(M) and H i

mop(M) are also.
Let I ∈ Gr A be an indecomposable injective. Then Γm(I ) 6= 0, if and only if I ∼= Iv(n)

for some v ∈ Q0 and n ∈ Z, if and only if Γm(I ) = I . Similarly, HomA(A0, I ) 6= 0 if and
only if I ∼= Iv(n) for some v ∈ Q0 and n ∈ Z. In this case, HomA(A0, I ) = Kv(n). The
same is true for an indecomposable injective I ∈ Gr Aop.

Let I • be a minimal injective resolution of A in gr A. Since A is AS-regular, I i
= 0

for all i > d , Γm(I i ) = 0 for all i < d, and Γm(I d) = A∨(d). Hence RΓm(A) ∼=

A∨(d)[−d] in Db(gr A). By the same argument as [23, Proposition 4.4], we also have
RΓm(A) ∼= A∨(d)[−d] in Db(gr Aop). It does not mean that Hd

m(A) ∼= A∨(d) as A–A
bimodules. But there is an A–A bimodule L such that L ⊗A Hd

m(A) ∼= A∨(d) as A–A
bimodules. Here the underlying additive group of L is A, but the bimodule structure is give
by A × L × A 3 (a, l, b) 7→ φ(a)lb ∈ A = L for a (fixed) K -algebra automorphism φ of
A. In particular, L ∼= A as left A-modules and as right A-modules (separately). Note that
φ(ev) = eδ(v) for all v ∈ Q0, where δ is the permutation on Q0 appeared in Definition 2.1.
If A is commutative, then φ is the identity map.

We give a new A–A bimodule structure L ′ to the additive group A by A × L ′
× A 3

(a, l, b) 7→ alφ(b) ∈ A = L ′. Then L ′ ∼= HomA(L , A). Set D•
:= L ′(−d)[d]. Note

that D• belongs both Db(gr A) and Db(gr Aop). We have H i
m(D•) = H i

mop(D•) = 0 for
all i 6= 0 and H0

m(D•) ∼= H0
mop(D•) ∼= A∨ as A–A bimodules by the same argument as

[23, Section 4]. Thus (an injective resolution of) D• is a balanced dualizing complex of
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A in the sense of [23] (the paper only concerns connect rings, but the definition can be
generalized in the obvious way).

Easy computation shows that HomA(Pv, L ′) ∼=
δ−1(v)

P and HomAop(v P, L ′) ∼= Pδ(v)

for all v ∈ Q0. Since RHomA(M•,D•) (resp. RHomAop(M•,D•)) for M•
∈ gr A

(resp. M•
∈ gr Aop) can be computed by a projective resolution of M•, RHomA(−,D•)

and RHomAop(−,D•) give duality functors between Db(gr A) and Db(gr Aop). (Of
course, we can also prove this by the same argument as [23, Proposition 3.4].)

Theorem 2.7 (Yekutieli [23, Theorem 4.18], Martinez-Villa [11, Proposition 4.6]). For
M•

∈ Db(gr A), we have

RΓm(M•)∨ ∼= RHomA(M•,D•).

In particular,

(H i
m(M•) j )

∗ ∼= Ext−i
A (M•,D•)− j .

Proof. The above result was proved by Yekutieli in the connected case. (In some sense,
Martinez-Villa proved a more general result than ours, but he did not concern complexes.)
But, the proof of [23, Theorem 4.18] only uses formal properties such as A is noetherian,
RHomAop(RHomA(−,D•), D•) ∼= Id, and RΓmD• ∼= A∨. So the proof also works in our
case. �

Definition 2.8 (Jørgensen, [10]). For M•
∈ Db(gr A), we say

reg(M•) := σ(RΓm(M•)) = sup{i + j | H i
m(M•) j 6= 0}

is the Castelnuovo–Mumford regularity of M•.

By Theorem 2.7 and the fact that RHomA(M•,D•) ∈ Db(gr Aop), we have reg(M•) <

∞ for all M•
∈ Db(gr A).

Theorem 2.9 (Jørgensen, [10]). If M•
∈ Cb(gr A), then

reg(M•) = max{i + j | β i, j (M•) 6= 0}. (2.1)

When A is a polynomial ring and M• is a module, the above theorem is a fundamental
result obtained by Eisenbud and Goto [4]. In the non-commutative case, under the
assumption that A is connected but not necessarily regular, this has been proved by
Jørgensen [10, Corollary 2.8]. (If A is not regular, we have reg(A) > 0 in many cases.
So one has to assume that regA = 0 there.) In our case (i.e., A is AS-regular), we have a
much simpler proof. So we will give it here. This proof is also different from one given
in [4].

Proof. Set Q•
:= Hom•

A(P•, L ′(−d)[d]). Here P• is a minimal projective resolution
of M•, and L ′ is the A–A bimodule given in the construction of the dualizing complex
D•. Recall that HomA(Pv, L ′) ∼=

δ−1(v)
P for all v ∈ Q0. Let s be the right-hand

side of (2.1), and l the minimal integer with the property that βl,s−l(M•) 6= 0. Then
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ι(Q−d−l) = l − s + d , and (Q−d−l+1)≤(l−s+d−1) = 0 (Note that βl−1,m(M•) = 0 for all
m ≥ s − l + 1.) Since Q• is a minimal complex, we have

0 6= H−d−l(Q•)l−s+d = Ext−d−l
A (M•,D•)l−s+d = (Hd+l

m (M•)−l+s−d)∗.

Thus reg(M•) ≥ max{i + j | β i, j (M•) 6= 0}.
On the other hand, if Hd+l

m (M•)−l+r−d 6= 0, we have that βl,t−l(M•) 6= 0 for some
t ≥ r by an argument similar to the above. Hence reg(M•) ≤ max{i + j | β i, j (M•) 6= 0},
and we are done. �

For M•
∈ Db(gr A), set H(M•) to be the complex such that H(M•)i

= H i (M) for all
i and all differential maps are zero.

Lemma 2.10. We have β i, j (H(M•)) ≥ β i, j (M•) for all M•
∈ Db(gr A) and all i, j ∈ Z.

In particular, reg(H(M•)) ≥ reg(M•).

The difference between reg(M•) and reg(H(M•)) can be arbitrary large. In the last
section, we will study the relation between this difference and a work of Martinez-Villa
and Zacharia [13].

Proof. The assertion easily follows from the spectral sequence

E p,q
2 = Extp

A(H−q(N •), A0) −→ Extp+q
A (N •, A0). �

For a complex M•
∈ Cb(gr A) and an integer r , (M•)≥r denotes the subcomplex of M•

whose i th term is (M i )≥(r−i). Even if M• ∼= N • in Db(gr A), we have (M•)≥r 6∼= (N •)≥r
in general.

In the module case, the following is a well-known property of Castelnuovo–Mumford
regularity.

Proposition 2.11. Let M•
∈ Cb(gr A). Then (M•)≥r has an r-linear resolution if and only

if r ≥ reg(M•).

To prove the proposition, we need the following lemma.

Lemma 2.12. For a module M ∈ gr A with dimK M < ∞, we have H0
m(M) = M and

H i
m(M) = 0 for all i 6= 0. In particular, reg(M) = σ(M) in this case.

Proof. If P• is a minimal projective resolution of M∨
∈ gr Aop, then I •

:= (P•)∨

is a minimal injective resolution of M . Since each indecomposable summand of I i is
isomorphic to Iv(n) for some v ∈ Q0 and n ∈ Z, we have Γm(I •) = I •. �

Proof of Proposition 2.11. For a complex T •
∈ Db(gr A), it is easy to see that ι(T •) =

min{i + j | β i, j (T •) 6= 0}. In particular, ι(T •) ≤ reg(T •). Hence T • has an l-linear
projective resolution if and only if ι(T •) = reg(T •) = l.

Consider the short exact sequence of complexes

0 → (M•)≥r → M•
→ M•/(M•)≥r → 0, (2.2)
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and set N •
:= M•/(M•)≥r . Note that dimK H i (N ) < ∞ for all i . By Lemmas 2.10 and

2.12, we have

r > σ(N •) = max{reg(H i (N •)) + i | i ∈ Z} = reg(H(N •)) ≥ reg(N •).

By the long exact sequence of Ext•A(−, A0) induced by (2.2), we have

r ≤ ι((M•)≥r ) ≤ reg((M•)≥r ) ≤ max{reg(N •) + 1, reg(M•)}

≤ max{r, reg(M•)}.

Moreover, if r < reg(M•) then we have reg(N •) + 1 < reg(M•) and reg((M•)≥r ) =

reg(M•) > r . Hence (M•)≥r has an r -linear resolution if and only if r ≥ reg(M•). �

The following is one of the most basic results on Castelnuovo–Mumford regularity (see
[4]). Jørgensen [9] proved the same result for M ∈ gr A.

Let S = K [x1, . . . , xd ] be a polynomial ring. If M ∈ gr S satisfies H0
m(M)≥r+1 = 0

and H i
m(M)r+1−i = 0 for all i ≥ 1, then r ≥ reg(M) (i.e., H i

m(M)≥r+1−i = 0 for all
i ≥ 1).

The similar result also holds for M•
∈ Db(gr A). Since a minor adaptation of the proof

of [9, Theorem 2.4] also works for complexes, we leave the proof to the reader.

Proposition 2.13. If M•
∈ Db(gr A) with t := max{i | H i (M•) 6= 0} satisfies

• H i
m(M•)≥r+1−i = 0 for all i ≤ t

• H i
m(M•)r+1−i = 0 for all i > t ,

then r ≥ reg(M•) (i.e., H i
m(M•)≥r+1−i = 0 for all i > t).

3. Koszul duality

In this section, we study the relation between the Castelnuovo–Mumford regularity of
complexes and the Koszul duality. For precise information of this duality, see [2, Section
2]. There, the symbol A (resp. A!) basically means a finite-dimensional (resp. noetherian)
Koszul algebra. This convention is opposite to ours. So the reader should be careful.

Recall that A = K Q/I is a graded quiver algebra over a finite quiver Q. Let Qop be the
opposite quiver of Q. That is, Qop

0 = Q0 and there is a bijection from Q1 to Qop
1 which

sends an arrow α : v → u in Q1 to the arrow αop
: u → v in Qop

1 . Consider the bilinear
form 〈−, −〉 : (K Q)2 × (K Qop)2 → A0 defined by

〈αβ, γ opδop
〉 =

{
eu if α = δ and β = γ,

0 otherwise

for all α, β, γ, δ ∈ Q1. Here u ∈ Q0 is the vertex with β ∈ Aeu . Let I ⊥
⊂ K Qop be the

ideal generated by

{y ∈ (K Qop)2 | 〈x, y〉 = 0 for all x ∈ I2}.

We say K Qop/I ⊥ is the quadratic dual ring of A, and denote it by A!. Clearly, (A!)0 = A0.
Since A is Koszul, so is A!. Since A is AS-regular, A! is a finite-dimensional selfinjective
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algebra with A =
⊕d

i=0 Ai by [12, Theorem 5.1]. If A is a polynomial ring, then A! is the
exterior algebra

∧
(A1)

∗.
Since A! is selfinjective, DA! := HomA!(−, A!) and D(A!)op := Hom(A!)op(−, A!) give

exact duality functors between gr A! and gr (A!)op. They induce duality functors between
Db(gr A!) and Db(gr (A!)op), which are also denoted by DA!and D(A!)op . It is easy to see
that DA!(N ) ∼= HomK (N , K )(−d).

We say a complex F•
∈ C(gr A!) is a projective (resp. injective) resolution of a complex

N •
∈ Cb(gr A!), if each term F i is projective (= injective), F• is right (resp. left) bounded,

and there is a graded quasi-isomorphism F•
→ N • (resp. N •

→ F•). We say a projective
(or, injective) resolution F•

∈ Cb(gr A!) is minimal if d i (F i ) ⊂ nF i+1 for all i , where n is
the graded Jacobson radical of A!. (The usual definition of a minimal injective resolution
is different from the above one. But they coincide in our case.) A bounded complex
N •

∈ Cb(gr A!) has a minimal projective resolution and a minimal injective resolution, and
they are unique up to isomorphism. If F• is a minimal projective (resp. injective) resolution
of N • then DA!(F•) is a minimal injective (resp. projective) resolution of DA!(N •).

For N •
∈ Db(gr A!), set

µi, j (N •) := dimK ExtiA!(A0, N •) j .

Then µi, j (N •) measures the size of a minimal injective resolution of N •. More precisely,
if F• is a minimal injective resolution of N •, and F i

:=
⊕m

l=1 T i,l is an indecomposable
decomposition, then we have

µi, j (N •) = #{l | soc(T i,l) = (T i,l) j }

= #{l | T i,l( j) is isomorphic to a direct summand of A!(d)}.

Let V be a finitely generated left A0-module. Then HomA0(A!, V ) is a graded left A!-
module with (a f )(a′) = f (a′a) and HomA0(A!, V )i = HomA0((A!)−i , V ). Since A! is
selfinjective, we have HomA0(A!, A0) ∼= A!(d). Hence HomA0(A!, V ) is a projective (and
injective) left A!-module for all V . If V has degree i (e.g., V = Mi for some M ∈ gr A),
then we set HomA0(A!, V ) j = HomA0(A!

− j−i , V ).

For M•
∈ Cb(gr A), let G(M•) := HomA0(A!, M•) ∈ Cb(gr A!) be the total complex

of the double complex with G(M•)i, j
= HomA0(A!, M i

j ) whose vertical and horizontal
differentials d ′ and d ′′ are defined by

d ′( f )(x) =

∑
α∈Q1

α f (αopx), d ′′( f )(x) = ∂M•( f (x))

for f ∈ HomA0(A!, M i
j ) and x ∈ A!. The gradings of G(M•) is given by

G(M•)p
q :=

⊕
p=i+ j,q=−l− j

HomA0((A!)l , M i
j ).

Each term of G(M•) is injective. For a module M ∈ gr A, G(M) is a minimal complex.
Thus we have

µi, j (G(M)) =

{
dimK Mi if i + j = 0,

0 otherwise.
(3.1)
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Similarly, for a complex N •
∈ Cb(gr A!), we can define a new complex F(N •) :=

A ⊗A0 N •
∈ Cb(gr A) as the total complex of the double complex with F(N •)i, j

=

A ⊗A0 N i
j whose vertical and horizontal differentials d ′ and d ′′ are defined by

d ′(a ⊗ x) =

∑
α∈Q1

aα ⊗ αopx, d ′′(a ⊗ x) = a ⊗ ∂N•(x)

for a ⊗ x ∈ A ⊗A0 N i . The gradings of F(N •) is given by

F(N •)p
q :=

⊕
p=i+ j,q=l− j

Al ⊗A0 N i
j .

Clearly, each term of F(N •) is a projective A-module. For a module N ∈ gr A!, F(N ) is
a minimal complex. Hence we have

β i, j (F(N )) =

{
dimK Ni if i + j = 0,

0 otherwise.
(3.2)

It is well known that the operationsF and G define functorsF : Db(gr A!) → Db(gr A)

and G : Db(gr A) → Db(gr A!), and they give an equivalence Db(gr A) ∼= Db(gr A!)

of triangulated categories. This equivalence is called the Koszul duality. When A is a
polynomial ring, this equivalence is called Bernstein-Gel’fand-Gel’fand correspondence.
See, for example, [3].

We have the functors Fop
: Db(gr (A!)op) → Db(gr Aop) and Gop

: Db(gr Aop) →

Db(gr (A!)op) giving Db(gr Aop) ∼= Db(gr (A!)op).

Proposition 3.1 (cf. [3, Proposition 2.3]). In the above situation, we have

β i, j (M•) = dimK H i+ j (G(M•))− j and µi, j (N •) = dimK H i+ j (F(N •))− j .

Proof. While the assertion follows from Proposition 3.4 below, we give a direct proof here.
We have

ExtiA!(A0, N •) j ∼= HomDb(gr A!)(A0, N •
[i]( j))

∼= HomDb(gr A)(F(A0),F(N •
[i]( j)))

∼= HomDb(gr A)(A,F(N •)[i + j](− j))

∼= H i+ j (F(N •))− j .

Since µi, j (N •) = dimK Exti
A!

(A0, N •) j , the second equation of the proposition follows.
We can prove the first equation by a similar argument. But this time we use the
contravariant functor DA! ◦G : Db(gr A) → Db(gr (A!)op) and the fact that DA! ◦G(A0) ∼=

DA!(A!(d)) ∼= A!(−d). �

Corollary 3.2. reg(M•) = max{i | H i (G(M•)) 6= 0}.

Proof. Follows Theorem 2.9 and Proposition 3.1. �

Recall that DA := RHomA(−,D•) is a duality functor from Db(gr A) to Db(gr Aop).
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Proposition 3.3. reg(DA(M•)) = − min{i | H i (G(M•)) 6= 0}.

Proof. Let L ′ be the A–A bimodule given in the construction of the dualizing complexD•.
Note that DA(M•) ∼= Hom•

A(P•, L ′(−d)[d]) =: Q• for a projective resolution P• of M•.
Since DA(Pv) =

δ−1(v)
P(−d)[d], Q• is a complex of projectives. And Q• is a minimal

complex if and only if P• is. Hence β−i−d,− j+d(DA(M•)) = β i, j (M•). Therefore, the
assertion follows from Proposition 3.1. �

We can refine Proposition 3.1 using the notion of linear strands of projective (or
injective) resolutions, which was introduced by Eisenbud et al. (See [3, Section 3].) First,
we will generalize this notion to our rings. Let B be a noetherian Koszul algebra (e.g.,
B = A or A!) with the graded Jacobson radical m, and P• a minimal projective resolution
of a bounded complex M•

∈ Db(gr B). Consider the decomposition P i
:=

⊕
j∈Z P i, j

such that any indecomposable summand of P i, j is isomorphic to a summand of B(− j).
For an integer l, we define the l-linear strand proj.linl(M•) of a projective resolution
of M• as follows. The term proj.linl(M•)i of cohomological degree i is P i,l−i and the
differential P i,l−i

→ P i+1,l−i−1 is the corresponding component of the differential
P i

→ P i+1 of P•. So the differential of proj.linl(M•) is represented by a matrix whose
entries are elements in B1. Set proj.lin(M•) :=

⊕
l∈Z proj.linl(M•). It is obvious that

β i, j (M•) = β i, j (proj.lin(M•)) for all i, j .
Using a spectral sequence argument, we can construct proj.lin(M•) from a (not

necessarily minimal) projective resolution Q• of M•. Consider the m-adic filtration Q•
=

F0 Q•
⊃ F1 Q•

⊃ · · · of Q• with Fp Qi
= mp Qi and the associated spectral sequence

{E∗,∗
r , dr }. The associated graded object grmM :=

⊕
p≥0 mp M/mp+1 M of M ∈ gr B

is a module over grmB =
⊕

p≥0 mp/mp+1 ∼= B. Since mp M is a graded submodule of
M , we can make grmM a graded module using the original grading of M (so (grmM)i is
not mi M/mi+1 M here). Under the identification grmB with B, we have grmM 6∼= M in
general. But if each indecomposable summand N of M is generated by Nι(N ) then grmM ∼=

M . Since Qt is a projective B-module, Qt
0 :=

⊕
p+q=t E p,q

0 =
⊕

p≥0 mp Qt/mp+1 Qt
=

grmQt is isomorphic to Qt . The maps d p,q
0 : E p,q

0 → E p,q+1
0 make Q•

0 a cochain
complex of projective grmB-modules. Consider the decomposition Q•

= P•
⊕ C•, where

P• is minimal and C• is exact. (We always have such a decomposition.) If we identify
Qt

0 with Qt
= P t

⊕ C t , the differential d0 of Q•

0 is given by (0, dC•). Hence we have

Qt
1 =

⊕
p+q=t E p,q

1
∼= P t . The maps d p,q

1 : E p,q
1 = mp P t/mp+1 P t

→ E p+1,q
1 =

mp+1 P t+1/mp+2 P t+1 make Q•

1 a cochain complex of projective grmB(∼= B)-modules
whose differential is the “linear component” of the differential dP• of P•. Thus the
complex (Q•

1, d1) is isomorphic to proj.lin(M•).
Since A! is selfinjective, we can consider the linear strands of an injective resolution.

More precisely, starting from a minimal injective resolution of N •
∈ Db(gr A!), we can

construct its l-linear strand inj.linl(N •) in a similar way. Here, if I i is the cohomological
degree i th term of inj.linl(N •), then the socle of I i coincides with (I i )l−i . In other words,
any indecomposable summand of I i is isomorphic to a summand of A!(i − l + d). Set
inj.lin(N •) =

⊕
l∈Z inj.linl(N •). This complex can also be constructed using spectral

sequences.
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We have that DA!(inj.lin(N •)) ∼= proj.lin(DA!(N •)) and DA!(proj.lin(N •)) ∼=

inj.lin(DA!(N •)).

Proposition 3.4 (cf. [3, Corollary 3.6]). For M•
∈ Db(gr A) and N •

∈ Db(gr A!), we
have

proj.lin(F(N •)) = F(H(N •)) and inj.lin(G(M•)) = G(H(M•)).

More precisely,

proj.linl(F(N •)) = F(H l(N •))[−l] and inj.linl(G(M•)) = G(H l(M•))[−l].

Proof. Set Q•
= F(N •). Note that Q• is a (non-minimal) complex of projective modules.

We use the above spectral sequence argument (and the notation there). Then the differential
d t

0 : Qt
0

∼= F t (N •) → Qt+1
0

∼= F t+1(N •) is given by ±∂N• . Thus

Qt
1

∼=

⊕
t=i+ j

A ⊗A0 H i (N •) j =

⊕
t=i+ j

F j (H i (N •)),

and the differential of Q•

1 is induced by that of F(N i ). Hence we can easily check
that Q•

1, which can be identified with proj.lin(F(N •)), is isomorphic to F(H(N •)) ∼=⊕
i∈Z F(H i (N •))[−i]. We can prove the statement for inj.lin(G(M•)) in the same

way. �

4. Weakly Koszul modules

Let B be a noetherian Koszul algebra (e.g., B = A or A!) with the graded Jacobson
radical m. For M ∈ gr B and an integer i , M〈i〉 denotes the submodule of M generated by
its degree i component Mi .

Proposition 4.1. In the above situation, the following are equivalent.

(1) M〈i〉 has a linear projective resolution for all i .
(2) H i (proj.lin(M)) = 0 for all i 6= 0.
(3) All indecomposable summands of grmM have linear resolutions as B (∼= grmB)-

modules.

Proof. This result was proved in [20, Proposition 4.9] under the assumption that B is
a polynomial ring. (Römer also proved this for a commutative Koszul algebra. See [18,
Theorem 3.2.8].) In this proof, only the Koszul property of a polynomial ring is essential,
and the proof also works in our case. But, to refer this, the reader should be careful with
the following points.

(a) In [20], the grading of grmM is given by a different way. There, (grmM)i =

mi M/mi+1 M . It is easy to see that grmM has a linear resolution in this grading if and
only if the condition (3) of the proposition is satisfied in our grading.

(b) In the proof of [20, Proposition 4.9], the regularity reg(N ) of N ∈ gr B is
an important tool. Unless B is AS-regular, one cannot define reg(N ) using the local
cohomologies of N . But if we set reg(N ) := sup{i + j | β i, j (N ) 6= 0}, then everything
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works well. It is not clear whether reg(N ) < ∞ for all N ∈ gr B (cf. [10]). But
modules appearing in the argument similar to the proof of [20, Proposition 4.9] have finite
regularities.

(c) In the proof of [20, Proposition 4.9], a few basic properties of the
Castelnuovo–Mumford regularity (over a polynomial ring) are used. But reg(N ) of N ∈

gr B also has these properties, if we define reg(N ) as (b). For example, if N ∈ gr B satisfies
dimK N < ∞, then reg(N ) = σ(N ). This can be proved by induction on dimK N . Using
the short exact sequence 0 → N≥r → N → N/N≥r → 0, we can also prove that N≥r has
an r linear resolution if and only if r ≥ reg(N ) (see also Proposition 2.11).

(d) For the implication (2) ⇒ (3), [20] refers to another paper. But this implication can
be proved by a spectral sequence argument, since proj.lin(M) can be constructed using a
spectral sequence as we have seen in the previous section. �

Definition 4.2 ([5,13]). In the above situation, we say M ∈ gr B is weakly Koszul, if it
satisfies the equivalent conditions of Proposition 4.1.

Remark 4.3. (1) If M ∈ gr B has a linear resolution, then it is weakly Koszul.
(2) The notion of weakly Koszul modules was first introduced by Green and Martinez-

Villa [5]. But they used the name “strongly quasi Koszul modules”. Weakly Koszul
modules are also called “componentwise linear modules” by some commutative algebraists
(see [7]).

Theorem 4.4. Let 0 6= N ∈ gr A! and set N ′
:= DA!(N ). Then the following are

equivalent.

(1) N is weakly Koszul.
(2) H i (Fop(N ′)) has a (−i)-linear projective resolution for all i .
(3) reg(H ◦ Fop(N ′)) = 0.
(4) reg(H ◦ Fop(N ′)) ≤ 0.

Proof. Since ι(H ◦ Fop(N ′)) ≥ 0 (i.e., ι(H i (Fop(N ′))) ≥ −i for all i), the equivalence
among (2), (3) and (4) follows from Proposition 2.11. So it suffices to prove (1)
⇔ (4). Since D(A!)op(inj.lin(N ′)) ∼= proj.lin(N ), N is weakly Koszul if and only if
H i (inj.lin(N ′)) = 0 for all i > 0. By Proposition 3.4, we have

inj.lin(N ′) = inj.lin(Gop
◦ Fop(N ′)) = Gop

◦H ◦ Fop(N ′).

Therefore, by Corollary 3.2, H i (inj.lin(N ′)) = 0 for all i > 0 if and only if the condition
(4) holds. �

Remark 4.5. Martinez-Villa and Zacharia proved that if N is weakly Koszul then there is
a filtration

U0 ⊂ U1 ⊂ · · · ⊂ Up = N

such that Ui+1/Ui has a linear resolution for each i (see [13, pp. 676–677]). We can
interpret this fact using Theorem 4.4 in our case.
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Let N ∈ gr A! be a weakly Koszul module. Set N ′
:= DA!(N ) and T •

:= Fop(N ′).
Assume that N does not have a linear resolution. Then H i (T •) 6= 0 for several i . Set
n = min{i | H i (T •) 6= 0}. Consider the truncation

σ>nT •
: · · · −→ 0 −→ im dn

−→ T n+1
−→ T n+2

−→ · · ·

of T •. Then we have H i (T •) = H i (σ>nT •) for all i > n and H i (σ>nT •) = 0 for all
i ≤ n. We have a triangle

Hn(T •)[−n] → T •
→ σ>nT •

→ Hn(T •)[−n + 1]. (4.1)

By Theorem 4.4, Hn(T •)[−n] has a 0-linear resolution. On the other hand,

0 = reg(H(σ>nT •)) ≥ reg(σ>nT •) ≥ ι(σ>nT •) ≥ 0.

Hence σ>nT • also has a 0-linear resolution. Therefore, both D(A!)op ◦ Gop(σ>nT •) and
D(A!)op ◦ Gop(Hn(T •)[−n]) are acyclic complexes (that is, the i th cohomology vanishes
for all i 6= 0). Set

U := H0(D(A!)op ◦ Gop(σ>nT •)) and V := H0(D(A!)op ◦ Gop(Hn(T •)[−n])).

Since N = D(A!)op ◦ Gop(T •), the triangle (4.1) induces a short exact sequence 0 →

U → N → V → 0 in gr A!. It is easy to see that V has a linear resolution. Since
H ◦ Fop

◦ DA!(U ) = H(σ>nT •), U is weakly Koszul by Theorem 4.4. Repeating this
procedure, we can get the expected filtration.

Let N ∈ gr A! and · · ·
f2

−→ P−1 f1
−→ P0 f0

−→ N → 0 its minimal projective
resolution. For i ≥ 1, we call Ωi (N ) := ker( fi−1) the i th syzygy of N . Note that
Ωi (N ) = im( fi ) = coker( fi+1).

By the original definition of a weakly Koszul module given in [5,13], if N ∈ gr A! is
weakly Koszul then so is Ωi (N ) for all i ≥ 1.

Definition 4.6 (Herzog–Römer, [18]). For 0 6= N ∈ gr A!, set

lpd(N ) := inf{i ∈ N | Ωi (N ) is weakly Koszul},

and call it the linear part dominates of N .

Since A is a noetherian ring of finite global dimension, lpd(N ) is finite for all N ∈ gr A!

by [13, Theorem 4.5].

Theorem 4.7. Let N ∈ gr A! and set N ′
:= DA!(N ). Then we have

lpd(N ) = reg(H ◦ Fop(N ′))

= max{reg(H i (Fop(N ′))) + i | i ∈ Z}.

Proof. Note that P•
:= D(A!)op ◦ Gop

◦ Fop(N ′) is a projective resolution of N , and
Q•

:= D(A!)op ◦ Gop(Fop(N ′)≥i ) is the truncation · · · → P−i−1
→ P−i

→ 0 → · · · of
P• for each i ≥ 1. Hence we have H j (Q•) = 0 for all j 6= −i and there is a projective
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module P such that H−i (Q•) ∼= Ωi (N ) ⊕ P . Since P is weakly Koszul, Ωi (N ) is weakly
Koszul if and only if so is Q := H−i (Q•). We have

proj.lin(Q)[i] ∼= D(A!)op ◦ Gop
◦H(Fop(N ′)≥i ).

By Theorem 4.4, Q is weakly Koszul if and only if H(Fop(N ′)≥i ) has an i-linear
resolution, that is, H j (Fop(N ′)≥i ) has an (i − j)-linear resolution for all j . But there is
some L ∈ gr (A!)op such that L = L i− j and H j (Fop(N ′)≥i ) ∼= H j (Fop(N ′))≥i− j ⊕ L .
Note that L has an (i − j)-linear resolution. Therefore, H j (Fop(N ′)≥i ) has an (i − j)-
linear resolution if and only if so does H j (Fop(N ′))≥i− j . Summing up the above facts,
we have that Ωi (N ) is weakly Koszul if and only if (H ◦ Fop(N ′))≥i has an i-linear
resolution. By Proposition 2.11, the last condition is equivalent to the condition that
i ≥ reg(H ◦ Fop(N ′)). �

Remark 4.8. Assume that A is noetherian, Koszul, and has finite global dimension, but not
necessarily AS-regular. Then A! is a finite-dimensional Koszul algebra, but not necessarily
selfinjective. Even in this case, G(M•) for M•

∈ Db(gr A) is a complex of injective
A!-modules, and the results in Section 3 and Theorem 4.7 also hold. But now we should
set reg(M•) := sup{i + j | β i, j (M•) 6= 0} for M•

∈ Db(gr A) (local cohomology is not
helpful to define the regularity). Since A is noetherian and has finite global dimension, we
have reg(M•) < ∞ for all M•. In particular, we have lpd(N ) < ∞ for all N ∈ gr A! (if A
is right noetherian) as proved in [13, Theorem 4.5].

If lpd(N ) ≥ 1 for some N ∈ gr A!, then sup{lpd(T ) | T ∈ gr A!
} = ∞. In fact, if

Ω−i (N ) is the i th cosyzygy of N (since A! is selfinjective, we can consider cosyzygies),
then lpd(Ω−i (N )) > i . But Herzog and Römer proved that if J is a monomial ideal of an
exterior algebra E =

∧
〈y1, . . . , yd〉 then lpd(E/J ) ≤ d − 1 (cf. [18, Section 3.3]). We

will refine their results using Theorem 4.7.
In what follows, we regard the polynomial ring S = K [x1, . . . , xd ], d ≥ 1, as an Nd -

graded ring with deg xi = (0, . . . , 0, 1, 0, . . . , 0), where 1 is at the i th position. Similarly,
the exterior algebra E = S!

=
∧

〈y1, . . . , yd〉 is also an Nd -graded ring. Let ∗Gr S
be the category of Zd -graded S-modules and their degree preserving S-homomorphisms,
and ∗gr S its full subcategory consisting of finitely generated modules. We have a similar
category ∗gr E for E . For S-modules and graded E-modules, we do not have to distinguish
left modules from right modules. Since Zd -graded modules can be regarded as Z-graded
modules in the natural way, we can discuss reg(M•) for M•

∈ Db(∗gr S) and lpd(N ) for
N ∈

∗gr E .
Note that DE (−) =

⊕
a∈Zd Hom∗gr E (−, E(a)) gives an exact duality functor from

∗gr E to itself. Sometimes, we simply denote DE (N ) by N ′. Set 1 := (1, 1, . . . , 1) ∈ Zd .
Then D•

S := S(−1)[d] ∈ Db(∗gr S) is a Zd -graded normalized dualizing complex and
DS(−) := RHomS(−,D•

S) =
⊕

a∈Zd RHom∗Gr S(−,D•

S(a)) gives a duality functor from

Db(∗gr S) to itself. As shown in [21, Theorem 4.1], we have the Zd -graded Koszul duality
functors F∗ and G∗ giving an equivalence Db(∗gr S) ∼= Db(∗gr E). These functors are
defined in the same way as in the Z-graded case.

For a = (a1, . . . , ad) ∈ Zd , set supp(a) := {i | ai > 0} ⊂ [d] := {1, . . . , d}. We say
a ∈ Zd is squarefree if ai = 0, 1 for all i ∈ [d]. When a ∈ Zd is squarefree, we sometimes
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identify a with supp(a). For example, if F ⊂ [d], then S(−F) means the free module
S(−a), where a ∈ Nd is the squarefree vector with supp(a) = F .

Definition 4.9 ([20]). We say M ∈
∗gr S is squarefree, if M has a presentation of the form⊕

F⊂[d]

S(−F)m F →

⊕
F⊂[d]

S(−F)nF → M → 0

for some m F , nF ∈ N.

The above definition seems different from the original one given in [20], but they
coincide. Stanley–Reisner rings (that is, the quotient rings of S by squarefree monomial
ideals) and many modules related to them are squarefree. Here we summarize the basic
properties of squarefree modules. See [20,21] for further information. Let Sq(S) be the full
subcategory of ∗gr S consisting of squarefree modules. Then Sq(S) is closed under kernels,
cokernels, and extensions in ∗gr S. Thus Sq(S) is an abelian category. Moreover, we have
Db(Sq(S)) ∼= Db

Sq(S)(
∗Gr S). If M is squarefree, then each term in a Zd -graded minimal

free resolution of M is of the form
⊕

F⊂[d]
S(−F)nF . Hence we have reg(M) ≤ d.

Moreover, reg(M) = d if and only if M has a summand which is isomorphic to S(−1).

Definition 4.10 (Römer [16]). We say N ∈
∗gr E is squarefree, if N =

⊕
F⊂[d]

NF (i.e.,
if a ∈ Zd is not squarefree, then Na = 0).

A monomial ideal of E is always a squarefree E-module. Let Sq(E) be the full
subcategory of ∗gr E consisting of squarefree modules. Then Sq(E) is an abelian category
with Db(Sq(E)) ∼= Db

Sq(E)(
∗gr E). If N is a squarefree E-module, then so is DE (N ). That

is, DE gives an exact duality functor from Sq(E) to itself. We have functors S : Sq(E) →

Sq(S) and E : Sq(S) → Sq(E) giving an equivalence Sq(S) ∼= Sq(E). Here S(N )F = NF
for N ∈ Sq(E) and F ⊂ [d], and the multiplication map S(N )F 3 z 7→ xi z ∈ S(N )F∪{i}
for i 6∈ F is given by S(N )F = NF 3 z 7→ (−1)α(i,F)yi z ∈ NF∪{i} = S(N )F∪{i}, where
α(i, F) = #{ j ∈ F | j < i}. See [16,21] for details. Since a free module E(a) is not
squarefree unless a = 0, the syzygies of a squarefree E-module are not squarefree.

Proposition 4.11 (Herzog–Römer, [18, Corollary 3.3.5]). If N is a squarefree E-module
(e.g., N = E/J for a monomial ideal J ), then we have lpd(N ) ≤ d − 1.

This result easily follows from Theorem 4.7 and the fact that H i (F∗(N ′))(−1) is a
squarefree S-module for all i and H i (F∗(N ′)) = 0 unless 0 ≤ i ≤ d. (Recall the
remark on the regularity of squarefree modules given before Definition 4.10, and note
that M := Hd(F∗(N ′))(−1) is generated by M0.)

We also remark that [18, Corollary 3.3.5] just states that lpd(N ) ≤ d. But their argument
actually proves that lpd(N ) ≤ d − 1. In fact, they showed that

lpd(N ) ≤ proj.dimSS(N ).

But, if proj.dimSS(N ) = d then S(N ) has a summand which is isomorphic to K =

S/(x1, . . . , xd) and hence N has a summand which is isomorphic to K = E/(y1, . . . , yd).
But K ∈ Sq(E) has a linear resolution and irrelevant to lpd(N ).



K. Yanagawa / Journal of Pure and Applied Algebra 207 (2006) 77–97 95

To refine Proposition 4.11, we need further properties of squarefree modules.
If M•

∈ Db(Sq(S)), then ExtiS(M•,D•

S) is squarefree for all i . HenceD•

S gives a duality
functor on Db(Sq(S)). On the other hand, A := S ◦ DE ◦ E is an exact duality functor
on Sq(S) and it induces a duality functor on Db(Sq(S)). Miller [14, Corollary 4.21] and
Römer [17, Corollary 3.7] proved that reg(A(M)) = proj.dimS M for all M ∈ Sq(S). I
generalized this equation to a complex M•

∈ Db(Sq(S)) in [22, Corollary 2.10].

Lemma 4.12. Let N ∈ Sq(E) and set N ′
:= DE (N ). Then we have

reg(H i (F∗(N ′))) = −depthS(Extd−i
S (S(N ′), S)) (4.2)

and

lpd(N ) = max{i − depthS(Extd−i
S (S(N ′), S)) | 0 ≤ i ≤ d}. (4.3)

Here we set the depth of the 0 module to be +∞.

If M := Extd−i
S (S(N ′), S) 6= 0, then depthS M ≤ dimS M ≤ i . Therefore all members

in the set of the right side of (4.3) are non-negative or −∞.

Proof. By Theorem 4.7, (4.3) follows from (4.2). So it suffices to show (4.2). By [21,
Proposition 4.3], we have F∗(N ′) ∼= (A ◦ DS ◦S(N ′))(1). (The degree shifting “(1)” does
not occur in [21, Proposition 4.3]. But E is a negatively graded ring there, and we need the
degree shifting in the present convention.) Since A is exact, we have

H i (F∗(N ′)) ∼= H i (A ◦ DS ◦ S(N ′))(1) ∼= A(H−i (DS ◦ S(N ′)))(1)

= A(Ext−i
S (S(N ′),D•

S))(1).

Recall that reg(A(M)) = proj.dimS M for M ∈ Sq(S). On the other hand, since M is
finitely generated, the underlying module of Ext−i

S (M,D•

S) is isomorphic to Extd−i
S (M, S).

So (4.2) follows from these facts and the Auslander–Buchsbaum formula. �

Corollary 4.13. For N ∈ Sq(E), N is weakly Koszul (over E) if and only if S(N ) is
weakly Koszul (over S).

In [17, Corollary 1.3], it was proved that N has a linear resolution if and only if so does
S(N ). Corollary 4.13 also follows from this fact and (the squarefree module version of)
[7, Proposition 1.5].

Proof. We say M ∈ gr S is sequentially Cohen–Macaulay, if for each i ExtiS(M, S) is
either the zero module or a Cohen–Macaulay module of dimension d − i (cf. [19, III.
Theorem 2.11]). By Lemma 4.12, N is weakly Koszul if and only if S(N ′) (∼= A ◦ S(N ))

is sequentially Cohen–Macaulay. By [17, Theorem 4.5], the latter condition holds if and
only if S(N ) is weakly Koszul. �

Many examples of squarefree monomial ideals of S which are weakly Koszul (dually,
Stanley–Reisner rings which are sequentially Cohen–Macaulay) are known. So we can
obtain many weakly Koszul monomial ideals of E using Corollary 4.13.
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Proposition 4.14. For an integer i with 1 ≤ i ≤ d − 1, there is a squarefree E-module N
such that lpdN = proj.dimSS(N ) = i . In particular, the inequality of Proposition 4.11 is
optimal.

Proof. Let M be the Zd -graded i th syzygy of K = S/m. Note that M is squarefree.
We can easily check that N := DE ◦ E(M) ∈ Sq(E) satisfies the expected condition.
In fact, proj.dimSS(N ) = proj.dimSA(M) = regM = i . On the other hand, since
Extd−i

S (S(N ′), S) = Extd−i
S (M, S) = K , Ext j

S(S(N ′), S) = 0 for all j 6= d − i, 0, and
depthS(HomS(S(N ′), S)) = d − i + 1, we have lpd N = i . �

The above result also says that the inequality lpd(N ) ≤ proj.dimSS(N ) of [18,
Corollary 3.3.5] is also optimal. But for a monomial ideal J ⊂ E , the situation is different.

Proposition 4.15. If d ≥ 3, then we have lpd(E/J ) ≤ d −2 for a monomial ideal J of E.

Proof. If d = 3, then easy computation shows that any squarefree monomial ideal I ⊂ S
is weakly Koszul. Hence J is weakly Koszul by Corollary 4.13. So we may assume that
d ≥ 4.

Note that A ◦ S(E/J ) is isomorphic to a squarefree monomial ideal of S. We
denote it by I . By Lemma 4.12, it suffices to show that depthS(HomS(I, S)) ≥ 2
and depthS(Ext1S(I, S)) ≥ 1. Recall that HomS(I, S) satisfies Serre’s condition (S2),
hence its depth is at least 2. Since Ext1S(I, S) ∼= Ext2S(S/I, S), it suffices to prove that
depthS(Ext2S(S/I, S)) ≥ 1.

If ht(I ) > 2, then we have Ext2S(S/I, S) = 0. If ht(I ) = 2, then Ext2S(S/I, S)

satisfies (S2) as an S/I -module and depthS Ext2S(S/I, S) ≥ min{2, dim(S/I )} ≥ 2.
So we may assume that ht(I ) = 1. If the heights of all associated primes of I are 1,
then I is a principal ideal and ExtiS(S/I, S) = 0 for all i 6= 1. So we may assume
that I has an prime of larger height. Then we have ideals I1 and I2 of S such that
I = I1 ∩ I2 and the heights of any associated prime of I1 (resp. I2) is 1 (at least 2).
Since I is a radical ideal, we have ht(I1 + I2) ≥ 3. Hence Ext2S(S/(I1 + I2), S) = 0 and
Ext3S(S/(I1 + I2), S) is either the zero module or it satisfies (S2) as an S/(I1 + I2)-module.
In particular, if Ext3S(S/(I1 + I2), S) 6= 0 (equivalently, if dim(S/(I1 + I2)) = d − 3) then
depthS(Ext3S(S/(I1 + I2), S)) ≥ min{2, d − 3} ≥ 1. Note that depthS(Ext2S(S/I2, S)) ≥ 2.
From the short exact sequence

0 → S/I → S/I1 ⊕ S/I2 → S/(I1 + I2) → 0

and the above argument, we have the exact sequence

0 → Ext2S(S/I2, S) → Ext2S(S/I, S) → Ext3S(S/(I1 + I2), S). (4.4)

We have depthS(Ext2S(S/I, S)) ≥ 1 by (4.4), since the modules beside this module have
positive depth. �
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[20] K. Yanagawa, Alexander duality for Stanley-Reisner rings and squarefree Nn -graded modules, J. Algebra

225 (2000) 630–645.
[21] K. Yanagawa, Derived category of squarefree modules and local cohomology with monomial ideal support,

J. Math. Soc. Japan 56 (2004) 289–308.
[22] K. Yanagawa, BGG correspondence and Römer’s theorem of an exterior algebra, Algebr. Represent. Theory.

(math.AC/0402406) (in press).
[23] A. Yekutieli, Dualizing complexes over noncommutative graded algebras, J. Algebra 153 (1992) 41–84.


	Castelnuovo--Mumford regularity for complexes and weakly Koszul modules
	Introduction
	Preliminaries
	Koszul duality
	Weakly Koszul modules
	Acknowledgments
	References


