
p � �

URL� http���www�elsevier�nl�locate�entcs�volume���html �� pages

A Domain�theoretic Semantics of Lax Generic

Functions

Hideki Tsuiki

Department of Fundamental Sciences� Kyoto University� Kyoto ���� Japan

tsuiki�i�h�kyoto�u�ac�jp

Abstract

The semantic structure of a calculus �m is studied� �m is a polymorphic calculus

de�ned over a hierarchical type structure� and a function in this calculus� called

a generic function� can be composed from more than one lambda expression and

the ways it behaves on each type are weakly related in that it lax commutes with

coercion functions�

Since laxness is intermediate between ad�hocness and coherentness� �m has syn�

tactic properties lying between those of calculi with ad�hoc generic functions and

coherent generic functions studied in �Tsu���� That is� though �m allows self ap�

plication and thus is not normalizing� it does not have an unsolvable term� For

this reason� all the semantic domains are connected by in�nitely many mutually

recursive equations and� at the same time� they do not have the least elements� We

solve them by considering op�brations and expressing the equations as one recursive

equation about op�brations� We also show the adequacy theorem for �m following

the construction of A� Pitts and use it to derive some syntactic properties�

� Introduction

As de�ned by Strachey� polymorphism is classi�ed into parametric polymorph�
ism and ad�hoc polymorphism ��Rey���	
 A parametric polymorphic function
is a function which is de�ned uniformly over types
 That is� though it can

be viewed as a collection of monomorphic functions� they have the same al�
gorithm written as a single lambda expression
 On the other hand� an ad�hoc
polymorphic function is a function whose e�ects on di�erent argument types

are unrelated
 These two notions are closely related to the syntactic properties
and semantic constructions of calculi
 For example� Girard�Reynolds second

order lambda calculus��Gir����Rey���	 is strongly normalizing and a para�

metric polymorphic function is characterized in a model as a function which
preserves all the relations between all the types ��Rey�����Has���� �BMM���	

On the other hand� if a second order calculus has a function which is written

by type case� it becomes non�normalizing��Has�����Gir��	

c����� Published by Elsevier Science B� V� Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81988565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Tsuiki

The author has studied� motivated by the study of object orientedness�

polymorphic functions over a hierarchical type structure ��Tsu�����Tsu���	

Such a function is called a generic function borrowing the terminology of a

programming language CLOS
 Generic functions are also classi�ed into coher�

ent ones and ad�hoc ones
 A coherent generic function is a function which

behaves uniformly with respect to the coercible relations between supertypes

and subtypes
 It ensures� like parametric polymorphic functions� good syn�

tactic and semantic properties
 For example� �
p

�� which is a calculus of co�

herent generic functions� has a normalizing property� and a coherent generic

function is characterized so that it preserves the coercible relations
 In other

words� when we view the hierarchical type structure as a functor from a poset

of types to a suitable category of domains� a coherent generic function can be

considered as a natural transformation
 On the other hand� ��� which is a

calculus of ad�hoc generic functions� was shown to be non�normalizing and a

paradoxical operator like Y was shown to be encodable

In this paper� we consider yet another class of generic functions
 It is called

a lax generic function
 Though a lax generic function is not de�ned uniformly�

the branches of a function are related in that it lax commutes with coercion

functions
 In other words� it can be considered as a lax transformation when

we view the hierarchical type structure as a functor
 This calculus is designed

considering a model of object oriented programs causing runtime errors

Since laxness is intermediate between ad�hocness and coherentness� �m�

which is a calculus of lax generic functions� has syntactic properties lying

between those of the two
 That is� though a generic function may be applicable

to itself and �m is not normalizing� it is shown that every basic type expression

is reduced to a constant K or to a form K �M for some term M
 That is�

every term is representing a value K or K plus something
 It means that there

is no unsolvable term and that an operator like Y is not expressible in it

For these reasons� the construction of the semantic domains becomes non�

trivial
 In order to interpret the hierarchical type structure� we give the se�

mantics as a functor D from a poset T of types to a suitable category C of

domains
 Then� the relations each domain should satisfy can be expressed as

the following equation between functors�

D � DB � �D
Lax
��D��

The semantics of ad�hoc generic functions was given in �Tsu��� by solving a

similar equation between functors for the case that C is the category of pointed

cpo�s by applying the standard theory of solutions of categorical equations in

�SP���
 This equation is also solvable if C is the category of pointed cpo�s

However� since there is no unsolvable term in �m� we should assign a non�

pointed cpo to each type
 The decades of study on domain theory and on

axiomatic domain theory shows that the existence of the bottom element plays

an essential role in solving a domain equation ��SP���� �Fre��� �Fio���	� and

therefore the standard theories are not applicable directly to this problem
 In

�

Tsuiki

this study� we solve this by considering an op�bration D obtained by gathering

all the domains� and expressing the above equation as an equation between

op�brations
 By considering a simultaneous construction of the poset T and

D� a construction similar to �SP��� becomes applicable and the equation is

solved

Recently� �Pit���Pit��� has developed a technique for proving the adequacy

of a language with respect to the model constructed over the minimal invariant

of a recursive domain equation
 We also show the adequacy property with

respect to this semantics following this construction
 From this adequacy

property� many syntactic properties are derived including the non�existence of

an unsolvable term and laxness of a generic function

In the next section� we give motivating examples of lax generic functions

from object oriented programming
 Then� we introduce lax� coherent� and ad�

hoc generic functions over a simple mathematical model in Section �
 After

that� we de�ne the calculus �m in Section � and study its syntactic properties

in Section �
 We consider the equations we need to solve in Section �� and

reformulate it over op�brations in Section �
 The solution is given in Section

� and then the semantics is given in Section �
 Finally� the adequacy property

is studied in Section �

� Laxness of Methods and Object Oriented Program�

ming

In object oriented programming� one can re�de�ne the behavior of a subclass

to a message by overriding the supertype de�nitions
 This overriding is so

powerful that one can re�de�ne the behavior of a subclass to a message com�

pletely di�erent from those of superclasses
 For example� when �Bus� is a

subclass of �Car�� one can write the method �move� for the class �Bus� as

moving a bus backward� while �move� for the class �Car� moves a car for�

ward
 This kind of program is usually di�cult to read or maintain� and more

prone to error
 Therefore� it is implicit in object oriented programming that

methods with the same name should be programmed to have the same kind

of meaning

Then� a question arises when a set of methods can be said to have the same

kind of meaning
 Since we are interested in properties the collection of all the

methods with the same name have� we adopt the notion of a generic function�

which is a function composed by all the methods with the same name
 Then an

answer to the above question is given as a property of a generic function
 For

fundamental studies of object orientedness via generic functions� see �Tsu���

and �CGL���

As such a property� �Tsu��� de�ned and studied the notion of a coherent

generic function� which is de�ned such that coercions and applications of the

generic function commute �see Figure 	� or in other words� a generic func�

tion preserves the coercible order relation
 The notion of a coherent generic

�

Tsuiki

function is mathematically sound in that it corresponds to being a natural
transformation as we explain in the next section� and was already used in

�Rey�� to give a semantics to an overloaded operator

In this paper� we consider a weaker condition
 That is� coercions and
applications of the generic function lax commutes �see Figure 	
 We explain

how this condition is related with object oriented programming in three ways

The �rst one is about a generic function causing runtime errors or excep�
tions
 Error handling is important in particular in object oriented program�

ming because a class may be reused in various context� and most program�

ming languages have error handlers like the catch and throw mechanism of
Java �GJGL���
 It seems plausible that if a message sent to �an object con�

sidered as a superclass object� causes an error� then the same message sent to
the object also causes an error� but not vice versa
 As an example� consider
the �Car� and �Bus� example with a limit speed de�ned for a �Bus�
 Then�

a method �set�speed� in �Bus� may cause a runtime error if the argument

exceeds the limit� where it does not cause an error if it is considered as a car

As a more illustrative example� consider a �computer� class and a �network
computer� subclass
 The initialization step on a �network computer� class

may cause an error like network con�guration error� whereas a �computer�
does not
 In general� a subclass is more likely to produce a runtime error

because it has a more sophisticated structure which may cause an unexpected
status
 Though coercion and application do not commute in these cases� they
are expected to lax commute in the sense that if we consider an order struc�
ture on each type with the top element a special value denoting runtime error�

then �coercion after application� is bigger than �application after coercion�

by the order on the result type

The second one is about the view that the collection of all the values of all
the types constitute one large domain
 Since a generic function is applicable
to more than one types� it is natural to consider one large domain D which

consists of all the domains of all the types� and consider a generic function
as one �partial	 function from D to D
 If we do not have an order structure
on each domain� then the natural order structure on D is the coercible order

However� if each domain has an order structure� then the order structure on

D should be formed as the mixture of the coercible order and the order struc�
tures on each domain� which is formed as a simple example of an op�bration

Then� it is natural to consider the property that a generic function preserves

this order structure� or in other words� returns more informative value to more
informative argument� if the order structure on D is considered as an inform�

ation order
 This condition actually coincides with the laxness� as we shall see
in Section �

The third one is about the semantics of non�coherent generic functions in

object oriented languages
 We will discuss this problem in the Conclusion

�

Tsuiki

� Coherent� Lax� and Ad�hoc Generic Functions

We formalize mathematically the intuitive idea in the previous section
 We

consider a poset �T �w	 of types with subtype relations
 We write s w t

when s is a subtype of t
 Note that this order is opposite to the one usually

used
 Though the usual order is natural when we view it as set inclusion� the

opposite order �ts very well with the domain theory we develop in this paper�

we view the subtype relation not as set inclusion but as the coercible relation

and� through this view� a value of a subtype becomes more informative than

its coercion to a supertype
 Though the poset �T �w	 is the particular one

corresponding to the type structure of �m given in �
� one may consider it as

any poset in this section

For each t � T � we consider a domain D�t	 of values of type t
 In addition�

when s w t� we consider a coercion function coerces�t from D�s	 to D�t	 such

that coerces�s is the identity� and coercet�u �coerces�t � coerces�u
 Thus� for

a suitable category C of domains� D is a functor from the poset T considered

as a category to C
 In order to make the presentation simpler� we also suppose

that T has a least element �T corresponding to type error� and that D��T 	

is the terminal object � of C which is the one�point domain f�Dg

Over this type structure� we de�ne a generic function to be a collection of

monomorphic functions m � fmt � D�t	 � D�F �t		 j t � T g
 Here� F is a

monotonic function from T to T � mapping the argument type to the result

type
 We call F the type of the generic functionm
 Though a generic function

is not� in general� applicable to all the types� by de�ning D�F �t		 to be � and

mt to be the terminal arrow when m is not applicable to t� we can consider

that t ranges over T as in this de�nition

Now� we consider three classes of generic functions as in Figure

The �rst one is that coercions and application of a generic function com�

mute
 In other words� m is a natural transformation from the functor D to

D �F
 We call such a generic function a coherent generic function
 Another is

that we do not impose any condition on m
 We call such a generic function an

ad�hoc generic function to emphasize this fact
 The author has studied and

compared calculi with ad�hoc and coherent generic functions in �Tsu��� and

�Tsu���

In this paper� we consider yet another condition
 Consider that each ob�

ject C of C has an order structure ��C	
 For example� we consider a co��at

poset like
 � � � � �
�� JJ
	Int

for a basic type with pointwise extension to functional

types
 The order e �C f intuitively means that f is more informative than e

The element 	C of D�C	 is the overde�ned element representing con�icting

information
 Accordingly� we consider that each component mt of a generic

function m is monotonic

Then� we consider the condition that coercions and generic function ap�

plications lax commute with respect to the order on a domain
 That is� when

�

Tsuiki

�

�

�

�
D	t

�

�

�

�
D	s

�

�

�

�
D�F �t��

�

�

�

�
D	F 	s

� �

mt

ms

�

�

� �

�

�

Coherent Generic Functions

�

�

�

�
D	t

�

�

�

�
D	s

�

�

�

�

D�F �t��

�

�

�

�
D	F 	s

� �

mt

ms

�

�

�

J
J
J
J
J�

�

�

Ad�hoc Generic Functions

�

�

�

�
D	t

�

�

�

�
D	s

�

�

�

�

D�F �t��

�

�

�

�
D	F 	s

� �

mt

ms

�

�

�

J
J
J
J�

�

�
�
�

Lax Generic Functions

Fig� �� Coherent� lax� and ad�hoc generic functions� A supertype is written below
a subtype in these �gures�

x � s and s w t� mt�coerces�t�x		 �D�F �t�� coerceF �s��F �t��ms�x		
 This condi�

tion can be stated using a ��categorical term that f is a lax transformation

from D to D � F by considering C as a two category with a two cell between
f� g � C � C

� being the pointwise order relation
 We call such a generic
function a lax generic function

� The Calculus �m

��� The Poset T of Types

Since the type of a term needs to be calculated statically� we only consider

generic function types which are �nite functions from T to T
 That is� a
generic function type is expressed as the least upper bound of step functions�

where a step function Step�s� t	 for �nite elements s and t maps arguments

bigger than s to t and other arguments to �T
 We write �I
Fin

�I �� for the

poset of �nite functions from a poset I to I �

Since a lax generic function is also treated as a �rst class value in �m� we

need to consider a circular structure on T
 Suppose that TB� the �nite �at

poset of basic types is given
 For example� TB has the form
Int Bool

JJ ��

�

 Then�

the circularity we must consider is expressed as follows�

T

�T

�

�

�T

TB � �T Fin

�T ���	

Here� � is the smashed sum which identi�es the least element

�

Tsuiki

We can solve this equation algebraically
 Consider the following sequence

of posets�

T� � f�T g�

T� � TB � �T�
Fin

�T���

� � �

Tn�� � TB � �Tn
Fin

�Tn��

� � � �

There are embedding�projection pairs Tn

�
T
n

�
�

�
T
n

Tn�� in the standard way

De�ne T as the colimit of �T
n

 Then� T satis�es �	
 T becomes a consistently

complete poset with only �nite elements
 From now on� we denote by T this

particular poset and we write TF for the poset �T Fin
�T �
 We write s � t when

s and t have an upper bound� and write s � t for the least upper bound of s

and t

This poset re�ects the structure of the set of type expressions of �m in

that T is isomorphic to the set of type expressions modulo equivalence plus

the bottom element as we will see below
 When V is a type expression� we

write V for the corresponding element in T

The type expressions of �m are de�ned as follows
 Suppose that a �nite

set of basic types like Int and Bool �ranged over by B	 is given
 We de�ne

pretypes �ranged over by U and V 	 as follows�

V ��� B j �

at least one
z �� �

V � V� � � � � V � V ��

�V� � V
�
� � � � � � Vn � V

�
n
� denotes the least upper bound of the step functions

Step�V�� V
�
�	� � � � �Step�Vn� V

�
n
	
 Among pretypes� we de�ne those appropriate

as �nite functions as types
 For instance� �Int� Int�Bool� Int� is a type

but �Int� Int� Int� Bool� is not� because the step functions Step�Int� Int	

and Step�Int�Bool	 do not have a least upper bound
 We also de�ne syn�

tactically the relations U � V meaning that U and V are compatible� and

U V meaning that U is a subtype of V � and an abbreviation U � V for the

greatest lower bound type of U and V
 The de�nitions are given in the Ap�

pendix� and the proofs that the poset of type expressions modulo equivalence

extended with the bottom element is isomorphic to T � that U V is decid�

able� that U � V i� U � V � that U V i� U w V � and that U � V � U � V

are given in �Tsu���

We only de�ne here the following syntactic notions

De�nition ��� Let F be �V� � V
�
� � � � � � Vn � V

�
n
��

�� We say that F is applicable to U if at least one of the Vi �i � � � � � � n	

satis�es U Vi�

�

Tsuiki

�� When F is applicable to U � de�ne cod�F�U	 as V �

���� � � � � � V �

��l�� where

��i	 �i � � � � � � l	 satisfy U V��i�� Note that cod�F�U	 is �T �F 	�U	�

One thing to note about T is that though a generic function type may be
applicable to itself� it cannot return itself
 We de�ne the degree of a type as
follows�

degree�B	 � �

degree��V� � V �

� � � � � � Vn � V �

n�	 � max�degree�V �

�	� � � � � degree�V
�

n		 � �

We also de�ne the degree of a term as the degree of its type
 The degree
of a term expresses the maximal number of arguments applicable to it
 For
example� when the degree ofM is n� there are no termsN�� � � � � Nn which make
M N� N� � � � Nn well typed
 This fact also supports the use of operational
equivalence instead of bisimulation to compare terms in Section �

��� Terms of �m

Before presenting the de�nition of terms� we give the fundamental idea of
terms of �m� in particular� the way we de�ne a lax generic function
 A lax
generic function is composed using the merge operator �� which takes two
terms of compatible types V� and V�� and produces a term of type V� �

V�
 First� a monomorphic function from V to V � is identi�ed with a generic
function of type �V � V ��� which is applicable to subtypes of V through
coercions
 And then� when M� � F� and M� � F� are lax generic functions
with compatible types� then M� �M� becomes a lax generic function of type
F� � F�

In this �rst step� the argument is coerced to V and then the function is
applied
 For this purpose� we add an expression M jV denoting the coercion
of M to V
 For the second step� we intuitively give the meaning of merge of
terms inductively on their degrees
 For a basic type B� we de�ne that the
merge of two terms denoting the same value is itself and the merge of two
terms denoting di�erent values is TopB� the constant denoting 	B
 Note that
a basic type is compatible only with itself and therefore there is no term like
 � true
 For generic function types� a lax generic function M� �M�� when
applied to an argument� activates M� if M� is applicable� activates M� if M�

is applicable� and activates both and merges the results if both are applicable

Note that the degree of the result is smaller than the maximum of the degrees
of M� and M�� and thus the meaning of � is well de�ned

We de�ne the pre�terms of �m as follows�

M ��� KB j xV j �xV � M j M N j M jV j M� �M�

Here� KB denotes a constant of basic type B and xV means a variable of type
V
 KB includes a special constant TopB for each basic type B
 The typing
rules of �m are de�ned as follows�

�

Tsuiki

�T�CONST	
KB � B

�T�FUN	
M � V �

�xV � M � �V � V ��

�T�VAR	
xV � V

�T�APP	
M �F N �V F applicable to V

M N � cod�F� V 	

�T�COE	
M �U UV

M jV � V
�T�MERGE	

M � V M � � V � V � V �

M �M � � V � V �

We further de�ne a pre�term to be a term if it is typable
 The type of a term
is uniquely de�ned by this type system
 The meanings of these terms are
determined by the following reduction rules�

�E�APP	 ��xV � M	 N � M �xV �� N jV �

�E�APPL	 �M� �M�	 N ������
����

M� N �F� is applicable to V 	

M� N �F� is applicable to V 	

M� N �M� N �both F� and F� are applicable to V 	

����	
���

�M� � F��M� � F�� and N � V 	

�E�CONST	 KB �K �B � TopB �KB and K �B are di�erent constants
	

�E�CONST�	 KB
�KB � KB

�E�CONST�	 TopB �M � TopB

�E�COE	 M jB � M �B is a basic type	

�E�APPC	 �M jF 	 N � �M N	jcod�F�V � �V is the type of N	

�E�COMM	 M �N � N �M �M and N have the same basic type	

�E�ASSO	 �M� �M�	 �M	 � M� � �M� �M		

�M�� M�� and M	 have the same basic type	

As we explained before� �xV � M denotes a generic function applicable to
subtypes of V through the coercion functions
 It is realized by inserting a
coercion to the argument in �E�APP	� the ��reduction
 The rules �E�APPL	�
�E�CONST	� �E�CONST�	� and �E�CONST�	 determine the meaning of the
merge operator� and re�ect the intuitive explanation at the beginning of this
section
 �E�APPC	 determines the meaning of coercion between generic func�
tions� and corresponds to pointwise coercion as we will see in Section �
 �E�
COMM	 and �E�ASSO	 are not essential� they are added only to express the
syntactic properties simpler

�

Tsuiki

Compared with ��� a calculus with ad�hoc generic functions in �Tsu����
the only di�erences are �E�CONST	 to �E�CONST�	
 In ��� the value on

the right hand side is given the higher priority
 Therefore� in ��� we do not
have the term TopB and we have the following rule instead of these three�

�E�CONST�	 M �N � N �M and N have the same basic type	

�E�ASSO	 and �E�COMM	 are also eliminated in �� because the order of
arguments to � is important

� Syntactic Properties of �m

We can prove� by checking the rules� that �m has the unicity of type and the
subject reduction properties
 We can also prove the Church�Rosser property
using parallel reduction ��Tak���	

However� �m is not weak normalizing� we can form a non�normalizing term
on each type
 A non�normalizing term of type Int is given as follows
 Let
S � �Int � Int� �Int � Int� � Int�
 Then� a term of type S is applicable

to itself with the result type Int
 Therefore� we can de�ne M � ��xInt�x	�
��x
Int�Int��	� ��xS�x x	
 The type of M is T � �Int� Int� �Int� Int��

Int�S � Int�
 Note that T � S� we have T S immediately� and we have

S �Int � Int�� ��Int � Int� � Int� �S � Int�� and thus S T

Therefore� M is applicable to itself and M M has type Int
 M M reduces
in�nitely as follows

M M � ���xInt�x	� ��x
Int�Int��	� ��xS�x x		 M

�� ��x
Int�Int��	 M � ��xS�x x	 M
�� �M jS M jS
� � �M M jS	jInt
� �M M jS
�� � �M jSjS M jSjS
� � �

Here� �� means one or more reduction steps
 A non�normalizing term can
be formed in any type in a similar way
 The existence of a non�normalizing

term is connected� in many calculus� to the expressiveness of the paradoxical
operator and the existence of an unsolvable term
 However� the situation is
di�erent in this calculus
 We can show the following�

Theorem ��� A term M of a basic type is reduced to KB or KB �M � for

some constant KB�

The syntactic proof of this theorem is rather long� relating a reduction in
�m with a reduction in another calculus� and we omit it here
 Instead� this

theorem is derived� in Section �� as a corollary to the adequacy property of

our semantics

This theorem shows that though non�normalizing terms exist� every term
of a basic type has a meaning bigger than some constant KB� and therefore�

�

Tsuiki

there is no unsolvable term
 It also shows that a �xpoint operator like Y does

not exist because� if it did� we could form an unsolvable term Y ��x�x	
 As for

a generic function type F � there is no unsolvable term either� because every

term of type F forms� when enough arguments are added� a basic type term�

which is not unsolvable

For comparison� this same termM M is reduced in �� as follows� M M ��

KB �M jS M jS �� M jSjS M jSjS �� � � �
 That is� by the reduction rule �E�

CONST�	� the information that it is bigger than KB is lost
 Thus� it becomes

an unsolvable term in ��

� A Construction in a Functor Category

In the rest of this work� we give a denotational semantics to �m
 Since �m
has a hierarchical type structure� we need to construct domains which are

connected by coercion functions
 Therefore� we construct a functor D from T

to a suitable category C as the semantics of �m
 Usually� a domain equation is

solved in the category of pointed cpo�s
 However� as we have shown� each type

of �m does not have an unsolvable term
 Therefore� it is not appropriate to

construct a domain with the bottom element as the interpretation of a type

Thus� we consider a construction with the category of �not always pointed	

cpo�s for C

For a basic type B� we de�ne D�B	 to be the co��at poset of constants of

B like
 � � � � �
�� JJ
	Int

 Note that D�B	 does not have a least element

For a generic function type F � the natural interpretation of D�F 	 is the set

of lax transformations from D to D � �T �F 	 with the order of D�F 	 de�ned

pointwisely
 Therefore� we construct a functor D so that

D�F 	 � ff � �s�TD��T �F 	�s		
D�s�

jf lax commutes with coercionsg��	

Note that it is not a de�nition but an equation that D must satisfy because

s ranges over F
 Thus� we have an in�nite number of equations between

in�nitely many domains fD�s	 j s � T g

These equations can be expressed as one equation between functors
 We

write Fun�T � C	 for the functor category from T to C
 We de�ne a functor

�
Lax
�� � from Fun�T � C	op � Fun�T � C	 to Fun�T � C	 as follows�

�E
Lax
��E���t	 � � �t � TB	�

�E
Lax
��E���t	 � ff � �s�TE

���T �t	�s		
E�s�

j f lax commutes with coercionsg

�t � TF� t �� �	�

The condition �f lax commutes with coercions� can also be expressed as

Tsuiki

follows�

E���T �t	�s�	 w �T �t	�s�		�fs��x		 �E
���T �t��s���

fs��E�s� w s�	�x		

and for all s�� s� � T and x � E�s�	�

The operation of �E
Lax
��E�� on morphisms is as follows�

�E
Lax
��E���t w t�	 � id� �t� t� � TB	�

�E
Lax
��E���t w t�	 � �f � �s�T E

���T �t	�s		
E�s�

�

hs � T �E���T �t	�s	 w �T �t�	�s		 � fsi �t� t� � TF	�

Here� hs � T �fsi denotes an in�nite product and fs is the projection of f to
the s part
 The operation of the functor � Lax�� � on morphisms �ie
 natural

transformations	 can also be de�ned naturally

Let DB � Fun�T � C	 be the following functor�

DB�t	 � the co��at poset of constants of type t �t � TB� t �� �	�

DB�t	 � � �t � TF	�

Then� the equations we need to solve can be expressed as the following equa�
tion between functors�

E � DB � �E Lax��E����	

Here� the product of functors is de�ned pointwisely
 Note that only one com�
ponent of � is not � for each t � T in ��	
 When D satis�es ��	� then D

satis�es ��	� and thus we can give semantics to �m

�SP��� gives su�cient conditions under which such a categorical equation
is solvable
 Roughly� the condition says that the category is enriched with
pointed ��cpo�s and the functor is a locally continuous functor
 In �Tsu����

the author has solved� to give a domain�theoretic semantics to ��� the equation

E � DB � �E � E���	

in Fun�T � C	 with C the category of pointed ��cpo�s and strict continuous
functions� and � � � being a functor forming the ad�hoc generic function

space
 That is� �E � E���t	 is de�ned to be ff � �
s�TE

���T �t	�s		
E�s�

g

when t � TF
 For the case of ��	� if we use the category of pointed cpo�s
with only strict morphisms for C� then the conditions of �SP��� are satis�ed

and ��	 is solvable in Fun�T � C	
 Over the solution� we can give a semantics

to �m
 However� since an object of C is pointed� D�Int	 needs to have the

form

�Int
JJ ��
 � � � � �
�� JJ
	Int

instead of
 � � � � �
�� JJ
	Int

 Since there is no term whose meaning

�

Tsuiki

is �Int� this semantics does not re�ect the structure of �m� and is far from

su�cient
 However� in standard theories� the existence of the bottom element

plays an essential role in solving a domain equation ��SP���� �Fre��� �Fio���	�

and therefore they are not applicable directly to this problem

We solve this problem by considering a pair �I� E	 of a poset I and a

functor E from I to C as an object and construct both T andD simultaneously

Then� the pair consisting of the one point poset for I and one point cpo for

the image of E becomes the least element
 Instead of constructing such a pair�

we construct an op�bration satisfying an equation equivalent to ��	
 It makes

the presentation simpler� and enables the proof of the adequacy theorem in

Section �

	 A Construction Over Op
brations

In this section� we shall consider that all the values of all the types constitute a

large domain D and that all the components of a lax generic function form one

function from D to D
 It is known that we can construct a split op�bration

from an indexed category by the Grothendieck construction
 �see �Pho����

�BW���� or �Jac��� for references
	 Since we can view each each cpo as a

category� we can apply this construction to Fun�T � C	
 We give here the

de�nition of an op�bration for the case that the base space and the target

spaces are both posets
 Note that all the op�brations split in this case

De�nition ��� An op�bration is a monotonic function A from a poset �E��	

to another poset �I�v	 such that� for x � E and s v A�x	� there exists y � E

such that y � x and A�y	 � s with the following universality� for any z � x

such that A�z	 v s� we have z � y� We write xjs for this y�

We call xjs the coercion of x to s
 When A�x	 � t� we say that the type

of x is t

Proposition ��� Let I be a poset and E be a functor from I to POSET�

Then� we de�ne a poset E �
S
t�I

E�t	 of disjoint union of fE�t	 j t � Ig with

the order relation � de�ned as �t� x	 � �s� y	 i	 t v s and x �
E�t� E�t v s	�y	�

Let A to be the �rst projection from E to I� Then� A � E � I is an op�bration�

Note that the op�bration constructed in this way from the solution D of ��	

has a least element because T has a least element �T and D��T 	 is the

one�point poset
 However� E is not a cpo because there can be an ��chain

�t�� d�	 � �t�� d�	 � � � � with t� v t� v � � � so that this ��chain does not have

a least upper bound in T

Conversely� when an op�bration A � E � I is given� we can form a functor

D from I to POSET
 In particular� if A���t	 is a cpo for every t � I and

coercion functions are continuous� then D is a functor to CPO
 Therefore� we

construct an op�bration A � D � T with this property instead of D � T �

CPO

�

Tsuiki

De�nition ��� We call a triple O � �E�A�I	 an M
domain if A � E � I is

an op�bration� A is surjective� A��
�t	 is a cpo for every t � I� js � A

��
�t	�

A��
�s	 is continuous for s v t� I has the least element �

I
� and A��

��
I
	 �

f�
E
g is the one
point cpo�

Suppose that O � �D�A�T 	 is an M�domain constructed from the solution

D of ��	 by Proposition �
�
 Then� a generic function m of type F de�nes

a function m
�
from D to D� which satis�es A � m�

� F � A
 One of the

bene�ts of considering op�brations instead of indexed categories is that the

characterization of a lax generic function is simpli�ed as follows�

Proposition ��� A generic function m lax commutes with coercions i	 m
�

is a monotone function�

Regarding the requirement that each component of a generic function

should be continuous� we give the following de�nition�

De�nition ��� Let O � �E�A�I	 and O�

� �E ��A�

�I �	 be M
domains� A

morphism from O to O� is a pair �F� f	 where f � E � E � is a continuous

function and F � I � I � is a �nite function such that A� � f � F � A�

Here� we de�ne a function from a poset to another poset to be continuous

if it preserves all the existing limits of directed sets
 The f part determines

F because A is surjective
 Since identity on I is not a �nite function� the

identity on O � �E�A�I	 is not a morphism
 Therefore� M�domains� with M�

domain morphisms� do not form a category� When � is a morphism between

M�domains� we write �
T

and �
D

for the �rst and the second component of ��

respectively

Proposition ��	 When O � �E�A�T 	 and O�

� �E ��A�T 	 are M
domains�

there is a one to one correspondence between morphisms from O to O� and

generic functions between the corresponding functors which lax commtes with

coercions�

Proof� As we have noted� we can form a lax generic function from an M�

domain morphism
 For the converse� let m be such a lax generic function

and d be the l
u
b
 of an ��chain d� � d� � � � � in E
 Then� from the

laxness of m� m
�
�d�	 � m

�
�d�	 � � � � becomes an ��chain in E
 On the

other hand� since A�d�	 v A�d�	 v � � � is an ��chain in T with the l
u
b

A�d	� we have A�dn	 � A�dn��	 � � � � � A�d	 � t for some n since all the

elements of T are �nite
 Therefore� dn � dn�� � � � � becomes an ��chain in

A��
�t	� and since each component of m is continuous� m

�
�d	 is the l
u
b
 of

m
�
�dn	 � m

�
�dn��	 � � � �

Theorem ��� Let O � �E�A�I	 and O�

� �E ��A�

�I �	 be M
domains� Let

�E � E ��
O�O� be the set of M
domain morphisms from O to O� and let A��

�

�E � E ��
O�O� � �I

Fin

�I �� be the �rst projection� Then� �O � O�

� � ��E �

E ��
O�O��A��

� �I
Fin

�I ��	 is also an M
domain�

�

Tsuiki

Let OB � �DB�AB�TB	 be the M�domain composed of DB �
S

t�TB
DB�t	

Let O � �E�A�I	 and O� � �E ��A�
�I �	 be M�domains
 We de�ne the sum of

O and O� as �E � E ��A� A�
�I � I �	
 Here� � is the smashed sum of posets�

and de�ne an isomorphism � from O to O� be a pair of isomorphisms �D from

E to E � and �T from I to I �� such that A� � �D � �T � A

Theorem ��
 If a functor D � Fun�T � C	 satis�es Equation ���� then the op

�bration O constructed by Proposition �� is a M
domain which is isomorphic

to OB � �O � O��

O
�

�
�

�

OB � �O � O����	

Conversely� if an M
domain O is isomorphic to OB � �O � O�� the corres

ponding functor satis�es ����

When O � �D�A�T 	 is a solution of equation ��	� it can be decomposed

as follows�

D
�D

�
�

�D

DB � �D � D��O�O�

�
�
yA

�
�
yAB�A��

T
�T

�
�

�T

TB � �T
Fin

�T ��

��	

Note that the bottom line of ��	 is �	

� Solving the Equation

We outline how to solve equation ��	
 For this purpose� we extend the de�ni�

tion of an M�domain so that the type part also has limit elements

De�nition
�� An M
domain O � �E�A�I	 is continuous if it satis�es the

followings�

�� E and I are cpo�

�� when t� v t� v � � � is an �
sequence in I with the l�u�b� t and A�d	 � t�

then d � tdjti�

The continuity of A follows easily from this de�nition

De�nition
�� Let O � �E�A�I	 and O� � �E ��A�
�I �	 be continuous M

domains� A continuous morphism from O to O� is a pair �F� f	 where f �

E � E � and F � I � I � are continuous functions such that A� � f � F � A�

We write �E � E ��O�O� for the set of continuous morphisms�

One can show that the set of continuous morphisms form a continuous M�

domain �O � O�� � ��E � E ��O�O��A��
� �I � I ��	
 Thus� continuous M�

domains� with continuous morphisms� form an O�category
 That is� every

hom�set �E � E ��O�O� becomes a ��cpo with the limit preserved by morphism

compositions
 Other conditions of �SP��� are also satis�ed
 For example� the

following M�domain O� becomes the terminal object

�

Tsuiki

De�nition
�� Let O� � �D��A��T�	 be the M
domain with D� and T� be the

one
point poset�

The limit of an �
op chain O� � O� � � � � is computed by taking the limits

of the �
op chains of cpo�s for both components
 The functor idOB

� � � � is
shown to be locally continuous
 Therefore� we can form the invariant of this

functor

Theorem
�� There is a continuous M
domain O � � D�
 A�

 T 	 which satis�es

the following isomorphism�

 O
�

�

�

�

OB � � O � O��

Moreover� it is minimal in that the l�u�b� of the morphisms pn � O � O
de�ned by p� � � O� O

� pn�� � � � idO
B
� �pn � pn� � � is the identity on O�

Note that T satis�es

 T
�T

�

�

�T

TB � � T � T �

and it is the minimal invariant of the functor TB�� � �
 From this and that
TB is a �nite poset� T becomes the set of �nite elements of T

It also follows that � T Fin

� T � is isomorphic to �T Fin

�T �

We de�ne O � �D�A�T 	 to be the restriction of O to T
 That is� we take

D �
S

t�T
 A���t	

Since � O � O� restricted to � T Fin

� T � is � O � O�� we have

O

�

�

�

�

OB � � O � O��

Lemma
�� The behavior of a generic function is determined by its e	ects

on �nite elements�

Lemma
�	 All the �nite elements of D belong to D�

Therefore� � O � O� is isomorphic to �O � O�
 And then to �O � O� because

the result of a �nite function is a �nite element
 Thus� we have proved the
following�

Theorem
�� The M
domain O constructed above satis�es ����

� Denotational Semantics of �
m

Let O � �D�A�T 	 be an M�domain satisfying ��	
 We give a denotational
semantics of �m on O
 The only di�cult part is the treatment of the merge

operator
 We interpret the merge operator as the least upper bound operator
in D

�

Tsuiki

Proposition ��� For e� f � D� if A�e	 and A�f	 are compatible in T � then

the least upper bound etf of e and f exists in D and A�etf	 � A�e	 � A�f	�

Proof� It is proved by induction on the degree on T as follows� When A�e	
and A�f	 are basic types� then the existence of a least upper bound is en�
sured by its co��at structure
 When A�e	 and A�f	 are function types� we

have e � �s�TE
���T �A�e		�s		

E�s�
and f � �s�T E

���T �A�f		�s		
E�s�

 Since
�T �A�e		�s	 and �T �A�f		�s	 have smaller degree than those of A�e	 and
A�f	 for all s � T � we have the least upper bound estfs of the s�components

Thus� we can form e t f as hs � T �es t fsi
 �

Though D is constructed as the minimal invariant of an equation� we can
prove� as in Prop
 �
� a lot of properties of D using the inductive structure
of T

Proposition ��� D is consistently complete�

Proof� From Prop
 �
 and the consistently completeness of T

An environment � is an assignment of an element of A���V 	 to each free
variable xV
 When M � V is a term of �m� we de�ne E��M ����	 � D so that
A�E��M ����		 � V as follows�

E��xV ����	� ��xV 	

E��KB����	��D�KB � DB	

E���xV � M ����	��D�lambda�d	� if�A�d	 w V 	 then E��M �����dj
V
	x

V �	

else �D	

E��M N ����	��D�E��M ����		 E��N ����	

E��M jV ����	� E��M ����	j
V

E��M� �M�����	� E��M�����	 t E��M�����	

Lemma ��� When f is a continuous function from A���V 	 to A���V
�

	� then
the following function from D to D belongs to �D � D�O�O�

lambda�d	� if�A�d	 w V 	 then f�dj
V
	else �D�

Theorem ��� �Soundness if M � N � then E��M ����	 � E��N ����	�

Proof� By checking each reduction rule
 �

� Computational Adequacy

Usually� computational adequacy property means that if a closed term M of
basic type B does not have a normal form� then E��M �� is �B
 The compu�
tational adequacy property of �m has a di�erent form because the semantic
domain D�B	 of B does not have a least element

�

Tsuiki

Theorem ���� �Computational Adequacy If a closed term M of basic

type B has the denotation E��M �� � �D�KB	� then M is reduced to a form

KB��M ���

Here� KB��M �� means KB or KB �M � for some M �
 Since the poset
D�B	 is composed of only constants of type B� every term M of type B has
the denotation �D�KB	 for someKB
 Therefore� Theorem �
 is easily derived
as a corollary to this theorem

Theorem �
 is proved by constructing the formal approximation relation

Recently� �Pit���Pit��� has developed a technique for proving the adequacy of
a language with respect to the model constructed over the minimal invariant of
a recursive domain equation� by de�ning a formal approximation relation as a
�xed point of a constructor of mixed variance over relations
 This construction
is applicable to our case
 The proof of the existence of a formal approximation
relation relies on the minimality� that is� representability of the identity on D
as a least upper bound of its projections
 Therefore� we consider a relation
between D and Prog instead of a relation between D and Prog

We write Prog�V 	 for the set of closed expressions of type V � and Prog for
the set of all closed expressions
 We use meta variables P and Q for closed
expressions

De�nition ���� We de�ne R as the set of all binary relations fR � D �

Progg satisfying the followings�

�i	 �D R P for all P � Prog�

�ii	 when d� � d� � � � � � dn � � � � is an increasing �
sequence in D for

which dn R P �n � �� � � � �	 holds� then �tn dn	 R P �

De�nition ����

� � R is a formal approximation if the followings hold�

d
� P i	 d � �D or �P �� KB��M �� and E��KB�� � d� or �P �� TopB

and A�d	 � B for a basic type B� or �A�d	 � TF and �D�d	�d�	
� P P � for

all �d�� P �	 such that d�
� P � and P is applicable to P ���

We omit the details� but we can show the existence of a formal approxim�
ation relation by applying essentially the same construction as in �Pit���

Theorem ���� There exists a formal approximation relation
� �

We can show� by induction on the degree of types� the following lemmas

Lemma ���� When P �� Q� we have d
� P i	 d
� Q�

Lemma ���	 Suppose that d
� P and d�
� P � with the types of P and P �

compatible� Then� d t d� exists and d t d�
� P � P ��

Lemma ���� Suppose that d
� P and V v A�d	� Then dj
V

� P jV �

By induction on the formation of terms� we can prove the following

�

Tsuiki

Proposition ���
 Suppose that
� is a formal approximation and M � V is
a term with free variables xV�� � � � � � x

Vn
n

such that ��xVi
i
	
� Pi and Pi � Vi for

i � � � � � � n� Then E��M ����	
� M �x
V�

� �� P�� � � � � x
Vn
n

�� Pn��

From this proposition� when M is a closed expression of a basic type B�

we have E��M ��
� M
 Since E��M �� �� �D� it means that �E��M �� � �
D
�KB

	

and M �� KB
��M �

�	 or M �� TopB
 From the soundness property� we have

E��M �� � �
D
�	

B
	 when M �� TopB
 Thus� we have proved the adequacy

property

From this adequacy property� we can prove some equivalences between

terms

De�nition ���� When M and N are terms of equivalent types� M oper

ationally approximates N �M � N � i	 C�M � �� K��M �
� implies

C�N � �� K��N �
� or C�N � �� TopB for any closed context C�� of a ba

sic type B� When M � N and N � M � we write M � N and say that M

and N are �operationally� equivalent�

Proposition ����� �� When U � V and M � U � we have M � M jV � In

particular� M �M jU when M � U �
�� When W V U and M � W � we have M jV jU �M jU �

This justi�es our functorial semantics of �m
 Finally� we have the laxness of

our generic functions as a corollary to the adequacy property

Proposition ����� A generic function lax commutes with coercions� That
is� when V U � N � U � and M � F is applicable to V � then M N jU � M N �

�� Conclusion

We have studied the syntactic and semantic properties of a calculus �m� which

is a polymorphic calculus de�ned over a hierarchical type structure
 In �m�

though a generic function can be composed� like an overloaded function� from

more than one lambda expression� the ways it behaves on each type are related

in that it lax commutes with coercion functions
 This laxness condition can

also be stated� when considered as one function de�ned over the op�bration

composed of all the values of all the types� as preserving the information order

between values

This calculus has the syntactic property that� though it is not normalizing�

it does not have an ununsolvable term
 Therefore� the recursive equations

expressing the circular structure causing non�normalization need to be solved

in a category with non�pointed domains
 This is realized by considering an

op�bration composed of all the values of all the types� and expressing the

equations as one equation between op�brations
 A kind of adequacy property

is also proved applying Pitts� technique� and some syntactic properties are

derived using this

The author has studied� in previous works� two related calculi� a calculus

�

Tsuiki

Generic

Functions

Relation with Coer�

cion Functions

Syntactic Prop�

erties

Domain Con�

struction

�
p

� Coherent
�

�

�

�
D�t�

�

�

�

�
D�s�

�

�

�

�
D�F �t��

�

�

�

�
D�F �s��

� �
mt

ms

�

�

� �

�

�

commute

Normalizing Finite

product

�m Lax
�

�

�

�
D�t�

�

�

�

�
D�s�

�

�

�

�
D�F �t��

�

�

�

�
D�F �s��

� �
mt

ms

�

�

�

J
JJ�

�

��

lax commute

Non�

normalizing�

but every term

is reduced to K

or K �M

Domain equa�

tion over op�

�brations

�� Ad�hoc
�

�

�

�
D�t�

�

�

�

�
D�s�

�

�

�

�
D�F �t��

�

�

�

�
D�F �s��

� �
mt

ms

�

�

�

J
JJ�

�

�

unrelated

Non�

normalizing

and unsolvable

terms exist

Domain

equation over

functors

Fig� �� Properties of �
p

�� �m� and ���

of ad�hoc generic functions �� and a calculus of coherent generic functions �p�

The three calculi� ��� �
p

�� and �m� have the same hierarchical type structure�

but have di�erent syntactic and semantic properties according to the slightly

di�erent typing rules and reduction rules
 Properties of these three calculi are

listed in Figure �

As is shown in this �gure� when we require more relations among the

branches of a generic function� better syntactic and semantic properties are

derived
 Though one may �nd the construction of the semantic domain for

�m be more complicated than that for ��� it is mainly due to the lack of limit

elements in the type structure

It is usual that a calculus is designed to give a foundation for a new pro�

gramming language mechanism
 Though we have drawn perspective for error

handling in Section �� this calculus has some di�culty if viewed as a funda�

mental calculus of a programming language in that it is not e�cient to execute

all the applicable branches of a generic function
 The author considers that

the importance of this calculus exists not as a fundamental calculus of a pro�

gramming language� but rather for the model it presents
 We will explain this

point as the �nal remark

Though the calculus �p� has good properties� the type system restricts the

way a generic function is de�ned so that no overriding is expressible in this

��

Tsuiki

language
 On the other hand� �� is more close to a programming language
design in that one can express both inheritance and overriding in writing a

subtype method
 However� unrestricted use of overriding allows one to write
a program very di�cult to understand
 The complicated semantic structure
of �� can be considered as a re�ection of such complication

The author considers that though overriding is essential in object oriented
programming� a programmer is expected to ensure that a generic function
written using overriding behaves coherently to every type
 When we express

it in our calculi� though the expressive power of �� is required� a programmer is
expected to realize the semantic structure of �p�
 However� the two languages

have di�erent syntax and thus a �� program cannot be interpreted in �
p

�
 We

consider that �m �lls this gap between the syntax of �� and the semantics of
�
p

�
 Since �� and �m has the same syntax� we can consider the �m�semantics to
a �� program
 Then� a generic function with non�coherent behavior produces

an erroneous value and thus lax commutes with coercions� whereas a generic

function with coherent behavior is interpreted as a natural transformation

Though this paper is written mainly with theoretical interest on domain

theory over �op	�bred structure� the author thinks coherency is an import�
ant property in real object oriented programming� and he expects that this
theoretical study helps understanding the subject

Acknowledgement

The author thanks Masami Hagiya� Andreas Knobel� and Masahito Hasegawa
for fruitful discussions and invaluable comments

References

�BMM� K� B� Bruce� A� R� Meyer� and J� C� Mitchell� The semantics of second�
order lambda calculus� Information and Computation� ���������� ���

�BW��� M� Barr and C� Wells� Category Theory for Computing Science� Prentice
Hall� �����

�CGL��� Giuseppe Castagna� Giorgio Ghelli� and Giuseppe Longo� A calculus
for overloaded functions with subtyping� Information and Computation�
���	�
��������� �����

�Fio��� Marcelo P� Fiore� Axiomatic Domain Theory in Categories of Partial

Maps� PhD thesis� University of Edinburgh� �����

�Fre��� P� J� Freyd� Algebraically complete categories� In Proc� ���� Como

Category Theory Conference� Lec� Notes in Math� ����� pages �������
Springer�Verlag� �����

�Gir��� J� Y� Girard� Une extension de l�interpr�etation de g�odel �a l�analyse et son
application �a l��elimination des coupures dans l�analyse et la th�eorie des

�

Tsuiki

types� In Proc� 	nd Scandinavian Logic Symposium� pages ������ North

Holland� �����

�GJGL��� James Gosling� Bill Joy� and Jr�Steele Guy L� The Java Language

Speci
cation� Addison�Wesley� �����

�Has��� R� Hasegawa� Categorical data types in parametric polymorphism�

Math�Struct� in Comp� Science� ��������� �����

�Jac��� B� Jacobs� Categorical Logic and Type Theory� North Holland� Elsevier�

�����

�Pho��� W� Phoa� An introduction to �brations� topos theory� the e�ective

topos and modest sets� Technical Report ECS�LFCS������� Edinburgh

University� �����

�Pit��� A� M� Pitts� Computational adequacy via �mixed� inductive de�nitions�

In Mathematical Foundations of Programming Semantics� Proc� �th Int�

Conf�� New Orleans� LA� USA� April ����� volume �� of Lecture Notes

in Computer Science� pages ����� Springer�Verlag� Berlin� �����

�Pit��� A� M� Pitts� Relational properties of domains� Information and

Computation� ���������� �����

�Rey��� J� C� Reynolds� Towards a theory of type structure� In Proceedings�

Colloque sur la Programmation� LNCS Vol��� pages ������� �����

�Rey�� J� C� Reynolds� Using category theory to design implicit conversions and

generic operators� In Lecture Notes in Computer Science� ��� Springer�

Verlag� ����

�Rey�� J� C� Reynolds� Types� abstraction� and parametric polymorphism� In

R� E� A� Mason� editor� Information Processing ��� pages �������� North�

Holland� ����

�SP�� M� Smyth and G� Plotkin� The category�theoretic solution of recursive

domain equations� SIAM J� Comput�� ��	�
�������� ����

�Tak��� M� Takahashi� Parallel reduction in lambda�calculus� Information and

Computation� ����������� �����

�Tsu��� Hideki Tsuiki� On typed calculi with a merge operator� In ��th

Conference on Foundations of Software Technology and Theoretical

Computer Science� LNCS ���� pages �������� �����

�Tsu��� Hideki Tsuiki� A categorical model of overloading via a domain theory

over a functor category� An earlier version available as a technical

report KSU�ICS������ of Institute of Computer Science� Kyoto Sangyo

University� with the title �A Denotational Model of Overloading�� �����

�Tsu�� Hideki Tsuiki� A computationally adequate model for overloading via

domain�valued functors� Math�Struct� in Comp� Science� ��������� ����

��

Tsuiki

A Types of �m

Suppose that a �nite set of basic types like Int and Bool �ranged over by
B	 is given
 We �rst de�ne pretypes �ranged over by U and V 	 and function
pre�components �ranged over by H	 as follows�

V ���B j �

at least one
z �� �

H� � � � �H ��

H ���V � V �

We call pretypes of the form �H�� � � � �Hn� function �pre	types� which is ranged

over by F and G
 Note that not all the lists of function components are allowed

as generic function types
 We de�ne the following compatibility relation � on
pretypes

�m�REFL	
B � B

�m�FUN	
�not V� � V�	 or �V� � V� and V �

� � V
�

�	

V� � V �

� � V� � V �

�

�m�FLIST	
Hi � H

�

j
�i � � � � � � n� j � � � � � �m	

�H�� � � � �Hn� � �H
�

�� � � � �H
�

m
�

Note that � is well de�ned though a negation of � appears in the precondition

of �m�FUN	 �See �Tsu���	
 We impose the condition on �H�� � � � �Hn� that
H��

 �Hn are pairwise compatible �i
e
 Hi � Hj for i� j � � � � � � n	� and
de�ne type expressions

When V� � V�� we de�ne V� � V� as an abbreviation for a type as follows�

B � B � B�

�H�� � � � �Hm� � �Hm��� � � � �Hn� � �H�� � � � �Hn��

The subtype relation is de�ned as follows�

�I�REFL	
V V

�I�FLIST	
�H�� � � � �Hn� �Hi�

�I�TRAN	
V V � V � V ��

V V ��

�I�FLIST�	
V� � V�

�V��V �

�
� V��V �

�
� �V��V� � V �

�
�V �

�
�

�I�FUN	
V U U � V �

�U � U �� �V � V ��
�I�FLIST�	

�H�� � � � �Hn� �H �

i
� �i � � � � � �m	

�H�� � � � �Hn� �H �

�� � � � �H
�

m
�

Note that we do not consider a subtype relation between basic types� and

therefore a basic type is only comparable with itself
 We call V a subtype of

��

Tsuiki

U when V U � and we call V and U are equivalent and write V � U when

V U and U V

��

