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Abstract

The human visual system processes complex biological motion stimuli with high sensitivity and selectivity. The characterization

of spatio-temporal generalization in the perception of biological motion is still a largely unresolved problem. We present an ex-

periment that investigates how the visual system responds to motion stimuli that interpolate spatio-temporally between natural

biological motion patterns. Inspired by analogous studies in stationary object recognition, we generated stimuli that interpolate

between natural perceptual categories by morphing. Spatio-temporal morphs between natural movement patterns were obtained

with a technique that allows to calculate linear combinations of spatio-temporal patterns. The weights of such linear combinations

define a linear metric space over the set of generated movement patterns, so that the spatio-temporal similarity of the motion

patterns can be quantified. In our experiments, we found smooth and continuous variation of the categorization probabilities with

the weights of the prototypes in the morphs. For bipedal locomotion patterns we could accurately predict the perceived properties of

the morphs by linear combinations of the perceived properties of the prototypes. Such predictions were not possible for morphs

between locomotion and very dissimilar movements. We conclude that the visual system shows generalization within classes of

motion patterns with similar basic structure, such as bipedal locomotion.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Classical psychophysical experiments demonstrate
that the human visual system is highly selective for bio-
logical motion patterns. We can recognize complex
movements, such as locomotion or dancing, from
strongly impoverished stimuli that consist only of a small
number of moving illuminated dots (point light walkers)
(e.g. Dittrich, 1993; Johansson, 1973). The recognition of
point light walkers is very selective. Subjects can not only
differentiate between different actions. They can also to
extract subtle details, such as gender or the familiarity of
the walker from point light stimuli (e.g. Kozlowski &
Cutting, 1977; Mather & Murdoch, 1994). However, the
recognition of point light walkers is very robust and does

not break down even in presence of strong background
noise and motion clutter (e.g. Cutting, Moore, & Mor-
rison, 1988; Thornton, Pinto, & Shiffrar, 1998). The
principles that underlie the efficient encoding of such
complex spatio-temporal patterns still remain to be un-
covered.

During the last two decades much research has been
dedicated to the analysis of stationary object recogni-
tion. Theoretical, psychophysical and neurophysiologi-
cal results have provided support for the hypothesis
that complex 3D objects are represented in the basis of
learned prototypical example views (e.g. B€uulthoff &
Edelman, 1992; Logothetis, Pauls, & Poggio, 1995;
Poggio & Edelman, 1990; Riesenhuber & Poggio, 1999;
Rolls & Milward, 2000; see also Riesenhuber & Poggio,
2000; Tarr & B€uulthoff, 1998 for reviews). It seems an
interesting hypothesis that complex movement patterns
might be encoded on the basis of similar principles, on
the basis of prototypical example movements. In fact,
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several results like view dependence in the recognition of
biological motion (B€uulthoff, B€uulthoff, & Sinha, 1998;
Daems & Verfaille, 1999; Verfaille, 1992, 1993; Verfaille,
De Troy, & Van Rensbergen, 1994) seem to support this
hypothesis.

To evaluate the feasibility of the hypothesis of pro-
totype-based representations of complex patterns it is
important to study how such representations generalize.
Generalization characterizes how well new patterns are
encoded that are similar, but not identical with the
prototypes. Good generalization implies that a repre-
sentation ‘‘interpolates’’ well between the stored exam-
ples. Such interpolation is important in order to encode
whole classes of similar complex patterns with a small
number of stored examples.

The generalization properties of stationary object
recognition have been quantified by B€uulthoff and Edel-
man by measuring generalization fields for learned arti-
ficial objects (paper clips) (B€uulthoff & Edelman, 1992). In
these experiments subjects were trained with a particular
2D view of a synthetic 3D object. Afterwards, they were
tested with new views in which the object was rotated
against the prototypical view. The regime of orientations
for which the subjects still were able to recognize the
object defines the ‘‘generalization field’’ of the proto-
typical view. The size of the generalization field provides
a measure for the degree of generalization with respect to
orientation changes of the object. The classification
probabilities of the individual paper clips varied gradu-
ally with the orientation indicating smooth interpola-
tion properties of the underlying representation. The
same technique has been used in monkey experiments to
characterize the view-variance of the responses of neu-
rons in area IT of the macaque (Logothetis et al., 1995).
It seems interesting to apply the concept of generaliza-
tion fields also to biological motion perception in order
to characterize how the visual system responds to motion
stimuli that deviate from natural biological movements
in terms of their spatial and temporal properties.

Many studies on stationary form recognition and face
perception have used morphing techniques to generate
stimuli that vary continuously between natural or
learned prototypical perceptual categories (e.g. Benson
& Perrett, 1991; Busey, 1998; Leopold, OToole, Vetter,
& Blanz, 2001; Perrett et al., 1998). One advantage of
using morphing over heuristic variations of form fea-
tures is that combinations of such features can be
changed together in a consistent way that makes the
morph successively more similar to different perceptu-
ally meaningful patterns. This change occurs along the
‘‘shortest path’’ in the sense of a metric that is depen-
dent on the morphing algorithm. Another advantage of
stimulus generation by morphing between prototypes is
that such techniques allow the definition of abstract
perceptually meaningful dimensions or ‘‘axes’’ in pattern
spaces. For example, for the morphs between a male

and a female face the weight of the male prototype de-
fines a male–female dimension in the space of face im-
ages. Such spaces created by morphing are closely related
to the concept of perceptually defined pattern spaces,
such as ‘‘face spaces’’ (Valentine, 1991), that characterize
the topology of the perceptual similarity between com-
plex shapes. Previous work on the exaggeration of
movement patterns suggest that the concept of percep-
tual spaces might also be applicable to biological motion
patterns (Pollick, Fodopastis, & Braden, 2001; Pollick,
Paterswon, Bruderlin, & Sanford, 2001).

In this paper we apply morphing techniques for the
study of biological motion perception. By morphing
between prototypical movements classes of biological
movements can be generated that vary along different
perceptually interpretable dimensions. This makes it pos-
sible to study generalization fields by adding different
amounts of other prototypes to a natural biological
motion patterns. Our technique provides a new ap-
proach to study the perceptual effects of spatio-temporal
distortions of natural movements. It has been shown
before that purely temporal or purely spatial modifica-
tions of biological movement patterns can improve the
discrimination between different categories of complex
movements (Hill & Pollick, 2000; Pollick et al., 2001).

Our experiments are based on a special technique for
spatio-temporal morphing. This technique, called
‘‘spatio-temporal morphable models’’ (STMMs), has
been applied before in the context of computer vision
(Giese & Poggio, 1999, 2000a, 2000b) and provides a
possibility to generate new artificial biological move-
ment patterns by linear combination of prototypical ex-
ample movements. By changing the weights of the linear
combination STMMs allow to morph continuously be-
tween remarkably different biological movements, like
for instance ‘‘walking’’ and ‘‘running’’. At the same time,
the method defines a metric space over a set of similar
complex movements. As example, the linear combina-
tion of the prototypical patterns ‘‘walking’’ and ‘‘run-
ning’’ can be written formally:

new motion pattern ¼ a � walkingþ b � running

The linear weights ða; bÞ define a point in a 2D space
of complex motion patterns that is defined by the two
prototypes. The dissimilarity of the spatio-temporal
structure of two movement patterns 1 and 2 can be
quantified by the Euclidean distance between the asso-
ciated linear weights vectors ða1; b1Þ and ða2; b2Þ. This
makes it possible to quantify how much the spatio-
temporal structure of a pattern must be changed in
order to induce differences in the perceived motion cate-
gory. The same considerations remain valid if more than
two prototypical motion patterns are linearly combined.
STMMs can thus be used to define distances between
biological motion patterns that are embedded in higher-
dimensional pattern spaces.
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In this paper, we present an application of this tech-
nique for the measurement of the generalization fields of
natural biological motion patterns. As generalization
field of a motion pattern we define all points in pattern
space that lead to the perception of the same type of
motion. For our experiments, we generated two classes
of motion patterns by morphing between classes of
prototypes for which we expected good and bad gener-
alization. Subjects had to classify the stimuli and had to
rate several perceived properties of these motion pat-
terns. Our results indicate relatively good interpolation
between bipedal locomotion patterns, whereas we got no
such interpolation if the prototypes included locomotion
and completely different movements, like physical exer-
cises. This results seems compatible with the interpre-
tation that the visual system can generalize within a
limited regime of spatio-temporal deformations of nat-
ural biological motion patterns.

2. Methods

2.1. Stimulus generation

Stimuli were generated by tracking biological motion
from video sequences. The first class of prototypical
motions (SIM) contained only locomotion patterns
(walking, running, limping, and marching). The second
class of movements (DIF) contained one locomotion
pattern (walking) and different types of physical exercises
that are not similar to locomotion (aerobics, boxing and
knee-bends). From these two sets of prototypical pat-
terns the stimulus trajectories were generated by motion
morphing.

2.1.1. Tracking of the prototypical movement patterns
The patterns were filmed using a Kodak VX 1000

camera from the side, the actor facing orthogonal to the

view direction of the camera. The actor was moving on a
line orthogonal to the camera axis. The closest distance
between this line and the camera was 6 m. All move-
ments were executed periodically, but only a single cycle
of the movements was used for motion morphing. De-
pendent on the specific movement, one cycle lasted for
about 30 recorded frames. The frame rate of the camera
was 30 frames per second.

To track the trajectories of the movements, first the
translation of the whole body was subtracted by hand-
marking the hip position in a number of frames and
fitting the translation of the hip by a linear function of
time. The fitted translation was then subtracted resulting
in movement that looks like a person performing the
movements on a tread mill. 12 feature points illus-
trated in Fig. 1 were tracked manually. A single cycle of
the movement was defined by the segment of the image
sequence between the frames that were characterized by
a maximum extension of the extremities.

The tracked trajectories were time-normalized and
smoothed by fitting them with a second order Fourier
series. Prior testing revealed that an inclusion of higher
order Fourier components did not increase the quality
of the appearance of the biological motion pattern, but
leads to more noisy trajectories. The spatial scaling of
the patterns was normalized by rescaling them so that
the distance between head and hip was always one. It
has been verified that this distance is approximately
constant in the original trajectories. The obtained spa-
tially and temporally normalized trajectories were used
as prototypes for the motion morphing.

2.1.2. Motion morphing
In computer graphics a variety of techniques have

been developed for editing, deforming, blending and
morphing natural motion trajectories that are typically
acquired using motion capture systems (e.g. Amaya,

Fig. 1. Example images from the recorded sequence for ‘‘walking’’ and tracked feature points (white dots).
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Bruderlin, & Calvert, 1996; Brand, 2000; Bruderlin &
Williams, 1995; Cohen, Rose, & Bodenheimer, 1998;
Gleicher, 1997; Lee & Shin, 1999; Perlin, 1995; Unuma,
Anjyo, & Takeuchi, 1995; Wiley & Hahn, 1997; Witkin
& Popovi�cc, 1995). Such techniques are used for pro-
ducing naturally looking movements for the animation
of synthetic figures.

The technique of STMMs (Giese & Poggio, 1999,
2000a) that we used for the generation of our stimuli is
closely related to such techniques, and allows the gen-
eration of morphs between biological movements by
linearly combining the movement trajectories of proto-
typical motion patterns in space–time. Linear combi-
nations of movement patterns are defined on the basis of
spatio-temporal correspondences. The concept of spa-
tio-temporal correspondence is illustrated in Fig. 2(a).
Complex movement patterns can be characterized by
trajectories of feature points, in our case the 2D coor-
dinates of the joints of the moving figure. The trajecto-
ries of the prototypical movement pattern n can be
characterized by the time-dependent vector xnðtÞ. The
correspondence field between two trajectories x1 and x2

is defined by the spatial shifts nðtÞ and the temporal
shifts sðtÞ that transform the first trajectory into the
second. The transformation is specified mathematically
by the equation:

x2ðtÞ ¼ x1ðt þ sðtÞÞ þ nðtÞ ð1Þ

By introduction of spatial and temporal shifts the
spatio-temporal morphable model allows to interpolate
smoothly between motion patterns with significantly
different spatial structure, but also between patterns that
differ with respect to their timing.

The correspondence shifts nðtÞ and sðtÞ are calculated
by solving an optimization problem that minimizes the
spatial and temporal shifts under the constraint that the
temporal shifts define a new time variable that is always
monotonically increasing. For further details about the

underlying algorithm we refer to Giese and Poggio
(1999, 2000a).

Fig. 2(b) shows schematically the proceeding for
generating linear combinations of spatio-temporal pat-
terns. First the correspondence between each individual
prototypical patterns and a reference pattern is estab-
lished. The reference pattern is also a biological motion
pattern and can be identical with one of the prototypes.
Signifying the spatial and temporal shifts between pro-
totype n and the reference pattern by nnðtÞ and snðtÞ,
linearly combined spatial and temporal shifts can be
defined by the two equations:

nðtÞ ¼
XN
n¼1

wnnnðtÞ

sðtÞ ¼
XN
n¼1

wnsnðtÞ
ð2Þ

The weights wp define the contributions of the indi-
vidual prototypes to the linear combination. We always
assume convex combinations with 06wn 6 1 andP

p wp ¼ 1. After linearly combining the spatial and
temporal shifts the trajectories of the morphed pattern
can be recovered by morphing the reference pattern in
space time using the spatial and temporal shifts nðtÞ and
sðtÞ. The space–time morph is defined by Eq. (1) where
x1 is the reference pattern and x2 has to be identified
with trajectory of the linearly combined pattern.

During the development of the algorithm we ob-
served that linear combinations of locomotion patterns,
like walking, running, limping and marching look very
natural, at least if all prototypes are recorded with the
same view angle and if the stimuli are presented as stick
figures (Giese & Poggio, 2000a). Morphing between
fundamentally different movements, like for instance
knee bends and walking, leads to morphs that have no
meaningful perceptual interpretation and which look
very unnatural. These informal observations motivated

Fig. 2. (a) Spatio-temporal correspondence between two trajectories x1ðtÞ and x2ðtÞ is defined by the spatial shifts nðtÞ and the temporal shifts sðtÞ
that map the two trajectories onto each other. These shifts are indicated by the thick black lines. The solid curve shows the approximation of the

trajectory x1 that results from rewarping x2ðtÞ with the correspondence shifts. (b) Method for generating linear combinations of complex movement

from spatio-temporal correspondence fields.
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us to study morphs between two different set of proto-
types. One set of stimuli in our experiment, indicated by
‘‘SIM’’, was generated from the four locomotion pat-
terns for which we expected the morphs to look rela-
tively natural. The second class, ‘‘DIF’’, consisted of
four very dissimilar patterns, some of them being fun-
damentally different from locomotion. We expected
morphs between these prototypes to look much less
natural. This second pattern class served as control
condition that was suitable to study morphing patterns
that look highly unnatural.

Separately for the two classes SIM and DIF, we
generated morphs with from either two or three proto-
typical patterns in the class. The weights cp were always
chosen from the set [0, 0.2, 0.4, 0.6, 0.8]. Appropriate
combinations of these values were chosen in order to
ensure that

P
p wp ¼ 1. For each of the two data sets,

SIM and DIF, we generated 52 stimuli: the 4 prototypes,
24 morphs between 2 prototypes, and 24 morphs that
contained three prototypes. All trajectories were pre-
calculated and stored before the experiment.

2.1.3. Stimulus presentation
The stimuli were presented as point light walkers with

12 dots on a Silicon Graphics workstation with 72
frames per second. The stimulus dots were white and
had a diameter of 0.5� of visual angle. The size of the
whole figure was about 5�� 12�. The whole figure sub-
tended 8�� 20�. The center position of the figure was
randomized uniformly within an interval of �2� hori-
zontally and vertically.

2.1.4. Subjects
We tested seven subjects for the data set SIM and six

subjects for the data set DIF. All subjects were from the
Institute for General Zoology and Neurobiology in
Bochum and the center for Computational and Biolog-
ical Learning at M.I.T. Their ages ranged from 25 to
38 years, and two of them were female. All subjects
had normal or corrected-to-normal vision. Two subjects
were familiar with the purpose of the experiment, the
others were naive.

2.1.5. Procedure
Subjects watched the computer screen from a distance

of 40 cm. They were briefed about the experimental
procedure and had an opportunity to practice the ex-
periment for about 10 trials. Each stimulus was pre-
sented once, for as long as the subject wished to see it.
During the presentation the subject was allowed to ad-
just the speed of the display such that the pattern ap-
peared natural. The task of the subject was to give three
judgments for each stimulus. The first was to classify the
pattern by pressing one out of four keys that identified
the four prototypes of the respective pattern class SIM
and DIF. The keys were the initial letters of the patterns

(W)alking, (R)unning, (L)imping, (M)arching, (A)ero-
bics, (K)nee bend, and (B)oxing. After classification, the
subjects had to rate the ‘‘naturalness’’ of the perceived
movement pattern on a scale from 1 to 9. Finally, the
subject was asked to adjust the minimum and the
maximum speed of the pattern for which is still ap-
peared ‘‘natural’’. The midpoint between the minimum
and maximum speed was used as measure of the ‘‘op-
timal natural speed’’ of the pattern. We asked subjects
to adjust a whole range of speeds because it turned out
to be difficult for them to select a single speed that ap-
peared maximally natural. The different prototypes, and
the two and three pattern combinations were presented
in randomized order within each block. The experiment
took about 20 min per subject.

3. Results

All subjects were able to classify the prototypical
motion patterns easily. Some of the morphs, in partic-
ular in the class ‘‘DIF’’, were perceived as unnatural
(e.g. ‘‘jerky motion’’, ‘‘unnatural postures’’, etc.). In the
following, we first introduce a graphical representation
for the pattern space that is defined by the morphing
technique. This graphical representation will be used
for the illustration of the results throughout the rest of
the paper. We then present the results on pattern clas-
sification, the adjusted optimum speed, and the per-
ceived naturalness of the patterns.

3.1. Representation format

For the presentation of the results we introduce a
special 2D graphical illustration of the 4D pattern space
of the motion morphs. This representation tries to il-
lustrate the topology that is imposed by the linear
weight vectors onto the space of generated motion pat-
terns. Morphs which correspond to linear weight vectors
that are close in the 4D Euclidean pattern space are (in
most cases) mapped onto points that are close in this 2D
graphical representation. Fig. 3 illustrates this repre-
sentation format for the four prototypes ‘‘walking’’ (W),
‘‘running’’ (R), ‘‘limping’’ (L), and ‘‘marching’’ (M).
Each stimulus is represented by a hexagon. The four
capitals W, R, L, and M indicate the hexagons of the
four prototypes. The prototypes ‘‘running’’ (R), ‘‘limp-
ing’’ (L), and ‘‘marching’’ (M) form an equal-sided tri-
angle, ‘‘walking’’ (W) is placed in the center of this
triangle. Morphs between any two prototypes are rep-
resented by the hexagons that lie on the lines between
these letters. The weight of the prototype in the morph
decreases with the distance from the respective letter.
For example, the stimulus labelled ‘‘a’’ in Fig. 3 is a
morph between walking and running with the weight
combination ww ¼ 0:6 and wr ¼ 0:4. All other hexagons

M.A. Giese, M. Lappe / Vision Research 42 (2002) 1847–1858 1851



correspond to three-pattern morphs. The three-pattern
morphs that contain the prototype in the center of the
figure are presented by hexagons within the triangle
formed by the three adjacent prototypes. For example,
the hexagon labelled ‘‘b’’ in Fig. 3 is a morph between
walking, running, and limping with the weight combi-
nation ww ¼ 0:6, wr ¼ 0:2, wl ¼ 0:2. Three-pattern
morphs that do not contain the central prototype are
mapped onto points outside the outer triangle. Hexa-
gon ‘‘c’’ represents a morph between marching, run-
ning, and limping with the weight combination wm ¼
0:6, wr ¼ 0:2, wl ¼ 0:2. Hexagon ‘‘d’’ is a morph be-
tween marching, running, and limping with the weight
combination wm ¼ 0:4, wr ¼ 0:4, wl ¼ 0:2.

The relative distances between the points in the dia-
gram and the letters that symbolize the prototypes are
monotonically related to the weights of the prototypes
in the linear combination. However, the two distances
are related in a non-trivial non-linear way. This mono-
tonic relationship is very useful to illustrate the distri-
bution of the different experimental measures over the
space of morphing patterns.

3.2. Classification

Fig. 4(a) shows the results for the classification task
for the pattern class SIM. Each dot represents a trial for

which a subject classified the morphing pattern as the
prototype given by the label in the left upper corner of
the panels. The classification probability is thus pro-
portional to the number of dots at a certain location of
the figure. Consistent with our expectations, the proto-
types were categorized correctly in almost all cases.
Patterns that are closer to a particular prototype in the
pattern space, in the metric defined by the linear weights,
are classified with higher probability as this prototype.
The classification probabilities vary smoothly and grad-
ually with the contribution of the prototypes to the

Fig. 3. Graphical illustration of the pattern space of morphing pat-

terns: The four letters W, R, L, and M symbolize the four prototypes

‘‘walking’’ (in the center of the triangle), ‘‘running’’, ‘‘limping’’, and

‘‘marching’’. The positions of the points in the triangle symbolize the

relative contributions of the four prototypes to the morph. The dis-

tances of the points from the four prototypes W, R, L and M are

monotonically related to the weights of the prototypes in the linear

combination. Closer distance from the prototype codes for a higher

weight of the prototype in the morph. Two-pattern morphs are indi-

cated by the points on the lines that connect the four letters W, R, L

and M. Morphs between three patterns that include the central pro-

totype (W) are indicated by points within the large triangle. The points

outside this triangle indicate morphs between three patterns that do

not include the central prototype. The hexagons with small Latin let-

ters represent examples for linear combinations that are explained in

the text.

Fig. 4. Classification results for the pattern set SIM (a) and the pattern

set DIF (b). Each dot presents a trial for which a subject has classified

the motion pattern as the prototype that is given by the label in the left

upper corner of the panel. The figures are based on the results of seven,

respectively six subjects.
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morph. This indicates that the perceptual similarity of
the morphs with the prototypes seems to vary smoothly
and gradually with the linear weights. This can be in-
terpreted as evidence for the smooth structure of the
underlying pattern space. A possible alternative out-
come of this experiment could have been that the in-
termediate patterns lead to very unclear precepts that
are randomly assigned to different prototypes, which
seems not to be the case.

Since we used a forced choice task the classification
data alone does not allow to decide whether the morphs
were seen as instantiations of the categories defined by
the prototypes, or if they were just assigned to the cat-
egory that was judged as perceptually most similar. The
fact that the classification probabilities of morphs with
contributions of more than two prototypes vary also
gradually with the weights of the prototypes in the
morph can be seen as indication of the multidimensio-
nality of the underlying perceptual space of biological
motion patterns.

Fig. 4(b) shows the classification results for the class
DIF, that was generated using walking and different
physical exercises as prototypes. Qualitatively, the re-
sults are very similar. In this case, most of the morphs
were perceived as unnatural by the subjects (see below).
However, we find a gradual variation of the classifica-
tion probability with the linear weights. We conclude
from this that the subjects at least were able to assign the
morphs to categories with spatio-temporally similar
trajectories, even though in this case the morphs were
not seen as typical representants of the category as-
signed in the forced choice task.

3.3. Generalization fields

The fact that the classification probabilities of bio-
logical motion patterns vary gradually with the ‘‘coor-
dinates’’ of motion patterns in the pattern space defined
by motion morphing makes it possible to define gener-
alization fields for biological motion. The generalization
field of a pattern is the area in the pattern space for
which patterns are classified as the same biological
motion percept. We can get a clearer impression of the
sizes of these generalization fields for the different pro-
totypical movements in our experiment by replotting the
classification results by placing the prototype always in
the center of the triangle in the diagrams. This makes the
areas around the prototypes for different patterns more
comparable.

Fig. 5 shows the measured generalization fields for
the pattern classes SIM and DIF. Interestingly, the
generalization fields for the pattern ‘‘walking’’ is sig-
nificantly larger than the generalization fields for the
other prototypes. This result might be related to the
familiarity of this pattern. In everyday situations sub-
jects might see boxing much more rarely than people

walking. Another explanation is that this result reflects
the topology of the pattern space. Walking might be, in
the metric defined by the features extracted by the visual
system, more similar to most points of the generated
pattern space than the other prototypes. The latter ex-
planation is supported by recent theoretical work (Giese
& Poggio, 2002). A biologically plausible neural model
was trained and tested with the same stimuli. Even

Fig. 5. Generalization fields for the pattern classes SIM (a) and DIF

(b) obtained by replotting the classification results in a way that makes

sure that the classified prototype is always in the center of the triangle.

The figure shows results of seven, respectively six subjects.
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though all prototypes were trained in exactly the same
way the model reproduces the overproportional size of
the generalization field for walking that we found in our
experiment.

3.4. Natural speeds

The subjects reported also the speed regimes for
which the patterns seemed natural. Since normal bio-
logical motion patterns are associated typically with a
set of characteristic speeds it seems possible that the
typical speed of motion patterns is encoded together
with their spatio-temporal structure.

Fig. 6 shows the measured optimal speeds for the
patterns calculated from the average of the adjusted
minimum and maximum speeds. The figure shows color-
coded plots of the optimum speeds of the patterns using
the graphical representation discussed above. The color
of the pixels codes for the ratio of the adjusted optimum
speed and the initial presentation speed, which was
about one movement cycle per second. The positions of

the pixels indicates the location of the morph in the
pattern space.

The pattern ‘‘running’’ is associated with particularly
high adjusted speeds, and the pattern ‘‘knee bends’’ with
very small speeds. Patterns in the neighborhood of the
individual prototypes are typically associated with sim-
ilar optimum speeds. This result indicates that proper-
ties that are associated with the prototypes seem to be
transferred to patterns close to the prototypes in pattern
space. This indicates generalization. It seems reasonable
to assume that the influence of the perceptual properties
of the prototypes onto the perceived properties of the
morph increases with the weight of the prototype in the
linear combination. As test of this hypothesis we plotted
the optimum speed of the patterns of the class SIM as
function of the weight of the prototype ‘‘running’’. If
our hypothesis is true the perceived speed of the pattern
should gradually increase with the contribution of the
running prototype to the morph. Fig. 7(a) shows that a
highly significant correlation exists between the contri-
bution of the running prototype and the adjusted opti-
mal speed of the patterns (correlation coefficient
r2 ¼ 0:6, t ¼ 8:7, N ¼ 52, p < 0:001). Correlations be-
tween the optimal speed of the patterns and the weights
of the individual prototypes were also found when the
prototypes were not associated with the minimum or
maximum optimal speed. This is shown in Fig. 7(b)
where the adjusted optimal speed is plotted as a function
of the weight of the prototype ‘‘boxing’’ for the pattern
class DIF. In this case also a significant correlation ex-
ists (r2 ¼ 0:3, t ¼ 4:54, N ¼ 52, p < 0:001).

We wanted to provide a more rigorous test of the
hypothesis that the prototypes determine perceived
properties of similar patterns by generalization. For this
purpose, we tried to predict the perceived properties of
the morphed patterns by linearly combining the prop-
erties of the prototypes using the same linear weights
with which the prototypes contribute to the linear
combination in the motion morph. With vn signifying the
perceived optimum speed of prototype n the prediction

Fig. 6. (a) Means of the adjusted optimal speeds for the patterns of the

class SIM. The value 1.0 corresponds to the initial presentation speed

of all patterns at the beginning of the trials. The figure shows average

results over seven subjects. (b) Means of the adjusted optimal speeds

for the patterns of the class DIF. The value 1.0 corresponds to the

initial presentation speed of all patterns at the beginning of the trials.

The figure shows average results over six subjects.

Fig. 7. Relationship between the weight of the prototype ‘‘running’’ in

the linear combination and the adjusted optimum speed for the pattern

class SIM (a) and the pattern class DIF (b). The figure shows average

results over seven, respectively six subjects.
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was given by v̂v ¼
P

n wnvn, where the wn are the weights
of the individual prototypes in the morphable model.
Fig. 8 shows the results from this prediction as a func-
tion of the adjusted optimum speeds for both pattern
classes SIM and DIF. In both cases the linear combi-
nation of the optimal speeds of the prototypes predicts
accurately the perceived optimal speed of the pattern
(correlation coefficients r2 ¼ 0:54, t ¼ 7:7, N ¼ 52,
p < 0:01 for the class SIM, and r2 ¼ 0:8, t ¼ 14:0,
N ¼ 52, p < 0:01 for the class DIF). This result suggests
that the perceived properties of a larger class of motion
patterns can in principle be predicted relatively accu-
rately from the perceived properties of few prototypical
example patterns by a simple voting scheme for which
the prototypes contribute to the perceived property ac-
cording to their similarity with the stimulus.

3.5. Ratings of naturalness

Naturalness ratings can be used as a measure for the
generalization from natural to spatio-temporally de-
formed patterns. Naively, one might assume that artifi-
cial biological motion patterns that are generated by
spatio-temporal morphing should appear less natural
than natural biological motion patterns that are directly
tracked from video sequences. To test this hypothesis we
analyzed the naturalness ratings in a similar way as the
perceived optimal speeds. Fig. 9 shows the naturalness
ratings for the presented biological motion patterns from
both pattern classes. The naturalness ratings vary grad-
ually with the weights of the prototypes. For the pattern
class SIM the perceived naturalness of the morphs ‘‘in-
terpolates’’ between the perceived naturalness of the
prototypes. This can be seen as a sign of generalization,
i.e. as an indication of the gradual transfer of the prop-
erties of the prototypes to other motion patterns that are
close in the pattern space. Interestingly, the prototypes
are associated with different naturalness ratings. In
particular marching is perceived as much less natural
than the other patterns, potentially because it is much
less familiar. On the other hand, running and walking

are associated with very high naturalness ratings. Con-
sistent with the hypothesis of a transfer of perceived
properties to similar patterns in the morphing space, the
perceived naturalness increases with the contribution of
morphing to the morph. Fig. 10(a) shows that for the
pattern class SIM the naturalness ratings, on average, as

Fig. 8. Predicted and measured optimal speed of the biological motion

pattern for the pattern class SIM (a) and the pattern class DIF (b). The

figure shows results of seven, respectively six subjects.

Fig. 9. Naturalness ratings for the two pattern classes SIM (a) and

DIF (b) averaged over seven, respectively six subjects.

Fig. 10. Relationship between the weight of the prototype ‘‘walking’’

in the linear combination and the perceived naturalness of the motion

pattern for the pattern classes SIM (a) and DIF (b). The figure shows

average results over seven, respectively six subjects.
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function of the linear weight of the pattern ‘‘walking’’ in
the morph. The correlation between the linear weight
and the naturalness ratings is significant (r2 ¼ 0:33,
t ¼ 5:2, N ¼ 52, p < 0:01).

We tested the quality of the interpolation between the
prototypes more rigorously by trying to predict the
naturalness ratings by weighted linear combinations of
the naturalness ratings of the prototypes. Like for the
prediction of the optimal speeds, the predicted natural-
ness values were given by the relationship bSS ¼

P
n wnSn,

where Sn is the naturalness rating of prototype n, and wn

the weight of the prototype in the linear combination.
Fig. 11(a) shows that, for the pattern class SIM, the
naturalness of the pattern can be efficiently predicted
from the naturalness values of the prototypes (r2 ¼ 0:74,
t ¼ 11:8, N ¼ 52, p < 0:01). This provides additional
evidence for generalization with respect to the perceived
properties within this pattern class. In particular, we
did not find a significant reduction in perceived
naturalness for the morphs compared to the proto-
types. This was unexpected because the prototypes, as
natural patterns, could be expected to look more natural
than the morphs. Since the morphs were generated by
spatio-temporal interpolation in most cases they likely
do not correspond to naturally occurring complex
movements.

The same analysis for the pattern class DIF, which
contained not only locomotion patters, leads to different
results. Fig. 9(b) shows the naturalness ratings for this
pattern class. Only the prototypes and the patterns that
are very close in pattern space look natural. Morphs
with significant contributions of multiple prototypes
tend to be perceived as unnatural. This becomes par-
ticularly evident in Fig. 10(b) where the naturalness
ratings are plotted as a function of the linear weight
of ‘‘walking’’ in the linear combination. A clear dip
exists for intermediate weights of walking. Inspection
of Fig. 9(b) shows that this dip is caused by the low
naturalness of patterns that are morphs with signifi-
cant contributions of walking and other prototypes.
Correspondingly, the correlation between the weight of

walking and the naturalness rating in this pattern class is
non-significant (r2 ¼ 0:002, t ¼ 0:32, N ¼ 52, p > 0:1).

The attempt to predict the naturalness ratings of the
morphs from the naturalness values of the prototypes is
not successful for this pattern class. The correlation
between the predictions shown in Fig. 11(b) and the real
naturalness ratings is almost zero (r2 ¼ 0:001, t ¼ 0:26,
N ¼ 52, p > 0:1). This result is consistent with the low
perceived naturalness of morphed patterns compared to
the prototypes. For this pattern class no efficient inter-
polation between the prototypes seems to occur.

4. Discussion

We have presented an experiment that investigates
generalization properties of biological motion percep-
tion using a new class of stimuli that were generated by
spatio-temporal morphing between natural movements
patterns. For this purpose, we applied the technique of
STMMs that allows to calculate linear combinations of
movement patterns. The weights of these linear combi-
nations define a metric linear space over the class of
generated biological motion patterns. This space, on one
hand, provides a metric that is suitable for a quantifi-
cation of the spatio-temporal similarity of the biological
motion patterns. On the other hand, we can introduce
variations of the patterns along different dimensions in
this metric space. This made it possible to study the
perceptual effects of spatio-temporal changes of the
patterns that make the patterns more similar to other
perceptually meaningful interpretations. In our experi-
ments we used such parameterized classes of motion
patterns to study how well the perceptual system gen-
eralizes if natural biological motion patterns are dis-
torted in space–time.

The idea of abstract metric spaces of complex pat-
terns spanned up by morphing has been used extensively
before in the study of stationary object recognition (e.g.
Benson & Perrett, 1991; Busey, 1998; Leopold et al.,
2001; Perrett et al., 1998; Valentine, 1991). Our work
extends this approach to the recognition of complex
movements. By introduction spatio-temporal deforma-
tions of natural motion patterns that interpolate be-
tween different perceptual categories, such as walking
and running, our work is different from earlier experi-
ments that have studied how the distinction between
different perceptual categories is improved by purely
temporal (e.g. Hill & Pollick, 2000) or purely spatial
exaggerations of motion patterns (Pollick et al., 2001).
Such exaggeration studies are also based on the idea of
an underlying continuous space of motion patterns.

In experiment we found different degrees of general-
ization in the two pattern classes. Within the class of
bipedal locomotion patterns we found relatively good
generalization. This was indicated by two results: (1) by

Fig. 11. Predicted and measured naturalness ratings for the biological

motion patterns from the pattern classes SIM (a), and the pattern class

DIF (b). The figure shows results for seven, respectively six subjects.
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fact that we could predict the perceived properties of the
morphs in many cases relatively accurately from the
perceived properties of the prototypes, and (2) by
the relative high naturalness ratings for the morphs. The
same results were not obtained for the second pattern
class including locomotion and non-locomotion pat-
terns. In this case, the morphs had lower naturalness
ratings than the prototypes, and a prediction of per-
ceived properties from the prototypes was not possible.
It was astonishing that no specific signs of a discon-
tinuity in pattern space were observed for morphs
between walking and running, since biomechanical an-
alyses indicate a phase transition between these two
gaits (Diedrich & Warren, 1995). Interestingly, we found
smooth interpolation between relatively dissimilar lo-
comotion patterns such as walking and running, or
running and marching. This indicates that the visual
system can interpolate well between more dissimilar
patterns than just between style differences of the same
type of locomotion, like the walk of a male and a female.

In the metric defined by our morphing technique
‘‘walking’’ was characterized by relative large general-
ization field compared with the other prototypes in the
classification task. This might be a property of the
geometrical structure of the pattern space within our
parameterization since we found the same effect with a
theoretical neural model that treated all prototypes in
exactly the same way, so that familiarity effects could be
excluded (Giese & Poggio, 2002).

The result that for locomotion patterns we could
predict the properties of the morphs from the perceived
properties of the prototypes is compatible with a pro-
totype-based representation of biological motion. A
simple voting scheme might be sufficient to derive the
perceived properties of motion patterns from the stored
perceptual properties of the prototypes. Weighting en-
sures that the prototypes that are most similar to the
stimulus have the strongest influence on the perceived
property. Such voting schemes could be implemented
easily by reading out population codes from neurons
that encode prototypical spatio-temporal patterns to-
gether with characteristic properties of the represented
motion.

However, the stimulus set used in our experiment
does not allow to decide finally about the hypothesis of
a prototype-based representation of biological motion.
We cannot exclude that some of the morphs resemble
natural motion patterns that are not identical with the
prototypes, and which the subjects also have stored. A
rigorous evaluation of the hypothesis of an example-
based encoding would require to use stimuli that are
completely novel, i.e. unnatural, and which result in
morphing patterns that do not resemble naturally oc-
curring movements. The methods that we have pre-
sented in this paper would be applicable in the same way
to such novel biological motion stimuli.
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