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Overdispersion in time series of counts is very common and has been well studied by many
authors, but the opposite phenomenon of underdispersion may also be encountered in real
applications and receives little attention. Based on popularity of the generalized Poisson
distribution in regression count models and of Poisson INGARCH models in time series
analysis, we introduce a generalized Poisson INGARCH model, which can account for both
overdispersion and underdispersion. Compared with the double Poisson INGARCH model,
conditions for the existence and ergodicity of such a process are easily given. We analyze
the autocorrelation structure and also derive expressions for moments of order 1 and 2.
We consider the maximum likelihood estimators for the parameters and establish their
consistency and asymptotic normality. We apply the proposed model to one overdispersed
real example and one underdispersed real example, respectively, which indicates that the
proposed methodology performs better than other conventional model-based methods in
the literature.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Time series of counts are commonly observed in real-world applications, so a number of time series models for counts
have been proposed, which are able to describe different types of marginal distribution and autocorrelation structure. See
[2,19–21,24,30], among others.

The Poisson distribution provides a standard framework for the analysis of count data, but the requirement that the vari-
ance should equal the mean is often too restrictive in practice. Frequently data are overdispersed, with the variance greater
than the mean, and there are many alternative distributions that can be used to model the data. The opposite phenomenon
of underdispersion, where the variance is less than the mean, occurs less frequently and the choice of distributions is much
narrower. However, there are situations in which underdispersion is well documented, see [27] and references therein for
some real examples.

As a natural extension of the Poisson distribution, the generalized Poisson (GP) distribution, introduced in [6] as an
approximation of a generalized negative binomial distribution and studied extensively by Consul [3] and Consul and
Famoye [5], is more flexible and allows for overdispersion or underdispersion. Regression models based on the GP dis-
tribution have been studied by many authors, including Consul and Famoye [4], Famoye [9], Wang and Famoye [28], Özmen
[26] and Famoye et al. [10].
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Recently, Heinen [17] and Ferland et al. [11] proposed an integer-valued generalized autoregressive conditional het-
eroscedastic (INGARCH) model, which is defined as follows⎧⎪⎪⎨

⎪⎪⎩
Xt | Ft−1 : P(λt), ∀t ∈ Z,

λt = α0 +
p∑

i=1

αi Xt−i +
q∑

j=1

β jλt− j,
(1.1)

where α0 > 0, αi � 0, β j � 0, i = 1, . . . , p, j = 1, . . . ,q, p � 1, q � 0, and Ft−1 is the σ -field generated by {Xt−1, Xt−2, . . .}.
Many aspects about this model have been considered, such as, existence [11,16], ergodicity [14,25], estimating methods
[14,38,41,42], testing [13,25,40], autocorrelation functions [32], unconditional distributions [33], higher-order moments [34],
generalizations [15,17,36,37,39] and real applications [23]. Fokianos [12] reviewed some recent progress on INGARCH mod-
els.

Model (1.1) can only deal with overdispersion in time series of counts, but underdispersion may also be encountered
in real applications (see Section 5 for real examples). Heinen [17] proposed an INGARCH(1,1) model based on the double
Poisson (DP) distribution introduced by Efron [8] to deal with underdispersion, but it is difficult to be utilized because
of the intractability of the normalizing constant and moments. In addition, Heinen [17] did not give a real application to
underdispersed data. Third, the DP distribution has not been well studied and its many properties remain to be unknown,
thus some theoretical aspects of the DP-INGARCH(1,1) model may be difficult to be established. Based on the above con-
siderations, we propose an INGARCH model based on the GP distribution, which can account for both overdispersion and
underdispersion. Moreover, we can establish some needed theoretical results easily.

To model underdispersion, the binomial distribution b(n, p) is another alternative, but the parameter n is a discrete-
valued parameter and the differentiation with respect to n is problematic, so we can not obtain the joint maximum
likelihood estimator (MLE) of n and other parameters. For the similar problem in the negative binomial (NB) INGARCH
model, see [36]. In this sense, the GP distribution is a better choice.

The paper is organized as follows. In Section 2, we briefly introduce and review the GP distribution. In Section 3 we
describe the GP-INGARCH model, conditions for the existence and ergodicity of such a process are given. We also give a set
of equations from which the variance and autocorrelation function can be obtained. We discuss the maximum likelihood
estimation procedure and establish asymptotic properties of the estimators in Section 4. In Section 5 we apply the proposed
model to one overdispersed real example and one underdispersed real example, respectively, which demonstrates the use-
fulness and flexibility of the proposed model in fitting time series of counts which do not seem to follow other conventional
models in the literature. Section 6 concludes.

2. The generalized Poisson distribution

First, recall the definition of the GP distribution (see, e.g., [5]). A random variable X has a GP distribution with parameters
λ and κ , which we denote by GP(λ,κ), if its probability mass function is

P (X = x) =
{

λ(λ + κx)x−1e−(λ+κx)/x!, x = 0,1,2, . . . ,

0, for x > m if κ < 0,

where λ > 0, max(−1,−λ/m) < κ < 1, and m (� 4) is the largest positive integer for which λ + κm > 0 when κ < 0. When
κ < 0, the distribution includes a truncation due to P (X = x) = 0 for all x > m and the sum

∑m
x=0 P (X = x) is usually a little

less than unity. However, this truncation error is less than 0.5% when m � 4 and so the truncation error does not make any
difference in practical applications [5, p. 165]. The GP distribution, also known as the Lagrangian Poisson distribution, is a
kind of Poisson-stopped-sum distribution. It reduces to the usual Poisson distribution with parameter λ when κ = 0.

The probability generating function of the GP distribution is

g(u) = E
(
u X) = exp

{
λ(z − 1)

}
, where z = u exp

{
κ(z − 1)

}
. (2.1)

Alternative representation of the probability generating function is

p X (z) = exp
{−(κ/λ)

[
W

(−λz e−λ
) + λ

]}
,

where W is the Lambert’s function defined as W (x)exp(W (x)) = x. By putting z = es and u = et in (2.1), one obtain the
moment generating function for the GP distribution as

M X (t) = E et X = exp
{
λ
(
es − 1

)}
, where s = t + κ

(
es − 1

)
. (2.2)

Then the cumulant generating function (cgf) of the GP distribution becomes

κX (t) = ln M X (t) = λ
(
es − 1

)
. (2.3)

From (2.2) we know that the sum X1 + X2 +· · ·+ Xl of l independent GP random variables X1, X2, . . . , Xl , with parameters
(λ1, κ), (λ2, κ), . . . , (λl, κ), respectively, is a GP random variable with parameters (λ1 + λ2 + · · · + λl, κ), which means that
the GP distribution has the additive property like the Poisson distribution. This property will be used several times later.
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For the GP distribution GP(λ,κ), a recurrence relation between the noncentral moments μl = E(Xl) is

(1 − κ)μl+1 = λμl + λ
∂μl

∂λ
+ κ

∂μl

∂κ
, k = 0,1,2, . . . . (2.4)

From μ0 = 1 and (2.4) we obtain that

μ1 = λ

1 − κ
, μ2 = λ2

(1 − κ)2
+ λ

(1 − κ)3
, μ3 = λ3

(1 − κ)3
+ 3λ2

(1 − κ)4
+ (1 + 2κ)λ

(1 − κ)5
, . . . .

All the moments of the GP distribution exist for κ < 1. First, the variance equals λ/(1 − κ)3, which is greater than, equal to,
or less than the mean according to whether κ > 0, κ = 0, or κ < 0, respectively. Second, by induction, we have

μl =
l∑

i=0

aliλ
i, l = 1,2, . . . , (2.5)

where ali is not related to λ, and all = 1/(1 − κ)l .
Consul and Shoukri [7] also obtained the negative integer moments of GP(λ,κ). In particular, we have

E

(
X + λ

κ

)−1

= κ

λ
− κ2

λ + κ
, (2.6)

E

(
X + λ

κ

)−2

= κ2

λ2
− κ3

λ(λ + κ)
− κ3

(λ + κ)2
+ κ4

(λ + κ)(λ + 2κ)
. (2.7)

There is another parametrization of the GP distribution [9,28], which is also known as the Abel distribution. In this paper
we just focus on the parametrization (2.1).

3. The generalized Poisson INGARCH model

Let {Xt} be a time series of counts. We assume that, conditional on the past information, the random variables X1, . . . , Xn

are independent, and the conditional distribution of Xt is specified by a GP distribution, i.e.,

Xt | Ft−1 : G P
(
λ∗

t , κ
)
,

λ∗
t

1 − κ
= λt = α0 +

p∑
i=1

αi Xt−i +
q∑

j=1

β jλt− j, (3.1)

where α0 > 0, αi � 0, β j � 0, i = 1, . . . , p, j = 1, . . . ,q, p � 1, q � 0, max(−1,−λ∗
t /4) < κ < 1, Ft−1 is the σ -field generated

by {Xt−1, Xt−2, . . .}. The above model is denoted by GP-INGARCH(p,q). When q = 0, the above model is denoted by GP-
INARCH(p). Clearly, when κ = 0, the model (3.1) reduces to the model (1.1).

In the following theorem we give a sufficient condition under which there exists a stationary GP-INGARCH(p,q) process.

Theorem 1. If
∑p

i=1 αi +∑q
j=1 β j < 1, then there exists a unique strictly stationary process {Xt}t∈Z that satisfied (3.1). Moreover, the

first two moments are finite.

Proof. The theorem can be proved by using techniques discussed in [11] or [16], here we adopt the former. Let D(B) =
1 − β1 B − · · · − βq Bq, G(B) = α1 B + · · · + αp B p , where B is the backshift operator. Let

λt = D−1(B)
(
α0 + G(B)Xt

) = α0 D−1(1) + H(B)Xt,

where H(B) = D−1(B)G(B) = ∑∞
j=1 ψ j B j . Let {Ut}t∈Z be a sequence of independent GP random variables with parameters

(ψ0 = α0/D(1), κ). For each t ∈ Z and i ∈ Z
+ , let {Zt,i, j} j∈Z+ represent a sequence of independent GP random variables

having parameters (ψi, κ). We also assume that all the random variables Us , Zt,i, j (s ∈ Z, t ∈ Z, i ∈ Z
+ and j ∈ Z

+) are
mutually independent. Define

X (n)
t =

⎧⎪⎨
⎪⎩

0, n < 0;
(1 − κ)Ut, n = 0;
(1 − κ)Ut + (1 − κ)

∑n
i=1

∑X(n−i)
t−i

j=1 Zt−i,i, j, n > 0.

(3.2)

Using the thinning operation (see, e.g., [41]), X (n)
t admits the representation

X (n)
t = (1 − κ)Ut + (1 − κ)

n∑
ϕ

(t−i)
i ◦ X (n−i)

t−i , n > 0,
i=1
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where ϕi = ψi/(1 − κ). In the above notation ϕ
(τ)
i ◦ indicates that the sequence of GP random variables of common mean

ϕi involved in the thinning operation are those that correspond to time τ , i.e. the sequence {Zτ ,i, j} j∈Z+ .

The expectation and variance of X (n)
t are well defined, because X (n)

t is a finite sum of independent GP random variables.

It is easily seen that E(X (n)
t ) does not depend on t , it just depends on n and will be denoted by μn . Using (3.2) and the fact

that μk = 0 if k < 0, we have

μn = ψ0 +
∞∑
j=1

ψ jμn− j = D−1(B)α0 + H(B)μn,

then [D(B) − G(B)]μn = α0. Using arguments similar to those in Propositions 2 and 3 of [11] we know that {X (n)
t }n∈Z+ has

an almost sure limit Xt and is a strictly stationary process for each n. Then we know that {Xt}t∈Z is a strictly stationary
process.

Using arguments similar to those in Proposition 4 of [11] we know that E(Xt) is finite and

E
(

X (n)
t

)2 � (1 − κ)2

[
E
(
U 2

t

) + [
2E(Ut) + 1

] n∑
i=1

ϕi E(Xt) +
(

n∑
i=1

ϕi

)2

E
(

X (n)
t

)2

]
.

Then

E
(

X (n)
t

)2 � (1 − κ)2 E(U 2
t ) + (1 − κ)E(Xt)[2E(Ut) + 1]∑n

i=1 ψi

1 − (
∑n

i=1 ψi)
2

� (1 − κ)2 E(U 2
t ) + (1 − κ)E(Xt)[2E(Ut) + 1]∑∞

i=1 ψi

1 − (
∑∞

i=1 ψi)
2

≡ C .

By the Lebesgue’s dominated convergence theorem, we conclude that E(X2
t ) � C . Therefore, the first two moments are finite.

r(n)
t therein is replaced by (1 − κ)Ut + (1 − κ)

∑n
i=1

∑Xt−i
j=1 Zt−i,i, j . Using arguments similar to those in Proposition 5 and

Section 2.6 of [11] we know that Xt | Ft−1 : G P (λ∗
t , κ). �

The conditional mean and conditional variance of Xt are given by

E(Xt | Ft−1) = λ∗
t

1 − κ
= λt, Var(Xt | Ft−1) = λ∗

t

(1 − κ)3
= φ2λt,

where φ = 1/(1 − κ), then

μ ≡ E(Xt) = α0

1 − ∑p
i=1 αi − ∑q

j=1 β j
,

Var(Xt) = E
(
Var(Xt | Ft−1)

) + Var
(

E(Xt | Ft−1)
) = E

(
φ2λt

) + Var(λt) = φ2μ + Var(λt).

From Theorem 1 in [32] we know that the following theorem holds, which gives a set of equations from which the variance
and autocorrelation function can be obtained.

Theorem 2. Suppose that {Xt} follows the model (3.1) with
∑p

i=1 αi + ∑q
j=1 β j < 1. Let the autocovariances γX (l) = Cov(Xt, Xt−l),

γλ(l) = Cov(λt , λt−l), then they satisfy the equations

γX (l) =
p∑

i=1

αiγX
(|l − i|) +

min(l−1,q)∑
j=1

β jγX (l − j) +
q∑

j=l

β jγλ( j − l), l � 1;

γλ(l) =
min(l,p)∑

i=1

αiγλ(l − i) +
p∑

i=l+1

αiγX (i − l) +
q∑

j=1

β jγλ

(|l − j|), l � 0.

Example 1. Consider the GP-INGARCH(1,1) model. With arguments similar to those in Example 1 of [32] we have

Var(λt) = φ2α2
1μ

1 − (α1 + β1)2
,

then

Var(Xt) = φ2μ + Var(λt) = φ2μ[1 − (α1 + β1)
2 + α2

1]
2

.

1 − (α1 + β1)
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The autocorrelations are given by

ρλ(l) = (α1 + β1)
l, l � 0;

ρX (l) = (α1 + β1)
l−1 α1[1 − β1(α1 + β1)]

1 − (α1 + β1)2 + α2
1

, l � 1.

Corollary 1. Suppose that {Xt} following the GP-INARCH(p) model is second-order stationary, then the autocovariance function γX (l)
satisfies the equations

γX (l) =
p∑

i=1

αiγX
(|l − i|), l � 1.

Example 2. Consider the GP-INARCH(1) model. We can obtain the cumulants by using the techniques given in Example 2
of [32], but it is too tedious and complicated for deriving higher-order cumulants. In addition, we can not obtain a recurrent
relation for the cumulants because of the complexity of the cgf of the GP distribution. As an illustration, we consider the
first two cumulants. In fact, from (2.3) we have

κX (t) = (1 − κ)α0
(
es − 1

) + κX
(
(1 − κ)α1

(
es − 1

))
, s = t + κ

(
es − 1

)
,

where s is a function of t , and

∂s

∂t
= 1

1 − κes
,

∂2s

∂t2
= κes

(1 − κes)3
.

Then

κ ′
X (t) = (1 − κ)

[
α0 + α1κ

′
X

(
(1 − κ)α1

(
es − 1

))]
es ∂s

∂t
, (3.3)

κ ′′
X (t) = κ ′

X (t)

[
∂s

∂t
+ ∂2s

∂t2

(
∂s

∂t

)−1]
+

[
(1 − κ)α1es ∂s

∂t

]2

κ ′′
X

(
(1 − κ)α1

(
es − 1

))
. (3.4)

If t = 0, then s = 0 because of arbitrariness of κ . Let κl = κ
(l)
X (0), then from (3.3) and (3.4) we have

κ1 = α0 + α1κ1,

κ2 = κ1

[
1

1 − κ
+ κ

(1 − κ)2

]
+ α2

1κ2,

thus we obtain the first two cumulants

κ1 = μ = α0

1 − α1
, κ2 = Var(Xt) = φ2α0

(1 − α1)(1 − α2
1)

.

The above results are included in Example 1. In both examples the variance-mean ratio is changed by the factor φ2 compared
to the corresponding INGARCH expressions, which implies (i) if φ > 1, then the unconditional overdispersion of the usual
INGARCH model is further increased; and (ii) if φ is “sufficiently small”, then we have unconditional underdispersion.

In what follows we will focus on model (3.1) with p = q = 1, i.e.,

Xt | Ft−1 : G P
(
λ∗

t , κ
)
,

λ∗
t

1 − κ
= λt = α0 + α1 Xt−1 + β1λt−1. (3.5)

The following theorem gives geometric ergodicity of the bivariate process {(Xt, λt)}t∈N defined by (3.5), which is the
starting point for establishing the limiting behavior of the MLE discussed in the next section.

Theorem 3. Suppose that {Xt} follows (3.5) with α1 + β1 < 1, then {(Xt, λt)}t∈N is geometrically ergodic.

The proof of Theorem 3 is done with the same arguments as used by [25] for proving his Theorem 3.1, so we omit the
details. Similar to [25], the additive property of the GP distribution is crucial in the proof.

Theorem 4. Suppose that {Xt} follows (3.5), then the moments of Xt are all finite if and only if α1 + β1 < 1.
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Proof. From (2.5) we have

E
(

Xm
t

∣∣ Ft−1
) =

m∑
i=0

bmiλ
i
t,

where bmi is not related to λt , and bmm = 1. Notice that

λi
t = (α0 + α1 Xt−1 + β1λt−1)

i =
i∑

n=0

(
i

n

)
αi−n

0

n∑
j=0

(
n

j

)
α

j
1β

n− j
1 X j

t−1λ
n− j
t−1 ,

thus

E
(
λi

t

∣∣ Ft−2
) =

i∑
n=0

(
i

n

)
αi−n

0

n∑
j=0

j∑
k=0

(
n

j

)
b jkα

j
1β

n− j
1 λ

n+k− j
t−1 .

Then the theorem holds by using the same technique given in Proposition 6 of [11]. �
4. Estimation

Let θ∗ = (α0,α1, β1)
	 , θ = (φ, θ∗	)	 = (θ1, θ2, θ3, θ4)

	 , where φ = 1/(1 − κ), and write the true value of θ as
θ0 = (φ0,α0

0 ,α0
1, β0

1 )	 . Suppose that the observation X = (X1, . . . , Xn) is generated from the model (3.3). The conditional
likelihood function is

n∏
t=2

λt[λt + (φ − 1)Xt]Xt−1φ−Xt exp{−[λt + (φ − 1)Xt]/φ}
Xt ! ,

then the log-likelihood is given by

l(θ) =
n∑

t=2

lt(θ) =
n∑

t=2

{
lnλt + (Xt − 1) ln

[
λt + (φ − 1)Xt

] − Xt lnφ − λt + (φ − 1)Xt

φ
− ln(Xt !)

}
. (4.1)

The score function is defined by

Sn(θ) = ∂l(θ)

∂θ
=

n∑
t=2

∂lt(θ)

∂θ

with

∂lt(θ)

∂φ
= Xt(Xt − 1)

λt + (φ − 1)Xt
− Xt

φ
− Xt − λt

φ2
, (4.2)

∂lt(θ)

∂θ∗ =
(

Xt − 1

λt + (φ − 1)Xt
+ 1

λt
− 1

φ

)
∂λt

∂θ∗ ,

∂λt

∂α0
= 1 + β1

∂λt−1

∂α0
,

∂λt

∂α1
= Xt−1 + β1

∂λt−1

∂α1
,

∂λt

∂β1
= λt−1 + β1

∂λt−1

∂β1
. (4.3)

The solution of the equation Sn(θ) = 0, if it exists, gives the conditional MLE of θ , denoted by θ̂ . The Hessian matrix is given
by

Hn(θ) = −
n∑

t=2

∂2lt(θ)

∂θ∂θ	 (4.4)

with

∂2lt(θ)

∂φ2
= − X2

t (Xt − 1)

[λt + (φ − 1)Xt]2
+ Xt

φ2
+ 2(Xt − λt)

φ3
, (4.5)

∂2lt(θ)

∂φ∂θ∗ = −
(

Xt(Xt − 1)

[λt + (φ − 1)Xt]2
− 1

φ2

)
∂λt

∂θ∗ , (4.6)

∂2lt(θ)

∂θ∗∂θ∗	 = −
(

Xt − 1

[λ + (φ − 1)X ]2
+ 1

2

)
∂λt

∂θ∗
∂λt

∂θ∗	 +
(

Xt − 1

λ + (φ − 1)X
+ 1

λ
− 1

φ

)
∂2λt

∂θ∗∂θ∗	 , (4.7)

t t λt t t t
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∂2λt

∂α2
0

= 0,
∂2λt

∂α2
1

= 0,
∂2λt

∂α0∂α1
= 0,

∂2λt

∂α0∂β1
= ∂λt−1

∂α0
+ β1

∂2λt−1

∂α0∂β1
,

∂2λt

∂α1∂β1
= ∂λt−1

∂α1
+ β1

∂2λt−1

∂α1∂β1
,

∂2λt

∂β2
1

= 2
∂λt−1

∂β1
+ β1

∂2λt−1

∂β2
1

.

Due to space limitations, the conditional expectations of terms in (4.2), (4.3) and (4.5)–(A.2) are deferred to Appendix A.
Now we want to establish the asymptotic properties of the MLE θ̂ . For this purpose, we make the following two assump-

tions.

Assumption 1. The parameter space is

O
(
θ0) = {

θ
∣∣ 0 < φL � φ � φU , 0 < δL � α0 � δU , 0 < αL � α1 � αU , 0 < βL � β1 � βU , δL + 2(φL − 1) > 0

}
.

Assumption 2. λt + (φ − 1)Xt � ω > 0 for all Xt .

Remark 1. By Assumption 1 we know that λt + 2(φ − 1) > 0 (t = 1, . . . ,n), then some necessary results (for example, see
the conditional expectation in (A.17)) can remain valid when φ < 1. From the log-likelihood given in (4.1) we know that
λt + (φ − 1)Xt > 0 for all Xt , so it is not awkward to make Assumption 2.

The lower bounds in Assumptions 1 and 2 are only for the technical reason in the proof of Theorem 1. In practice, we
can select them to be very close to 0.

Theorem 5. Consider model (3.3) with the true value θ0 and suppose that α0
1 + β0

1 < 1 and Assumptions 1 and 2 hold, then there
exists a fixed open neighborhood O (θ0) of θ0 such that with probability tending to 1, as n → ∞, the log-likelihood function (4.1) has
a unique maximum point θ̂ . Furthermore, θ̂ is consistent and asymptotically normal,

√
n
(
θ̂ − θ0) d−→ N

(
0, G−1),

where G is defined in the proof.

Proof. The theorem can be proved with arguments similar to those for proving Theorem 1 in [22] and Theorem 3 in [41],
which utilizes Theorems 4.1.1 and 4.1.3 in [1]. Here we introduce the techniques in [14], which takes advantage of the fact
that the log-likelihood function is three times differentiable.

First, using the results in (A.3) and (A.4), we know that ∂lt(θ)/∂θ given in (4.2) and (4.3) is a martingale difference
sequence with respect to Ft−1. In the following, the conditions of Lemma 1 in [18] will be verified. Using the results in
(A.8) and (A.17), we have

E

([
Xt − 1

λt + (φ − 1)Xt
+ 1

λt
− 1

φ

]2 ∣∣∣∣ Ft−1

)
= 1

φλt
− φ − 1

φ2[λt + 2(φ − 1)] � 1

φλt
+ φ + 1

φ2[λt + 2(φ − 1)]
� 1

φLδL
+ φU + 1

φ2
L [δL + 2(φL − 1)] ,

E

([
Xt(Xt − 1)

λt + (φ − 1)Xt
− Xt

φ
− Xt − λt

φ2

]2 ∣∣∣∣ Ft−1

)
= 2

φ2
− 4(φ − 1)

φ2[λt + 2(φ − 1)] � 2

φ2
+ 4(φ + 1)

φ2[λt + 2(φ − 1)]
� 2

φ2
L

+ 4(φU + 1)

φ2
L [δL + 2(φL − 1)] .

Fokianos et al. [14] showed that E‖∂λt/∂θ∗‖ < ∞, thus E‖∂lt(θ)/∂θ‖ < ∞. Using the same arguments given in Lemma 3.2
of [14], we know that

1√
n

Sn(θ)
d−→ N (0, G),

where

G = E
(
G∗

t (θ)
)
, G∗

t (θ) = Var

(
∂lt(θ)

∂θ

∣∣∣∣ Ft−1

)
=

(
G11 G	

21

G21 G22

)

with
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G11 = 2λt

φ2[λt + 2(φ − 1)] ,

G21 = −2(φ − 1)

φ2[λt + 2(φ − 1)]
∂λt

∂θ∗ ,

G22 =
[

1

φλt
− φ − 1

φ2[λt + 2(φ − 1)]
]

∂λt

∂θ∗
∂λt

∂θ∗	 .

Using the results in (A.8), (A.12) and (A.17), we know that

E

(
∂lt(θ)

∂θ

∂lt(θ)

∂θ	

)
= E

(
−∂2lt(θ)

∂θ∂θ	

)
.

Following the arguments given in Lemma 3.3 of [14], we have

1

n
Hn(θ)

P−→ G.

Notice that the third derivatives are given by

∂3lt(θ)

∂φ3
= 2X3

t (Xt − 1)

[λt + (φ − 1)Xt]3
− 2Xt

φ3
− 6(Xt − λt)

φ4
,

∂3lt(θ)

∂φ2∂θ∗ =
(

X2
t (Xt − 1)

[λt + (φ − 1)Xt]3
− 2

φ3

)
∂λt

∂θ∗ ,

∂3lt(θ)

∂φ∂θ∗∂θ∗	 = 2Xt(Xt − 1)

[λt + (φ − 1)Xt]3

∂λt

∂θ∗
∂λt

∂θ∗	 −
(

Xt(Xt − 1)

[λt + (φ − 1)Xt]2
− 1

φ2

)
∂2λt

∂θ∗∂θ∗	 ,

∂3lt(θ)

∂θi∂θ j∂θk
= −

(
Xt − 1

[λt + (φ − 1)Xt]2
+ 1

λ2
t

)(
∂2λt

∂θi∂θ j

∂λt

∂θk
+ ∂2λt

∂θi∂θk

∂λt

∂θ j
+ ∂2λt

∂θ j∂θk

∂λt

∂θi

)

+ 2

(
Xt − 1

[λt + (φ − 1)Xt]3
+ 1

λ3
t

)
∂λt

∂θi

∂λt

∂θ j

∂λt

∂θk
+

(
Xt − 1

λt + (φ − 1)Xt
+ 1

λt
− 1

φ

)
∂3λt

∂θi∂θ j∂θk
,

i, j,k = 2,3,4.

It is simple to see that all terms that do not contain the partial derivatives of λt can be controlled, such as,∣∣∣∣ 2X3
t (Xt − 1)

[λt + (φ − 1)Xt]3
− 2Xt

φ3
− 6(Xt − λt)

φ4

∣∣∣∣ � 2X3
t (Xt + 1)

ω3
+ 2Xt

φ3
L

+ 6(Xt + λt)

φ4
L

,

∣∣∣∣ Xt − 1

[λt + (φ − 1)Xt]2
+ 1

λ2
t

∣∣∣∣ � Xt + 1

ω2
+ 1

δ2
L

.

Following the arguments given in Lemma 3.4 of [14], we obtain that

max
i, j,k=1,2,3,4

sup
θ∈O (θ0)

∣∣∣∣∣1

n

n∑
t=2

∂3lt(θ)

∂θi∂θ j∂θk

∣∣∣∣∣ � Mn,

and Mn
P−→ M , where Mn is defined analogously to that in Lemma 3.4 of [14] and M is a finite constant.

Now all the conditions of Lemma 1 in [18] have been verified, thus the theorem holds. �
From [35] we know that the standard errors of MLE θ̂ can be computed from the robust sandwich matrix

H−1
n (θ̂)Sn(θ̂ )H−1

n (θ̂ ), where Hn(θ) is given in (4.4) and

Sn(θ) =
n∑

t=2

∂lt
∂θ

∂lt
∂θ	 .

5. Real data examples

In this section, we discuss possible applications of the introduced GP-INGARCH model. Searching for the maximizer of
the log-likelihood function is implemented in Matlab by using the constrained nonlinear optimization function fmincon.
Here the constrained conditions are α0 > 0 and the first-order stationary condition.



66 F. Zhu / J. Math. Anal. Appl. 389 (2012) 58–71
Fig. 1. Major earthquakes counts series: the time plot, the sample autocorrelation and partial autocorrelation function.

5.1. Modeling overdispersion

We use one real example to show good performance of the GP model in modeling overdispersed count data, which is the
series of annual counts of major earthquakes (magnitude 7 and above) for the years 1900–2006. These data were originally
analyzed by Zucchini and MacDonald [43]. The original series, the sample autocorrelation function (ACF) and partial auto-
correlation function (PACF) of the series are plotted in Fig. 1. The series displays strong positive serial dependence. Empirical
mean and variance of the data are given by 19.3645 and 51.5734, respectively, indicating that the true marginal distribu-
tion is considerably overdispersed. The sample first-order autocorrelation coefficient (FOAC) is 0.5699. The PACF suggests
that INARCH(1) or INGARCH(1,1) models may be a good choice.

Although Zucchini and MacDonald [43] analyzed these data by virtue of hidden Markov models, we tried to fit them
by using the GP-INARCH(1) and GP-INGARCH(1,1) models. For comparison, we also consider the Poisson models [11], the
DP models [17] and the NB models [36]. For more details about estimating the latter two models, one can see [36]. We
fitted the NB models with r = 1,2, . . . ,10, we found that r̂ = 10. We extended the range of r to 15, then we found that
r̂ = 15, which shows that the NB model is not appropriate for these data in some sense. In addition, the interpretation of
the estimated parameter r̂ = 15 is difficult. Parameter estimates and their asymptotic standard errors for other models are
summarized in Table 1. The values of Akaike information criterion (AIC) and Bayesian information criterion (BIC) are also
provided.

Based on AIC and BIC, we find that INGARCH(1,1) models give better fit than INARCH(1) models. Within the three fitted
INGARCH(1,1) models, the mean, variance and FOAC are summarized in Table 2. Three models has good performances in
fitting mean and FOAC, while only GP and DP model give reasonable variance. Based on the above consideration, we think
that the GP-INGARCH(1,1) model is the best choice for these data.

The set of hypotheses, H0 : φ = 1 vs. H1 : φ = 1, ask whether the use of Poisson INGARCH is reasonable versus the
alternative of fitting GP-INGARCH. We use the following likelihood ratio test statistic:

LRT = −2 ln
L(θ̂∗)
L(θ̂ �)

,

where L(θ̂∗) is the likelihood function for the Poisson model and L(θ̂ �) is the likelihood function for the GP model. The
unknown parameters in each case are estimated by the method of maximum likelihood. Under the null hypothesis, LRT is
approximately chi-square distributed with 1 degree of freedom. We compute LTR to be 14.9692. On comparing χ2

0.99(1) =
6.6349, we notice that LRT is significant. Thus, we can conclude that the GP model is more appropriate for this time series.
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Table 1
Major earthquakes counts series: parameter estimates with Poisson, DP- and GP-INARCH(1) and INGARCH(1,1) models. Standard errors are shown in
parentheses.

Model α̂0 α̂1 β̂1 γ̂ /φ̂ AIC BIC

INARCH(1) Poisson 7.9476 0.5903 688.5488 693.8567
(2.5023) (0.0072)

DP 7.9476 0.5903 0.5836 672.0032 679.9364
(2.5023) (0.0072) (0.0079)

GP 8.0600 0.5845 1.3088 672.0228 679.9560
(2.6063) (0.0076) (0.0100)

INGARCH(1,1) Poisson 2.6516 0.4057 0.4572 679.7366 687.6697
(2.6118) (0.0104) (0.0224)

DP 2.6516 0.4057 0.4572 0.6205 667.4976 678.0365
(2.6118) (0.0104) (0.0224) (0.0077)

GP 2.5837 0.4008 0.4656 1.2739 666.7674 677.3063
(2.2700) (0.0092) (0.0186) (0.0080)

Table 2
Major earthquakes counts series: mean, variance and FOAC under the fitted Poisson,
DP and GP-INGARCH(1,1) models.

Model Poisson DP GP

Mean 19.3406 19.3406 19.3391
Variance 31.8045 51.2563 51.6024
FOAC 0.5849 0.5849 0.5832

Fig. 2. IP counts series: the time plot, the sample autocorrelation and partial autocorrelation function.

5.2. Modeling underdispersion

To display the flexibility and elegance of the proposed model in modeling underdispersion, we consider one real example,
which is the number of different IP addresses (≈ different users) registered within periods of 2-min length at the server
of the Department of Statistics of the University of Würzburg in November and December 2005. In particular, we focus on
the time series collected on November 29th, 2005, between 10 o’clock in the morning and 6 o’clock in the evening, a time
series of length 241. These data have been investigated by Weiß [29,31]. To give an idea about the data structure, Fig. 2
shows the original series, the ACF and PACF of the series. The sample mean and variance are 1.2863 and 1.2052, respectively,
which indicates that the data are underdispersed. The sample FOAC is 0.2925.

In [29] the Poisson INAR(1) model was originally proposed for these data, thus it is the natural benchmark model. So
we apply the Poisson INAR(1) model, the Poisson, DP- and GP-INARCH(1) and INGARCH(1,1) models to the data. Parameter
estimates and their asymptotic standard errors are summarized in Table 3. The AIC and BIC values are also provided.
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Table 3
IP counts series: parameter estimates with Poisson INAR(1), Poisson, DP- and GP-INARCH(1) and INGARCH(1,1) models. Standard errors are shown in
parentheses.

Model Par. 1 Par. 2 Par. 3 Par. 4 AIC BIC

INAR(1) Poisson 0.2921 0.9143 673.6132 680.5828
(α,λ) (0.0614) (0.0948)

INARCH(1) Poisson 0.9265 0.2827 675.1979 682.1508
(α0,α1) (0.0083) (0.0038)

DP 0.9265 0.2827 0.9623 677.0184 687.4352
(α0,α1, γ ) (0.0083) (0.0038) (0.0046)

GP 0.9255 0.2834 0.9157 673.7768 684.1936
(α0,α1, φ) (0.0081) (0.0037) (0.0014)

INGARCH(1,1) Poisson 0.8810 0.2792 0.0388 677.1730 687.5898
(α0,α1, β1) (0.0735) (0.0045) (0.0521)

DP 0.8810 0.2792 0.0388 0.9624 678.9944 692.8667
(α0,α1, β1, γ ) (0.0735) (0.0045) (0.0521) (0.0046)

GP 0.8806 0.2802 0.0382 0.9156 675.7482 689.6205
(α0,α1, β1, φ) (0.0709) (0.0043) (0.0500) (0.0014)

Table 4
IP counts series: mean, variance and FOAC under the fitted Poisson INAR(1), Poisson and GP-
INARCH(1) models.

Model Poisson INAR(1) Poisson INARCH(1) GP-INARCH(1)

Mean 1.2916 1.2916 1.2915
Variance 1.2916 1.4038 1.1775
FOAC 0.2921 0.2827 0.2834

Note that we have assumed that λt + (φ − 1)Xt > 0 when deriving the MLEs for GP models, in other words, the range
of Xt is limited to {0,1, . . . ,m} with m being large enough. So we need to check the validity of this assumption because φ̂

is less than 1 for this example. For the GP-INARCH(1) model, the minimum of {λt + (φ − 1)Xt , t = 1,2, . . . ,241} is 0.6727;
while for the GP-INGARCH(1,1) model, the minimum is 0.6740. Thus estimators for GP models are valid. According to
comments in Section 2, for practical applications, this restriction is satisfied in most cases.

Based on AIC, we find that the Poisson INAR(1) and GP-INARCH(1) models are the best ones. Based on BIC, we find
that the Poisson INAR(1), Poisson and GP-INARCH(1) models are the best ones. Within these three fitted models, the mean,
variance and FOAC are summarized in Table 4. All three models exhibit good fits of mean and FOAC, but only the GP-
INARCH(1) model gives a reasonable fit of variance, which matches the underdispersed feature. Based on this fact, we
conclude that the GP model captures more characteristics of these data.

6. Conclusion

In this paper we introduce a GP-INGARCH model to account for both overdispersion and underdispersion. Conditions for
the existence and ergodicity of a GP-INGARCH process are given. The autocorrelation structure is analyzed and expressions
for moments of order 1 and 2 are also derived. The maximum likelihood estimators for the parameters are considered and
asymptotic properties of the estimators are established. We apply the proposed model to two real examples, which shows
that the proposed model not only has good performance in modeling overdispersed data but also has ability to model the
underdispersed phenomenon.
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Appendix A. Some conditional expectations

Part 1.
By (2.6) and (2.7) we have

E

(
1

∣∣∣∣ Ft−1

)
= 1 − φ − 1

, (A.1)

λt + (φ − 1)Xt λt φ[λt + (φ − 1)]
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E

(
1

[λt + (φ − 1)Xt]2

∣∣∣∣ Ft−1

)
= 1

λ2
t

− φ − 1

φλt[λt + (φ − 1)] − φ − 1

φ[λt + (φ − 1)]2

+ (φ − 1)2

φ2[λt + (φ − 1)][λt + 2(φ − 1)] . (A.2)

Part 2.
By (A.1) we have

E

(
Xt − 1

λt + (φ − 1)Xt

∣∣∣∣ Ft−1

)
= E

(
1

φ − 1

[
1 − λt + (φ − 1)

λt + (φ − 1)Xt

] ∣∣∣∣ Ft−1

)
= 1

φ
− 1

λt
, (A.3)

then from (A.3) we have

E

(
Xt(Xt − 1)

λt + (φ − 1)Xt

∣∣∣∣ Ft−1

)
= E

(
1

φ − 1

[
Xt − 1 − λt(Xt − 1)

λt + (φ − 1)Xt

] ∣∣∣∣ Ft−1

)
= λt

φ
. (A.4)

Part 3.
By (A.1) and (A.2) we have

E

(
X2

t

[λt + (φ − 1)Xt]2

∣∣∣∣ Ft−1

)
= E

(
1

(φ − 1)2

[
1 − λt

λt + (φ − 1)Xt

]2 ∣∣∣∣ Ft−1

)

= E

(
1

(φ − 1)2

[
1 − 2λt

λt + (φ − 1)Xt
+ λ2

t

[λt + (φ − 1)Xt]2

] ∣∣∣∣ Ft−1

)

= λt

φ[λt + (φ − 1)]2
+ λ2

t

φ2[λt + (φ − 1)][λt + 2(φ − 1)] , (A.5)

E
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[λt + (φ − 1)Xt]2

∣∣∣∣ Ft−1

)
= E

(
1

(φ − 1)2

[
1 − λt + (φ − 1)

λt + (φ − 1)Xt
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)

= E
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1
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[
1 − 2[λt + (φ − 1)]

λt + (φ − 1)Xt
+ [λt + (φ − 1)]2

[λt + (φ − 1)Xt]2

] ∣∣∣∣ Ft−1

)

= 1

λ2
t

− 1

φλt
+ 1

φ2
− φ − 1

φ2[λt + 2(φ − 1)] . (A.6)

Using the fact that 2(Xt − 1) = X2
t − (Xt − 1)2 − 1, then from (A.2), (A.5) and (A.6) we have

E

(
Xt − 1

[λt + (φ − 1)Xt]2

∣∣∣∣ Ft−1

)
= 1

φλt
− 1

λ2
t

− φ − 1

φ2[λt + 2(φ − 1)] . (A.7)

By (A.3), (A.6) and (A.7), it is easy to verify that

E
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Xt − 1

λt + (φ − 1)Xt
+ 1
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− 1

φ
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= 1
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φ2[λt + 2(φ − 1)] . (A.8)

Part 4.
By (A.3) and (A.7) we have

E
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t λt t
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Using the fact that Xt(Xt − 1)2 = (Xt − 1)2 + (Xt − 1)3, then from (A.6) and (A.9) we have

E

(
Xt(Xt − 1)2

[λt + (φ − 1)Xt]2

∣∣∣∣ Ft−1

)
= λt + 1

φ2
− 2(φ − 1)

φ2[λt + 2(φ − 1)] . (A.10)

Using the fact that Xt(Xt − 1) = (Xt − 1) + (Xt − 1)2, then from (A.6) and (A.7) we have
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By (A.4), (A.10) and (A.11), it is easy to verify that
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Part 5.
Using the fact that (Xt − 1)2 = Xt(Xt − 1) − (Xt − 1), then from (A.3) and (A.4) we have
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then from (A.6) and (A.13) we have
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By (A.4) we have
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Using the fact that X2
t (Xt − 1) = Xt(Xt − 1) + Xt(Xt − 1)2, then from (A.10) and (A.11) we have
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By (A.4), (A.14), (A.15) and (A.16), it is easy to verify that
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λt + (φ − 1)Xt
− Xt

φ
− Xt − λt

φ2

]2 ∣∣∣∣ Ft−1

)
= E

((
X2

t (Xt − 1)

[λt + (φ − 1)Xt]2
− Xt

φ2
− 2(Xt − λt)

φ3

) ∣∣∣∣ Ft−1

)

= 2λt

φ2[λt + 2(φ − 1)] . (A.17)
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