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We investigate the optimal rate of stabilization at large time of a solution to the
Neumann problem

ut= :

N

i=1

�
�xi

(ai (x, t, {u))&b(x, t, u), in 0_(0, T ), T>0

:

N

i=1

ai (x, t, {u) n i=0, on �0_(0, T)

u(x, 0)=u0(x) x # 0, u0(x)�0 in 0,

where 0/RN, N�2, is an unbounded domain with sufficiently smooth noncom-
pact boundary �0 satisfying certain isoperimetrical inequality and n=(ni) is the
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1. INTRODUCTION

In this paper we consider the following Neumann problem

ut= :
N

i=1

�
�x i

(a i (x, t, {u))&b(x, t, u), in D=0_(0, +�) (1)

:
N

i=1

ai (x, t, {u) ni=0, on �0_(0, +�) (2)

u(x, 0)=u0(x) in 0, u0(x)�0 in 0. (3)

Here 0/RN, N�2, is an unbounded domain with sufficiently smooth
noncompact boundary �0 and n=(ni) is the outward normal to �0.

The coefficients ai (x, t, !), i=1, 2, ..., N and b(x, t, u) are Carathe� odory
functions satisfying suitable growth conditions; moreover we assume that
the following ellipticity condition holds

:
N

i=1

ai (x, t, !) !i�&(x) �(t) |!|m+1 a.e. x # 0, t # ]0, +�[, \! # RN,

where &(x) and �(t) are nonnegative functions verifying additional condi-
tions to be made precise later on. The function b(x, t, u) is a lower order
term playing the role of absorption.

A typical example of (1) is the following equation

ut= :
N

i=1

�
�xi \ |x|% t} |{u| m&1 �u

�xi +&* uq,

where 0�%<m, 0�}<1, m>1, *�0 and q�1.
Our goal is to find the optimal bound of &u( } , t)&L�(0) for t large, where

u is a nonnegative solution of the above problem with initial datum belong-
ing to L1(0) or slowly decaying at infinity. Moreover, when b=0, m>1,
and u0 is compactly supported we establish a sharp bound of the interface.

The results presented here obviously hold for the Cauchy problem
corresponding to Eq. (1). Optimal bounds of maximum modulus of
solution to the Cauchy problem for nonstationary p-laplacian in the non-
weighted case can be found in [10, 14, 15]. Analogous results for a porous
medium equation are contained in papers [1, 7, 17].

Nonweighted parabolic Neumann problems in domains with noncom-
pact boundary and with L1-initial datum have been studied in [13] in the
linear case and in [5, 26] in the nonlinear one.
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For further literature concerning qualitative properties of solutions of
parabolic equations the reader can refer for instance to Kalashnikov's
survey [16]. Concerning the existence of weak solutions in weighted spaces
we quote, among others, the papers [9, 11, 19, 24].

Our approach relies on sharp energy estimates which are essentially
based on a sharp form of a weighted Gagliardo�Nirenberg embedding
result for a wide class of domains satisfying suitable isoperimetrical properties.

Let us briefly summarize the contents of the paper. After a section
devoted to the notations and the statements of the main results, we state
and prove an embedding theorem (see Section 3). Sections 4 and 5 contain
the proofs of the optimal bounds of the maximum modulus of a non-
negative solutions of the problem (1)�(3) with initial data respectively in
L1 and in L po & L� with po>1. In the last section we prove that a solution
of the above problem with m>1, b#0, and uo compactly supported has
the property of finite speed of propagation.

2. NOTATIONS, HYPOTHESES AND STATEMENTS OF THE
MAIN RESULTS

Let 0/RN, N�2, be an unbounded domain, containing the origin, with
sufficiently smooth and noncompact boundary �0. We denote by x#

(x1 , x2 , ..., xN) a point in 0.
As we have remarked in the Introduction, in order to prove the embedding

theorem (see the next section) we need some assumptions on the geometry
of 0; to this aim we introduce the function

L(V )=inf[measN&1(�Q & 0), Q/0 open with lipschitz boundary,

measN Q=V]

and we give the following

Definition 2.1. 0 belongs to the class B1(g) if there exists a positive,
nondecreasing function g # C(0, +�) such that V1&1�N�g(V) is nondecreasing
and

L(V)�g(V ) \V>0. (1)

The above definition implies the existence of two positive constants #1 , #2

such that

L(V )�#1V (N&1)�N for V small enough,
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and

L(V)�#2 for V sufficiently large.

The first estimate gives us back the classical isoperimetrical inequality in
the case of bounded domains with lipschitz boundary (see [21, p. 301]),
while the second one characterizes domains which do not contract at
infinity.

Let us note, moreover, that examples of domain which do not satisfy
condition (1) for small V can be found in [21, pp. 10, 164].

Given R>0, let

0R=0 & [x # RN : |x|<R]

and

V(R)=measN 0R .

Let us denote by R the inverse function of V(R).

Definition 2.2. 0 belongs to the class B2(g) if 0 # B1(g) and there
exists a constant c0>0 such that

R(V )�c0

V
g(V )

\V>0. (2)

Domains belonging to classes similar to B1(g), B2(g) were considered by
Gushchin [12, 13] and subsequent papers.

It is easy to prove that if 0 # B1(g) then

R(V )�N
V

g(V )
\V>0. (3)

Thus, assuming 0 # B2(g) essentially amounts to requiring that the
volume V(\) is equivalent to \g(V(\)). As a matter of fact 5 and 6 are
equivalent to

(1�N) \g(V(\))�V(\)�(1�c0) \g(V(\)) \\>0. (4)

Moreover, from (4) it follows that |0|=+�, otherwise we would get a
contradiction letting \ � +� in (4).

An example of domain of class B2(g) (and then of class B1(g)) is the
paraboloid-like domain

0h=[x # RN : |x$|<xh
N],
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where |x$|=(x2
1+ } } } +x2

N&1)1�2, xN>1, 0�h�1 (note that 00 is a cylinder
and 01 is a cone). In this case (see [5])

g(V)=# min(V (N&1)�N, V '), '=
h(N&1)

h(N&1)+1
�

N&1
N

.

Let now &(x) be a nonnegative function in 0 and &~ (s) be the decreasing
rearrangement of 1

&(x) . We assume that

&(x) # L�
loc(0), (5)

lim
R � +�

sup02R"0R
&(x)

Rm =0 (6)

1
&(x)

# L:(0), 1+
1
:

<m+1<N, :�
N

m+1
(7)

_}1 # &0,
m+1

N _ such that h}1
(s)=s}1&~ (s) is nondecreasing in

]0, +�[. (8)

Also, let �: ]0, +�[ � R be a monotone nondecreasing function such
that

� # L1(0, T ) \T>0. (9)

Set

�� (t)=|
t

0
�(s) ds.

Assumptions (5), (7), and (9) are classical in the theory of weighted
parabolic equations (see [22]); technical assumption (8) implies that &~ (s)
have power-like behavior and it is necessary, at least for power-like weight
(see [8]); moreover hypothesis (6) will be used to obtain a mass estimate
(see Corollary 4.1 later on).

Let ai (x, t, !), i=1, 2, ..., N be Carathe� odory functions in 0_RN+1 such
that the following structural assumptions are satisfied a.e. (x, t) # 0_R,
\!, ' # RN:
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ai (x, t, 0)=0 i=1, 2, ..., N, (10)

:
N

i=1

(a i (x, t, !)&ai (x, t, '))(!i&'i)�&(x) �(t) |!&'|m+1, (11)

:
N

i=1

|ai (x, t, !)&ai (x, t, ')|�&(x) �(t)( |!|+|'| )m&1 |!&'| , (12)

where m>1.
Let b(x, t, /) be a Carathe� odory function in 0_R2 such that the following

assumptions are satisfied a.e. (x, t) # 0_R, \/, /~ # R:

b(x, t, 0)=0, (13)

(b(x, t, /)&b(x, t, /~ ))(/&/~ )�_ |/&/~ | q+1, (14)

where q>1 and _ is a positive constant.
The previous assumptions are classical in the theory of parabolic

equations with general coefficients and are satisfied, for example, if we take

ai (x, t, !)=&(x) �(t) |!|m&1 !i i=1, 2, ..., N,

b(x, t, /)=|/|q&1 /.

In order to give the definition of weak solution of the problem (1)�(3) we
have to specify the functional setting we shall use.

Let p, #�1; then W 1, 0
p, #(&, 0) is the space of functions u for which the

norm

&u&W p, #
1, 0(&, 0)=\|0

|u| # dx+
1�#

+\|0
&(x) |{u| p dx+

1�p

is finite. W 1, 0
p, #(&�, DT) is the space of functions u for which the norm

&u&W p, #
1, 0(&�, DT)=\|DT

|u| # dx dt+
1�#

+\|DT

&(x) �(t) |{u| p dx dt+
1�p

is finite. W 1, 1
p, #(&�, DT) is the space of functions u for which the norm

&u&W p, #
1, 1(&�, DT)=\|DT

( |u| #+|ut | #) dx+
1�#

+\|DT

&(x) �(t) |{u| p dx+
1�p

is finite. Due to assumptions (5), (7), and (9) the above weighted Sobolev
spaces are Banach spaces (see [22]).
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Now, we are in position to give the definition of a weak solution of
problem (1)�(3).

Let DT=0_(0, T ), T>0, u0 # L p0(0) & L�(0), u0�0 a.e. in 0 and
p0�1.

Definition 2.3. Let 1�p0�2. A weak solution of the problem (1)�(3)
in DT is a nonnegative function u # W 1, 0

m+1, 2(&�, DT) & L�(DT) such that

|
DT
_&uvt+ :

N

i=1

ai (x, t, {u) vxi
+b(x, t, u) v& dx dt=|

0
u0(x) v(x, 0) dx

(15)

holds for any v # W 1, 1
m+1, 2(&�, DT) such that v(x, T )=0.

A weak solution of the problem (1)�(3) in D is a weak solution of the
problem (1)�(3) in DT for any T>0.

Definition 2.4. Let p0>2. A weak solution of the problem (1)�(3) is
a nonnegative function u # W 1, 0

m+1, po
(&�, DT) & L�(DT) such that the iden-

tity (15) is satisfied for any v # W 1, 1
m+1, p$0

(&�, DT) such that v(x, T )=0.
A weak solution of the problem (1)�(3) in D is a weak solution of the

problem (1)�(3) in DT for any T>0.

Under the hypotheses (5), (7), (9), (10)�(14) the existence of a solution
u of the problem (1)�(3) follows from the results of [9, 11, 18�20, 23].

Now, let us denote by J&1 the inverse function of

J(V )=Vm&1 _ V
g(V)&

m+1

&~ (V ). (16)

The following theorem concerns the large time behavior of a nonnegative
solution of the problem (1)�(3) with initial datum in L1.

Theorem 2.1. Let 0 # B1(g). Assume that hypotheses (5)�(14) hold and
let u(x, t) be a solution of the problem (1)�(3) in DT and u0 # L1(0) &

L�(0). Then there exist two positive constants C1 , 1 such that for any t>0
the following estimate is true

&u( } , t)&L�(0)�C1 min \ &u0&L1(0)

J &1(1�� (t) &u0&
m&1
L1(0))

, t&1�(q&1)+ . (17)
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Remark 2.1. We point out that, using approximation arguments, the
above theorem still holds under the assumption u0 # L1(0).

Moreover, when 0 # B2(g) the result of the previous theorem can be
sharpened (see Theorem 4.1).

If we take 0#0h, &(x)=|x| %, 0�%<m, m+1
N > %

h(N&1)+1 , �(t)=t},
0�}�1, u0 # L1(0h) & L�(0h), u0�0 then Theorem 2.1 implies that for
all t>1

&u( } , t)&L�(0)�C(N, m) &u0& (m+1&%)�K
L1 t&*, if *>

1
q&1

(18)

while

&u( } , t)&L�(0)�C(N, m) t&1�(q&1) if *<
1

q&1
(19)

where

*=
(1+})[1+(N&1) h]

K

and

K=K(h, %)=(m&1)[1+(N&1) h]+m+1&%.

We notice that the number q* defined by the relationship *= 1
q*&1 plays

the role of critical exponent for the problem (1)�(3). Moreover, we note
that K(1, 0)=(m&1) N+m+1 is the well-known Barenblatt's exponent
and the expression (18) when %=0, }=0, h=1 is the same as that
obtained in [14].

In the case }=0 and h=1 formula (18) was given in [25] for a solution
to the Cauchy problem, while for }=0, %=0 it was proven in [5].

Let us also remark that (18) provides sharp dependence of maximum
modulus of a solution on the parameters of the problem, i.e. on &(x), �(t),
m and the geometry of 0h when b#0 (see Corollary 6.1).

Now let us set

Jp0
(s)=s(m&1)�p0 _ s

g(s)&
m+1

&~ (s), \s>0. (20)

If the initial datum belongs to L p0(0) & L�(0), p0>1, we can prove the
following
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Theorem 2.2. Let 0 # B1(g). Assume that hypotheses (5)�(14) hold and
let u(x, t) be a solution of the problem (1)�(3) in DT and u0 # L p0(0) &

L�(0), p0>1. Then, there exist two positive constants C2 , 4 such that for
any t>0

&u( } , t)&L�(0)�C2

&u0&L1(02R� (t))

J &1(1�� (t) &u0&
m&1
L1(02R� (t))

)
, (21)

where R� (t) is defined by the relationship

&u0&L1(02R� (t))

J &1(1�� (t) &u0&
m&1
L1(02R� (t))

)

=
&u0&Lp0(0"0R� (t))

J &1
p0

(4�� (t) &u0&
m&1
Lp0(0"0R� (t))

)1�p0
. (22)

Remark 2.2. When 0 belongs to the class B2(g) the result of the
previous theorem can be sharpened (see Theorem 5.1). Moreover, in the
particular case 0#0h, &(x)=|x|% with 0�%<m, m+1

N > %
h(N&1)+1 �(t)=

t}, u0(x)=(1+|x| )&;, 0<;<1+(N&1) h (see also Remark 5.2), for any
t>1 we have

&u( } , t)&L�(0)�#1 t&*;, (23)

where

*=
1+}

m+1&%+;(m&1)
.

Let us note that if }=%=0, then (23) can be rewritten as

&u( } , t)&L�(0)�#1 t&;�(m+1+;(m&1))

and the above estimate reduces to the results of [15, 26].

Let us denote

Z(t)=inf[\>0 : supp u( } , t)/0\].

Obviously, Z(t) gives a measure of the speed of propagation of the
support of u. When m>1 and the initial datum has compact support we
shall prove the property of finite speed of propagation for a solution of
problem (1)�(3) without an absorption term. As a matter of fact in Section
6 we prove the following
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Theorem 2.3. Let the hypotheses of Theorem 2.1 be satisfied and b#0.
Let supp uo /BR0

. Then for all t>0

Z� (t)�C3(Z� (0)+G0(J&1(�� (t) &u0&m&1
L1(0)))), (24)

where

Z� (t)=
Z(t)

(sup02Z(t)
&(x))1�(m+1)

and

G0(s)=
s

g(s)
(&~ (s))1�(m+1).

3. AN EMBEDDING RESULT

The description of the geometrical characteristics of the domain via
isoperimetrical properties allows us to use naturally the symmetrization
approach to prove an embedding result. This approach seems to be the
most suitable for domains with noncompact boundary.

The following embedding lemma, which has interest in itself, will be
crucial in the proofs of Theorems 2.1 and 2.2; the nondegenerate case has
been considered in [27].

For the sake of simplicity, from now on we will always denote by c a
positive constant, depending only on the data, which may vary from line
to line.

Lemma 3.1. Let 0 # B1(g) and &(x) satisfy the condition (5) and

1
&(x)1�( p&1) # L1

loc(0). (1)

Assume, moreover, that there exist constants %, #0>0, with 1<%<p<N,
such that

|
s

0
&~ ({)%�( p&%) d{�#0s&~ (s)%�( p&%) \s>0. (2)

Then for any u # W 1, 0
p, p(&, 0) & L;(0), 0<;<q� N%

N&% the inequality

I�#�
E p�q

q

G1(E q�(q&;)
; �E ;�(q&;)

q )
(3)
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holds, where

I=|
0

&(x) |{u| p dx, E#=|
0

|u| # dx,

G1(s)=s p�q&1 _ s
g(s)&

p

&~ (s),

provided G1 is increasing.
If %�;, #� depends only on %, #o , N.

Proof. We first prove the theorem in the case %<q� N%
N&% .

Following the paper [3], we can construct for any s # (0, +�) a
measurable set D(s)/0 such that

(i) measN D(s)=s,

(ii) s1<s2 O D(s1)/D(s2),

(iii) D(s)=[x # 0 : |u(x)|>r] for s=+(r),

where +(r)=measN[ |u(x)|>r] is the distribution function.
Moreover, there exists &

�
(s)>0, s>0, such that

|
D(s)

1
&(x)1�( p&1) dx=|

s

0

1
&
�
({)1�( p&1) d{. (4)

Let us denote by u*(s) the decreasing rearrangement of u(x); i.e.,

u*(s)=inf[{>0 : +({)<s],

and observe that if %<q then

Eq=|
+�

0
[u*(s)]q ds�c \|

+�

0
[u*(s)]% s%�q&1 ds+

q�%

. (5)

For any fixed k>0, to be chosen later on, we have

|
+�

0
[u*(s)]% s%�q&1 ds=|

+(k)

0
[u*(s)]% s%�q&1 ds+|

+�

+(k)
[u*(s)]% s%�q&1 ds

#A1+A2 . (6)
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In order to estimate A1 we integrate between 0 and +(k) the identity

d
d_ \u*(_)% |

_

0
s%�q&1 ds+

=%(u*(_))%&1 du*(_)
d_ |

_

0
s%�q&1 ds+(u*(_))% _%�q&1,

then we use Young and Chebychev inequalities and known properties of
rearrangements so that

A1�c _|
+(k)

0 \&
du*(_)

d_ +
%

_%�q+%&1 d_++(k)%�q&%�; E %�;
; &

#c[A3+A4]. (7)

Discriminating the cases %<; and %�;, one can easily prove that

A2�c+(k)%�q&%�; E %�;
; (8)

(the constant c in (8) equals 1 if %�;).
Applying Ho� lder's inequality we can estimate A3 getting

A3�\|
+(k)

0 \&
du*(_)

d_ +
p

(g(_)) p &
�
(_) d_+

%�p

_\|
+(k)

0

_(%�q+%&1) p�( p&%)

(g(_)) p%�( p&%) &
�
%�( p&%)(_)

d_+
1&%�p

. (9)

Let us prove now that

|
+�

0 \&
du*(_)

d_ +
p

(g(_)) p &
�
(_) d_�I. (10)

Working as in [3] we get

1
h |

[{<|u|�{+h]
|{u| dx�\1

h |
[{<|u| �{+h]

&(x) |{u| p dx+
1�p

_\1
h |

[{<|u|�{+h]
&(x)&1�(p&1) dx+

( p&1)�p

\h>0.
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Letting h � 0 it follows that

&
d
d{ |

[ |u|>{]
|{u| dx�\&

d
d{ |

[{< |u|]
&(x) |{u| p dx+

1�p

_\&
d
d{ |

[{<|u|]
&(x)&1�( p&1) dx+

( p&1)�p

. (11)

By the definition of &
�
(s) we have

&
d
d{ |

[{<|u|]
&(x)&1�( p&1) dx=&+$({)

1
[&

�
(+({))]1�( p&1) . (12)

On the other hand by the isoperimetrical property of 0 and the
Rishel�Fleming formula we deduce

g(+({))�L(+({))�&
d
d{ |

[{<|u|]
|{u| dx,

so, from (11) and (12), it turns out that

(g(+({))) p &
�
(+({)) \&

d+({)
d{ +

&( p&1)

�&
d
d{ |

[{<|u|]
&(x) |{u| p dx.

Integrating in ]0, +�[ the above inequality and using the identity

d+({)
d{

=
1

d
d{

(u*(+({)))

we obtain (10).
Now, by virtue of Lemma 2.2 in [3] there exists a sequence [&n] such

that

\ 1
&n+

*
=\ 1

&(x)+
*

a.e. (13)

and

|
+(k)

0

ds
(&

�
(s))%�( p&%) ds= lim

n � +� |
+(k)

0

ds
(&n(s))%�( p&%) . (14)
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Thus from (13) and (14) and our hypotheses on the weight & we infer

|
+(k)

0

ds
(&

�
(s))%�( p&%) ds�#0 +(k)(&~ (+(k)))%�( p&%). (15)

The monotonicity of the function

s(%�q+%&1) p�( p&%)

(g(s)) p%�( p&%) ,

along with inequalities (9), (10), and (15) implies

A3�cI %�p (+(k))%�q+%&%�p

(g(+(k)))% (&~ (+(k)))%�p. (16)

From (5), (7), (8), and (16) we deduce

Eq�c _I %�p ( +(k))%�q+%&%�p

(g(+(k)))% ((&~ (+(k)))%�p++(k)%�q&%�;E %�;
; &

q�%

�c _I 1�p (+(k))1�q+1&1�p

g(+(k))
((&~ (+(k)))1�p++(k)1�q&1�; E 1�;

; &
q

=c[(IG1(+(k)))1�p+(+(k))1�q&1�; E 1�;
; ]q. (17)

Now we choose k such that

I1�p(G1(+(k))1�p=+(k)1�q&1�; E 1�;
;

or, equivalently,

+(k)=8&1 \
E p�;

;

I + ,

where 8(s)=G1(s)�s p�q& p�; and 8&1(s) is its inverse function.
Substituting the above value in (17) we complete the proof in the case

q>%.
To achieve the complete proof we argue in the following way: let q1 be

such that ;<q1�% and choose q>%; note

q1=q
q1&;
q&;

+;
q&q1

q&;
.
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Applying Ho� lder's inequality we deduce

Eq1
�E (q1&;)�(q&;)

q E (q&q1)�(q&;)
; . (18)

The thesis now follows immediately from the first part of the theorem
and monotonicity of the right-hand side of (3) with respect to Eq .

Remark 3.1. The assumption (1) and that on the monotonicity of G1

will be fulfilled in the instances of application of Lemma 3.1, as a
consequence of (7), (8) and our choice of the parameters p, q, ;, %.

Remark 3.2. Assume that &(x) satisfy conditions (8); then

|
s

0
&~ ({)N�(m+1) d{�#0s&~ (s)N�(m+1) \s>0 (19)

with #0=1�(1&}1
N

m+1).

Remark 3.3. If 0=01 and &(x)#1 then inequality (3) is the classical
Nirenberg�Gagliardo inequality.

4. PROOF OF THEOREM 2.1

Before proving Theorem 2.1 let us premise some auxiliary results useful
in the remainder of the paper.

Proposition 4.1. Let u be a weak solution of the problem (1)�(3).
Assume that hypotheses (5), (7), and (9) hold. Let

supp u0 /BRo
.

Then for any t>0 there exists a positive constant c, depending on
&u( } , t)&� too, such that the estimate

HR(t)�e &u0&
2
2, 0 exp {&c _\(R&Ro)m+1

t�(t) '(R) +
1�m

&= \R>Ro (1)

holds, where

HR(t)=|
0"0R

u2 dx+|
t

0
|

0"0R

&(x) �({) |{u|m+1 dx d{

and

'(R)= sup
02R"0R

&(x).
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Proof. Let R>Ro , \ # ]0, R], and

0 if |x|�R

!(x)={ |x|&R
\

if R<|x|<R+\

1 if |x|�R+\.

Choosing !m+1( |x| ) u as a test function in the weak formulation of
problem (1)�(3) we obtain:

1
2 |

0
u2!m+1 dx+|

t

0
|

0
:
N

i=1

ai uxi
!m+1 dx d{+|

t

0
|

0
b!m+1u dx d{

=&(m+1) |
t

0
|

0
:
N

i=1

ai !xi
!mu dx d{.

Using Young's inequality and growth conditions in the right hand side
of the previous inequality we have

1
2 |

0
u2!m+1 dx+|

t

0
|

0
&(x) �({) |{u|m+1 !m+1 dx d{

�c=(m+1)�m |
t

0
|

0
&(x) �({) |{u|m+1 !m+1 dx d{

+c=&(m+1) |
t

0
|

0
&(x) �({) |u|m+1 |{!| m+1 dx d{.

Hence, for =>0 sufficiently small, we obtain

HR+\(t)�c
'(R)
\m+1 |

t

0
�({)(M({))m&1 HR({) d{, (2)

where

M(t)=sup
0

u(x, t).

By the maximum principle (its formal proof can be readily carried out as
in [28], Proposition 2) there exists a constant Mo>0 such that

M(t)�Mo \t # (0, T )
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and, from (2), we obtain

HR+\(t)�cM m&1
o

'(R)
\m+1 |

t

0
�({) HR({) d{. (3)

Let us absorb, for the sake of simplicity, Mo in the generic constant c.
Let us prove, by induction, the following inequality

HRo+k\(t)�ck &u0&2
2

(t�(t))k

\ (m+1) kk !
['(R)]k. (4)

Taking u as a test function in the weak formulation of problem (1)�(3),

HRo
(t)�c &u0&2

2 (5)

easily follows, which proves (4) for k=0.
Let us assume that inequality (4) holds for some integer k>0. By virtue

of (3) and using (4), we can obtain

HRo+(k+1) \(t)�c
'(R)
\m+1 |

t

0
�({) HRo+k\({) d{

�ck+1 &u0 &2
2

(t�(t))k+1

\(m+1)(k+1)(k+1)!
['(R)]k+1.

Then, inequality (4) holds for any integer k>0.
Let k�1. Choosing in (4) \=(R&Ro )�k we obtain

HR(t)�ck &u0&2
2

k(m+1) k[t�(t)]k

(R&Ro)(m+1) k k !
['(R)]k.

From this inequality and also using Stirling's formula it follows that

HR(t)�&u0&2
2 exp {&k log

c(R&Ro)m+1

et�(t) '(R) km= . (6)

Now, if

c(R&Ro)m+1

et�(t) '(R)
�exp(1)
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the estimate (1) easily follows from (5). Otherwise, we can obtain (1) from
(6) taking as k the integer part of

{c(R&Ro)m+1

e2t�(t) '(R) =
1�m

.

Corollary 4.1 (Mass estimate). Let u be a weak solution of the problem
(1)�(3). Assume that hypotheses (5)�(7) and (9) hold and supp u0 /BRo

.
Then, \t>0

|
0

u(x, t) dx�|
0

u0(x) dx. (7)

Proof. Let R>0, t>0 and u(x, {) be a solution of problem (1)�(3).
Taking

0 if x # 0R

!R(x)={ |x|&R
R

if x # 02R "0R

1 if x # 02R

as a test function in the weak formulation of problem (1)�(3), we have

|
t

0
|

0
u{!R dx d{+|

t

0
|

0
:
N

i=1

a i (x, {, {u)(!R)xi
dx d{

+|
t

0
|

0
b(x, {, u) !R dx d{=0. (8)

Using the growth condition (12) and Holder's inequality (with exponents
m+1 and m+1

m ), it follows that

} |
t

0
|

0
:
N

i=1

a i (x, {, {u)(!R)xi
dx d{ }

�
c
R

(HR(t))m�(m+1) \|
t

0
|

02R"0R

&(x) �({) dx d{+
1�(m+1)

�c(HR(t) RN�m)m�(m+1) \t�({) '(R)
Rm+1 +

1�(m+1)

. (9)
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By means of Proposition 4.1 we obtain the following estimate

HR(t) RN�m�c &u0&2
2, 0 exp {&# _(R&Ro)m+1

t�(t) '(R) &
1�m

=
__ Rm+1

t�(t) '(R)&
N�m

_t�(t) '(R)
Rm &

N�m

. (10)

Therefore, from (9), (10) and by virtue of hypothesis (6) we obtain

lim
R � +� |

t

0
|

0
:
N

i=1

ai (x, {, {u)(!R)xi
dx d{=0.

Letting R � +� in (8), (7) easily follows.
The next lemma will be crucial in the proof of Theorem 2.1.
Let us denote by #� the constant involved in (3) with %= N(m+1)

N+m+1 and
#0=1�(1&}1N�(m+1)). Moreover, for any r�1 we set

1(r)=#� (m&1)(r+1) \m+1
r+m+

m+1

. (11)

Lemma 4.1. Let 0 # B1(g) and u(x, t) be a weak solution of problem
(1)�(3) in DT . Suppose that hypotheses (5)�(9) are satisfied. Then, for any
integer r�1 the inequalities

\|0
ur+1 dx+

1�(r+1)

�
&uo&1, 0

(J &1(1(r) �� (t) &uo &m&1
1, 0 ))r�(r+1)

, (12)

\|0
ur+1 dx+

1�(r+1)

�cr�(r+1) &uo&1�(r+1)
1, 0 t&(r�(r+1))(1�(q&1)) (13)

hold, where c is a positive constant, independent of r, and J(s) is the function
defined in (16).

Proof. Let r�1; multiplying by both sides of Eq. (1) by ur and integrating
on 0, we get

d
dt |

0
ur+1 dx=&r(r+1) |

0
:
N

i=1

ai (x, t, {u) uxi
ur&1dx

&(r+1) |
0

b(x, t, u) ur dx. (14)
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Using the ellipticity and growth conditions, together with the identity

|{u|m+1 ur&1=\m+1
m+r+

m+1

|{u(r+m)�(m+1)|m+1

we obtain

d
dt |

0
ur+1 dx�&r(r+1) \m+1

r+m+
m+1

�(t) |
0

&(x) |{u(r+m)�(m+1) |m+1,

(15)

d
dt |

0
ur+1 dx�&c(r+1) |

0
uq+r dx. (16)

Now, let us estimate the right-hand side of (15) by applying Lemma 3.1
(with p=m+1, q= m+1

m+r (r+1), %= N(m+1)
N+m+1 , *= (m+1)(r+1)

m+r , ;= m+1
r+m) to the

function u(r+m)�(m+1) and also by using the mass estimate (7). Thus it
follows that

dEr+1

dt
�&r

1(r)
m&1

�(t)[Er+1(t)] (m+r)�(r+1)

G1(&uo& (r+1)�r
1, 0 �Er+1(t)1�r)

. (17)

If we set

w(t)=
&uo& (r+1)�r

1

E 1�r
r+1(t)

we can rewrite (17) as

wm&2G� 1(w) dw�
1(r)

m&1
�(t) &uo&m&1

1, 0 dt, (18)

where

G� 1(s)=_ s
g(s)&

m+1

&~ (s).

Integrating the last inequality between w(0) and w(t) we obtain

J(w)�1(r) �� (t) &uo&m&1
1, 0
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which may be rewritten as

&uo& (r+1)�r
1, 0

Er+1(t)1�r �J&1(1(r) �� (t) &uo&m&1
1, 0 ). (19)

From the last inequality immediately (12) follows.
Let us prove (13).
Applying the Holder's inequality and the mass estimate (7) we get

|
0

ur+1 dx�&uo& (q&1)�(q+r&1)
1, 0 \|0

uq+r dx+
r�(q+r&1)

.

Using this inequality we can estimate the right-hand side of (16) from
above obtaining

d
dt |

0
ur+1 dx�&c(r+1) &uo&&(q&1)�r

1, 0 \|0
ur+1 dx+

(q+r&1)�r

and (13) easily follows integrating the above formula.

Proof of the Theorem 2.1. First of all we notice that letting r � +� in
(13) we get

&u( } , t)&L�(0)�ct&1�(q&1), \t>0. (20)

Let

pk=(m+1)k&
1
m

, k=1, 2, ... .

Then

pk+m
m+1

= pk&1+1.

Let us denote

Ek(t)=|
0

u(x, t) pk+1 dx,

E� k(t)=&uo& pk+1
1 A pk+1

k (J &1(1�� (t) &uo&m&1
1 ))&pk,
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where

1=
(m&1) #�

2m+1 ,

Ak= `
k

i=1

(%o p%1
i )1�( pi+1),

with %0 , %1>1 constants to be chosen later on.
Our goal will be to prove that for any t>0 and k�1 it holds that

E� k(t)�Ek(t). (21)

In fact, once inequality (21) is achieved, since

`
k

i=1

(%o p%1
i )1�( pi+1)�exp \ :

+�

i=1

1
pi+1

log(%o p%1
i )+ ,

letting k � � we will obtain

&u( } , t)&L�(0)�c &uo&1 (J &1(1�� (t) &uo&m&1
1 ))&1. (22)

Comparing estimates (20) and (22) we will get (17).
We now proceed by induction on k: the validity of (21), for k=1,

follows from Lemma 4.1, since 1( p1)>1 and A1>1.
Rewriting (15) for r= pk+1 and manipulating therein the constants we

can deduce

dEk+1

dt
� &

1
pm&1

k+1

�(t) Jk (t), (23)

where

Jk(t)=|
0

&(x) |{u(x, t) pk+1| m+1 dx.

From the interpolation Lemma 3.1 it follows that

Jk(t)�#�
E (m&1)�( pk+1& pk)+1

k+1 (t)

E (m&1)�( pk+1& pk)
k (t) G� 1(E ( pk+1+1)�( pk+1& pk)

k (t)�E ( pk+1)�( pk+1& pk)
k+1 (t))

.

(24)
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Now we set

w(z)=_z(N&1)�N

g(z) &
m+1

&~ (z),

*k=
m&1

pk+1& pk
+1+

pk+1
pk+1& pk

m+1
N

,

;k=
m&1

pk+1& pk
+

pk+1+1
pk+1& pk

m+1
N

.

Working as in [5], from (24) we deduce

Jk(t)�#�
(Ek+1(t))*k

(Ek(t));k w(E ( pk+1+1)�( pk+1& pk)
k (t)�E ( pk+1)�( pk+1& pk)

k+1 (t))
. (25)

With the help of Ho� lder's inequality, mass estimate (7), and the inductive
hypothesis we infer

Jk(t)�#�
(Ek+1(t))*k

(E� k(t));k w(&u0 & ( pk+1+1)�( pk+1)
1 �E 1�pk+1

k+1 (t))
.

Therefore from (23) we get

dEk+1

dt
� &

#�

pm&1
k+1

�(t)
E *k

k+1

(E� k(t));k w(&u0 & ( pk+1+1)�pk+1
1 �Ek+1(t)1�pk+1)

. (26)

If we set

fk (t)=
&u0 & ( pk+1+1)�pk+1

1

Ek+1(t)1�pk+1
,

from (26) it turns out that

w( fk(t))( fk(t)) pk+1 *k& pk+1&1 dfk�
#�

pm
k+1

�(t)
&u0& ( pk+1+1)(*k&1)

1

(E� k(t));k
dt. (27)

We notice that assumption (8) and the monotonicity property of
s1&1�N�g(s) (recall the definition of the class B1(g) ) imply the monotonicity
of the function w(s) s}1; moreover, there exists }2>0 such that the function
s}2�J&1(s) is nondecreasing (we can take }2=m&1+(m+1)�N&}1).
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These two facts give

|
fk(t)

fk(0)
w(s) s pk+1(*k&1)&1 ds�

w( fk(t))( fk(t)) (*k&1) pk+1

(*k&1) pk+1&}1

,

|
t

0
�({)(E� k ({))&;k d{�A&;k( pk+1)

k &u0&&( pk+1) ;k
1

(J&1(a(t))) pk ;k

(�� (t)) pk ;k }2
(28)

_|
t

0
�({)(�� ({)) pk ;k }2 d{,

where

a(t)=1�� (t) &u0&m&1
1 .

Moreover, we have

|
t

0
�({)(�� ({)) pk ;k }2 d{=

(�� (t))}2 ;k pk+1

}2 ;k pk+1

and also

|
t

0
�({)(E� k({))&;k d{�

A&;k( pk+1)
k

1+}2 pk ;k
&u0&&;k ( pk+1)

1 (J &1(a(t))) pk ;k �� (t).

(29)

Integrating (27) and using inequalities (28) and (29) we have

w( fk(t))( fk(t))(*k&1) pk+1�
#�

pm
k+1

(*k&1) pk+1&}1

1+}2 ;k pk
&u0 &m&1

1

_A&;k( pk+1)
k (J &1(a(t)));k pk �� (t). (30)

Let ,(z)=w(z) z pk+1(*k&1). Then from (30) it turns out that

fk(t)�.&1[c(m, N ) A&;k( pk+1)
k p&m

k+1(J&1(a(t)));k pk a(t)], (31)

where

c(m, N )=
m&1
2m+1

m+1
N+}2(m+1)

<1.

Since the function

s1�( pk+1(*k&1))�.&1(s)
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is nondecreasing, it follows that

.&1($s)�$1�( pk+1(*k&1)).&1(s), \0<$<1.

Therefore, from (31), after calculations we obtain

Ek+1(t)�
&uo& pk+1+1

1

[J&1(a(t))] pk+1 [Ak[(1�_)1�N pm�N
k+1]1�( pk+1+1)] pk+1+1

whence the estimate (21) follows by choosing

%o=(1�_)1�N, %1>1.

If 0 # B2(g) then the result of Theorem 2.1 can be sharpened as the
following theorem shows.

Theorem 4.1. Let 0 # B2(g) and the hypotheses of Theorem 2.1 be
satisfied.

Assume the function

R(s)
s1�N

is nondecreasing in ]0, +�[.
Then, there exist two positive constants C3 , 1 such that for any t>0 the

estimate

&u( } , t)&�, 0�C3 min \ &uo&1, 0

P&1(1�� (t) &uo&m&1
1, 0 )

, t&1�(q&1)+
holds, where P&1(s) is the inverse function of

P(s)=sm&1Rm+1(s) &~ (s). (32)

Proof. We can proceed as in the proof of Theorem 2.1, after observing
that, due to (2), inequality (18) may be replaced by

wm&2(t) Rm+1(w(t)) &~ (w(t)) dw�
cm+1

0 1(r)
m&1

�(t) &u0&m&1
1, 0 dt.

Since the function

R(s)
s1�N
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is nondecreasing, then the function

Rm+1(s) &~ (s)

is also nondecreasing and from the above inequality we obtain

Rm+1(w(t)) &~ (w(t))(w(t))m&1�cm+1
0 1(r) &u0&m&1

1, 0 |
t

0
�({) d{.

Now the thesis readily follows.

5. PROOF OF THEOREM 2.2

Before going into the details of the proof the following technical results
will be useful.

Proposition 5.1. Let u1(x, t) and u2(x, t) be solutions of problem
(1)�(3) with initial data uo1(x), uo2(x) # L p0 & L�(0). Assume that
hypotheses (10)�(14) hold. If u01(x)�u02(x) for a.e. x # 0, then u1(x, t)�
u2(x, t).

Proof. The proof follows immediately taking as a test function in the
weak formulation of problem (1)�(3) (w+(x, t)) po&1, where

w(x, t)=u1(x, t)&u2(x, t).

Proposition 5.2. Under the same assumptions of Proposition 5.1, for
any p�po&1 and t>0 we have

|
0

|w| p+1 dx+# |
t

0
|

0
|w| p+q dx dt�|

0
|u01&u02 | p+1 dx, (1)

where w(x, t)=u1(x, t)&u2(x, t).

Proof. It is sufficient to take |w| p&1 w as a test function in the weak
formulation of problem (1)�(3).

Lemma 5.1. Let 0 # B1(g). Assume hypotheses (5)�(9), (11), (14) be
satisfied. Let ui (x, t), i=1, 2, be solutions of the problem (1)�(3) in DT

278 ANDREUCCI ET AL.



respectively with initial data u0i # Lp0(0) & L�0, p0>1, i=1, 2. Then there
exist C4 , C5 , 4>0 such that for any t>0 the inequalities

&u1( } , t)&u2( } , t)&L�(0)

�C4

&u01&u02&Lp0 (0)

[J &1
p0

(4�� (t)(&u01&u02&Lp0 (0))
m&1)]1�p0

(2)

&u1( } , t)&u2( } , t)&L�(0)�C5t&1�(q&1) (3)

hold, where Jp0
is the function defined in (20).

Proof. Set w(x, t)=u1(x, t)&u2(x, t); let us multiply both sides of (1)
by v(x, t)=|w(x, t)| r, r>0, and integrate.

Thus it turns out that

d
dt |

0
|w| r+1 dx+(r+1) r |

0 _ :
N

i=1

(a i (x, t, u1)&a i (x, t, u2)) wxi
|w| r&1& dx

+(r+1) |
0

(b(x, t, u1)&b(x, t, u2)) |w| r dx=0. (4)

Due to hypotheses (11) and (14) we get

d
dt |

0
|w| r+1 dx+r(r+1) \m+1

m+r+
m+1

�(t) |
0

&(x) |{w(r+m)�(m+1)| m+1 dx

+_(r+1) |
0

|w| r+q dx�0. (5)

Thus

d
dt |

0
|w| r+1 dx� &r(r+1) \m+1

m+r+
m+1

_�(t) |
0

&(x) |{w(r+m)�(m+1)|m+1 dx, (6)

d
dt |

0
|w| r+1 dx� &(r+1) _ |

0
|w| r+q dx. (7)

As in the proof of Theorem 2.1, inequality (7) implies the estimate (3).
Now, setting

E#(t)=|
0

|w| # dx
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and estimating the right-hand side of (6) by applying Lemma 3.1 to the
function w(r+m)�(1+m) with

p=m+1, q=
(r+1)(m+1)

m+r
, ;=

(m+1) p0

r+m
, %=

N(m+1)
m+1+N

we deduce

d
dt

Er+1(t)� &
r1(r)
m&1

�(t)(Er+1(t)) (r+m)�(r+1)

G1((Ep0
(0)) (r+1)�(r+1& p0)�(Er+1(t)) p0�(r+1& p0))

,

(8)

where 1(r) is the constant defined by (11).
Assume r>p0&1; arguing as in the proof of Lemma 4.1 the previous

inequality can be rewritten as

(|(t))(m&1)�p0&1 G� 1 (|(t))�
r1(r)
m&1

p0

r+1& p0

(Ep0
(0)) (m&1)�p0 �(t), (9)

where

|(t)=
Ep(0) (r+1)�(r+1& po)

Er+1(t) po�(r+1& po) .

Integrating the last inequality between 0 and t we infer

Er+1(t)�(Ep0
(0)) (r+1)�p0 [J &1

p0
(4(r, p0)(Ep0

(0)) (m&1)�p0 �� (t))] (r&1& p0)�p0,

\r>p0&1,

where 4(r, p0)=(r�(r+1& p0 )) 1(r).
Actually, starting from the above inequality, the proof of (2) can be

rigorously performed as in Theorem 2.1 using a similar iterative process. In
fact, choosing

pk= p0(m+1)k&1�m, k=1, 2, ...,

by induction on k we can prove

Epk+1(t)�A pk+1
k

&w0 & pk+1
p0

[J &1
p0

(4 &w0 &m&1
p0

�� (t))]( pk+1& p0)�p0
,

where

4=
m&1

( p0+1)m+1 #�
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and

Ak= `
k

i=1

(%0 p%1
i )1�( pi+1)

with %0 , %1 suitably chosen positive constants.

Remark 5.1. If 0 # B2(g), then in the thesis of Lemma 5.1 the function
Jp0

may be replaced by

Pp0
(s)=s(m&1)�p0Rm+1(s) &~ (s).

In fact, we can start from (9) arguing as in the proof of Theorem 4.1.

Proof of the Theorem 2.2. Let u0 # L p0(0) & L�(0) and `R(x) be the
smooth cut-off function in 02R introduced in the proof of Theorem 2.1
(that is `R(x)=1 in 0R and `R(x)=0 outside of 02R).

Then u0R(x)=u0(x) `R(x) # L1(0) & L�(0).
Let uR(x, t) be a solution of (1)�(3) with initial datum u0R and set

|R(x, t)=u(x, t)&uR(x, t).

From Theorem 2.1 and Lemma 5.1 we deduce

&u( } , t)&L�(0)�&uR( } , t)&L�(0)+&|R( } , t)&L�(0)

�c _
&u0&L1(02R)

J&1(1�� (t) &u0&
m&1
L1(02R))

+
&u0&Lp0(0"0R)

J &1
p0

(4�� (t) &u0&
m&1
Lp0(0"0R))

1�p0& .

(10)

If now R� (t) is defined through formula (22), plugging in (10) R=R� (t)
the thesis immediately follows.

Theorem 5.1. Assume 0 # B2(g) and the hypotheses of Theorem 2.2
hold.

Let, in addition, the function

R(w)
w1�N

be nondecreasing in ]0, +�[.
Then in the thesis of Theorem 2.2 the function J&1 may be replaced by

V(W(s)) where W(s) is the inverse function of

V(s)m&1 sm+1&~ (V(s)).
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Proof. Indeed, as we observed in Theorem 4.1, the function J(s) may be
replaced by P(s) and direct calculations show that P&1(s)=V(W(S)).

Remark 5.2. Suppose 0 # B2(g) and &(x)#&( |x| ) with &( |x| ) a non-
decreasing function. Assume u0(x)=(V( |x| ))&_, 0<_<1, p0 _>1, |x|>1.
Then, as a consequence of the previous theorem, for any t>1 there exist
positive constants #1 , #2 , #3 and a function F(t) such that

&u( } , t)&L�(0)�
#1

(V(F(t)))_ , (11)

where F(t) satisfies for any t>1

#2�� (t)�
F(t)m+1 [V(F(t))]_(m&1)

&(F(t))
�#3�� (t).

6. PROOF OF THEOREM 2.3

We prove now the property of the finite speed of propagation for the
problem (1)�(3) with b#0 following the approach of [5, 6].

Define a sequence of cut-off functions [`n], n�1, so that

`n #1, x # 0\n
"0\� n

,

`n=0, x � 0\n&1
"0\� n&1

,

|D`n |�2n+1�(_\),

where 0<_<1�2 is given and

\n=\+_2&n\, \� n=(\&_2&n\)�2, \�4R0 .

Using in the weak formulation the test function `m+1
n u%, %>0, after

standard calculations as in [28, pp. 91�92], one gets

sup
0<{<t

|
0({)

u1+%`m+1
n dx+|

t

0
|

0
u%&1&(x) �({) |{u|m+1 `m+1

n dx d{

�c \2n

_ +
m+1 &\

\m+1 |
t

0
�({) |

0\n&1
"0\� n&1

um+% dx d{ \n�1, (1)

where 0({)=[x # RN : (x, {) # 0_(0, T )] and &\ #sup02\
&(x).
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Setting vn=u(m+%)�(m+1)`*
n , with *� m+%

%+1 , we have for n�1

Yn(t)# sup
0<{<t

|
0({)

v=
n dx+|

t

0
|

0
&(x) �({) |{vn | m+1 dx d{

�c \2n

_ +
m+1 &\

\m+1 |
t

0
�({) \|0

vm+1
n&1 dx+ d{, (2)

where == (m+1)(1+%)
m+% .

Now we put

F1(s)=#� s(m&1)�(1+%)+m+1(g(1�s))m+1 (&~ (1�s))&1,

F2(s)=[F &1
1 (s)] (m&1)�(1+%)

(as usual #� is the constant involved in (3) with %= N(m+1)
N+m+1 and #0=

1�(1& }1N
m+1)).

Thus the embedding result (Lemma 3.1, applied with q= p=m+1,
;==, u=vn&1) implies

|
t

0
�({) d{ |

0
vm+1

n&1 dx

�|
t

0
�({) \|0

v=
n&1 dx+

(m+1)�=

} F2 _\|0
&(x) |{vn&1 |m+1 dx+<\|0

v=
n&1 dx+

(m+1)�=

& d{.

Suppose by now F &1
2 is convex; then, by elementary reasoning, we infer

that for any fixed constant c>0 the function sF2( c
s) is nondecreasing for

s>0.
Thus applying Jensen's inequality we obtain

|
t

0
�({) d{ |

0
vm+1

n&1 dx�Y (m+1)�=
n&1 �� (t) F2 \ 1

�� (t) Y (m+1)�=&1
n&1

+ . (3)

If F &1
2 were not convex then, reasoning as in [5], there would exist a

convex function 8 such that

#0 F &1
2 (s)�8(s)�F &1

2 (s);

therefore we might replace F &1
2 with 8 when invoking Jensen's inequality

and then switch back to F &1
2 again, exploiting the above two-sided

estimate.
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Then from (2) it turns out

Yn�c _2n

_ &
m+1 &\

\m+1
�� (t) Y (m+%)�(1+%)

n&1 F2 \ 1

�� (t) Y (m&1)�(1+%)
n&1

+ . (4)

Due to hypothesis (8) and Definition 2.1, the function F2(1�s) s:1 with :1=
N(m&1)�((m+1&}1N)(1+%)+N(m&1)) is nondecreasing and therefore
from (4) we get

Yn�c
4n(m+1)

(2_2)m+1

&\

\m+1 �� (t) ft(I0) Y 1+$
n&1 , \n�2, (5)

where

I0 :=
&\

\m+1 |
t

0
|

02\

�({) um+% dx d{,

ft(s)=(#� 1s) ((m&1)�(1+%)) :1 F2 \ 1

�� (t)(#� 1s) (m&1)�(1+%)+ ,

$=
(m&1)(1&:1)

1+%
.

Hence, using Lemma 5.6, Chapter II of [18] we have that Yn � 0 as
n � +�; i.e., u(x, t)#0, x # 0\"0\�2 , provided

Y $
2

&\

\m+1 �� (t) ft(I0)�
(2_2)m+1

c4(m+1)�$##0 .

The last inequality is true if

_c \2
_+

m+1

&
$

#� ((m&1)(:1&1))�(1+%)
1 (#� 1I0) (m&1)�(1+%) �� (t)

_\F &1
1 \ 1

�� (t)(#� 1I0) (m&1)�(1+%)++
(m&1)�(1+%)

�#0

\m+1

&\
. (6)

Since (recalling the definition of G0 in Theorem 2.3)

F1(s)=
s(m&1)�(1+%)

G m+1
0 (1�s)

,
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inequality (6) can be rewritten as

#� 1I0�_�� (t) F1 \1�G &1
0 \#~ 0

\
(&\)1�(m+1)++&

&(1+%)�(m&1)

. (7)

On the other hand, by the definition of I0 , Theorem 2.1, and Corollary
4.1 we have

I0�c1

&\

\m+1 �� (t)
&u0&m+%

L1(0)

(J&1(1�� (t) &u0&m&1
L1(0)))m+%&1

.

Therefore it is sufficient to estimate \ from the following inequality

c2

1 (m+%)�(m&1)

&\

\m+1

(a(t)) (m+%)�(m&1)

(J&1(a(t)))m+%&1

�_F1 \1�G &1
0 \#3

\
(&\)1�(m+1)++&

&(1+%)�(m&1)

, (8)

where a(t)=1�� (t) &u0&m&1
L1(0) .

Noticing now that

a(t)=(J&1(a(t)))m&1 G0(J&1(a(t))),

formula (8) becomes

J&1(a(t)) G (m+1)((m+%)�(m&1))
0 (J &1(a(t)))

�c3 G &1
0 \#3

\
(&\)1�(m+1)+\\m+1

&\ +
(m+%)�(m&1)

. (9)

If we now put

\
(&\)1�(m+1)=#CG &1

0 (J&1(a(t))) (10)

for a sufficiently large constant #C, then (9) is satisfied and therefore (24)
is proven.

Corollary 6.1. Let 0 # B2(g) and &(x)=|x|%, 0<%<m. Suppose,
moreover, that the assumptions of Theorem 2.3 be satisfied. Then

Z(t)tW(a(t)) (11)
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and

&u( } , t)&L�(0)�
&u0&L1(0)

V(W(a(t)))
, (12)

where

a(t)=1�� (t) &u0&m&1
L1(0)

and W(s) is the inverse function of

V(s)m&1 sm+1&~ (V(s)).

Proof. To prove (11) we observe first that, being

&~ (s)=
1

(R(s))% , '(\)t\%,

it follows that

G0(s)t(R(s))1&%�(m+1).

On the other hand, from Remark 5.1 and (10), it turns out that

\(m+1&%)�(m+1)=#C(W(a(t))) (m+1&%)�(m+1) (13)

which means

Z(t)�#W(a(t)). (14)

From the mass estimate (Corollary 4.1) and Theorem 2.1 we get

&u0&L1(0)�&u( } , t)&L�(0) V(Z(t))�#
&u0&L1(0)

V(W(a(t)))
V(Z(t)) (15)

whence (11) follows by exploiting (14).
To conclude we observe that (12) easily follows from (11) and (15).

Remark 6.1. Let 0 # B2(g), b#0 and &(x)=|x|%, 0<%<m. Suppose
that u0(x)=V( |x| )&1, |x|�1.

Then, for sufficiently large t, the two-sided estimate

#1

ln P({)
V(P({))

�&u( } , t)&L�(0)�#2

ln P({)
V(P({))

286 ANDREUCCI ET AL.



holds, where P({) is the inverse function of V(R)m&1 Rm+1&% and { is
related to t through the relationship

�� (t)=
{

(ln P({))m&1 .

In fact, following the outlines of the proof of Theorem 2.2 we can find
the upper-bound putting in (10) R=P({).

In order to obtain the lower�bound, we observe at first that from the
mass conservation law we deduce

|
0

uoR dx=|
0

uR(x, t) dx \t>0, (16)

where uoR=uo`( |x| ), ` is the usual cut-off function in the ball BR , and uR

is a solution of the problem with initial datum uoR .
On the other hand by the comparison principle it follows that

uR(x, t)�u(x, t) a.e. x # 0, \t>0 (17)

and easy calculations give

#1 ln P({)�|
BZ(t)

u(x, t) dx�&u( } , t)&L�(0) V(Z(t)). (18)

Moreover, from formula (24) we deduce

Z(t)�#3P({) (19)

and combining together (18) and (19) we obtain

#1 ln P({)�&u( } , t)&L�(0) V(P({)).
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