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Sprouty2 but not Sprouty4 is a potent inhibitor of cell proliferation
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As negative regulators of receptor tyrosine kinase-mediated signalling, Sprouty proteins fulfil
important roles during carcinogenesis. In this report, we demonstrate that Sprouty2 protein expres-
sion inhibits cell proliferation and migration in osteosarcoma-derived cells. Although earlier reports
describe a tumour-promoting function, these results indicate that Sprouty proteins also have the
potential to function as tumour suppressors in sarcoma. In contrast to Sprouty2, Sprouty4 expres-
sion failed to interfere with proliferation and migration of the osteosarcoma-derived cells, possibly
due to a less pronounced interference with mitogen-activated protein kinase activity. Sequences
within the NH2-terminus are responsible for the specific inhibitory function of Sprouty2 protein.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Cell proliferation is largely controlled by extracellular cues
interpreted by the action of pathways downstream of receptor
tyrosine kinases (RTKs). These receptors are activated by ligand
binding and activate different intracellular signalling pathways like
the Ras/mitogen activated protein kinase (MAPK), the PI3K/Akt or
the phospholipase C (PLC)-mediated pathways [1]. Intensity and
duration of stimulation is restricted by many negative regulatory
mechanisms [2].

Sprouty (Spry) proteins have been identified as inhibitors of
RTK-mediated processes in Drosophila [3–5]. In Drosophila as well
as in many other organisms Spry proteins play a pivotal role during
branching morphogenesis, including lung tracheal network forma-
tion, nephrogenesis and angiogenesis (reviewed in [6]).
In mammalians there are four orthologues identified [7,8].
Whereas Spry3 mRNA can only be detected in the brain and testis
of adults, the other three Spry family members are ubiquitously ex-
pressed in all embryonic and adult tissues [8] and show common
but also distinct domains of expression [9]. Although all Spry pro-
teins can be detected in both epithelial as well as mesenchymal tis-
sue [9], it was found that in many organs such as the developing
lung [7] or the teeth [10] Spry1 and Spry2 are restricted to cells
of epithelial origin, whereas Spry4 localises to the mesenchymal
part [9].

Functionally the Spry proteins are not able to fully complement
each other, therefore loss of Spry1 [11,12], Spry2 [13,14] and Spry4
[15] causes specific phenotypes similar to those observed in case of
growth factor overdoses. A double knockout of Spry2 and Spry4 is
embryonic lethal [15].

In accordance with their cellular functions Spry proteins fulfil a
bivalent role in cancers derived from different origin. Spry2 and
Spry4 function as tumour suppressors in lung cancer, while Spry1
mRNA and protein level are rather increased in the malignant tis-
sue of the lung cancer patients [16]. Additionally, published data
document that in prostate cancer [17,18] and in breast [19]
decreases in Spry1 and Spry2 levels contribute to malignant
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transformations. In hepatocellular carcinomas Spry2 but not Spry1
expression levels are frequently repressed [20].

Contrary to these findings, Lito et al. published investigations
showing that Spry2 is necessary for sarcoma formation and trans-
formation of fibroblasts by the H-Ras oncogene [21] and that Spry1
is positively involved in cancerogenesis of rhabdomyosarcoma
[22].

In this report, we investigated the role of Spry2 and Spry4 pro-
teins as inhibitor of cell proliferation and migration in osteosar-
coma-derived cells.

2. Materials and methods

2.1. Cell culture

The human osteosarcoma cell lines U2OS, MG63, SaOS-2, 143B
and HOS as well as the chondrosarcoma-derived cell line SW-1353,
the fibrosarcoma cell line HT-1080, the synovial-derived SW-982,
the liposarcoma cell line SW-872 and the primary human lung
fibroblasts WI-38 were purchased from the American Type Culture
Collection. Additionally cell lines established at our institute from a
osteosarcoma (HLNG), a leiomysarcoma (VLMS1), and from a lung
metastasis of a Ewing sarcoma (VEs1) were used. The gliosarcoma
cell line LN40 was kindly provided by Dr. Tribolet (Lausanne). All
cells were cultured in the recommended medium containing 10%
fetal calf serum (FCS) and supplemented with penicillin (100 U/
ml) and streptomycin (100 lg/ml) at 37 �C in 7.5% CO2.

2.2. Recombinant adenovirus generation

The coding sequence of Spry4 was amplified by PCR using the
upstream primer 50-TAGCGAATTCGGATCCATGCTCAGCCCC-30 (orf-
Spry4s) and downstream 50-TAGAATTCCTCGAGTCAGAAAGGCTTG-
30 (orfSpry4as). The 2/4 hybrid was generated by PCR amplification
of the Spry2 N-terminus using the following primers: 5-TAG-
CGAATTCGGATCCATGGAGGCCAGAGCTCAGAG-30 (orfSpry2s) and
50-ACAGGCCTCGCACCTGTAGGCGTGCAGGCC-30 (S2/4hyas) and
fused by PCR to the C-terminus of Spry4 which was modified by a
PCR with the following primers: 50-CACGCCTACAGGTGCGAGGCCT
GTGGGAAG-30 (S2/4hys) and orfSpry4as. To construct the virus
expressing a protein fusing the N-terminus of Spry4 to the C-termi-
nus of Spry2, sequences amplified using the primers orfSpry4s and
S4/2hyas (50-CACAGTCCTCACACAGCAAGAAGTGCTTGTC-30) were
combined with the Spry2 sequences amplified by using the primers
S4/2hys (50-GCACTTCTTGCTGTGTGAGGACTGTGGCAAG-30) and orf-
Spry2as (50-TAGCGAATTCCTCGAGTCAGAAAGGCTTG-30). All se-
quences were digested BamH1/EcoR1 and cloned into a pADlox
backbone. The recombinant adenoviruses were generated and used
as described [16].

2.3. Growth curve

Twenty-four hours post infection, 2–5 � 104 cells were resee-
ded in cell culture dishes in the appropriate medium containing
10% FCS, and counted every day using a Bürker–Türk cell-counting
chamber. Growth curves were generated and doubling times were
calculated in exponential growth equations using GraphPadPrism
software. Each experiment was performed at least twice in
duplicates.

2.4. Clonogenic assay

Twenty-four hours after adenoviral infection, 100 cells were
seeded in triplicates and cultured one to four weeks. After this time
cells were stained with GIEMSA solution (Merck). Visible colonies
were counted and pictured.

2.5. Scratch assay

Scratch assay was performed as described [16]. Migration veloc-
ity was calculated as linear regression curve using GraphPadPrism
software.

2.6. Immunoblot

Immunoblotting was carried out as described [23] using affinity
purified antibodies against the NH2-terminus of Spry2 (character-
ised in [16]) and Spry4 (described in [24]). As a loading control pri-
mary antibodies against b-actin (Novus Biologicals) were used.
Antibodies recognizing phosphorylated extracellular signal-regu-
lated kinase (pERK), phoshorylated ribosomal protein S6 (prPS6)
and cRaf were purchased from Cell signalling (New England
Biolabs).

2.7. GST pulldown

The construct expressing the glutathione S-transferase (GST)-
tagged NH2-terminal 150 amino acids of human Spry2 (pGEX-
Spry2N150) was constructed earlier [16]. Escherichia coli BL21
strain was transformed with pGEX and pGEX-Sprouty2N150. A
colony was inoculated in LB-medium containing ampicillin and
incubated at 37 �C. The overnight cultures were diluted 1:10 with
medium and incubated for 1 h before induction of the protein syn-
thesis by addition of 100 mM isopropyl-b-D-thiogalactopyranosid.
After 3 h bacteria were collected by centrifugation and resus-
pended in phosphate buffered saline. According to the manufac-
tures (GE Healthcare) instructions lyses and protein purification
was performed. Twenty microlitre of the beads with the purified
GST containing proteins were loaded on a SDS polyacrylamid gel
electrophoresis (PAGE) and stained with coomassie. 5 ll of the
beads were mixed with protein extracts of U2OS cells transfected
with a cRaf expressing plasmid and incubated on a head-over-head
rotation at 4 �C. Beads were washed four times with TNN-buffer
(50 mM Tris pH 7.5, 250 mM NaCl, 5 mM EDTA, 50 mM NaF,
0.5% NP-40) for 10 min and an immunoblot was performed.
The cRaf expressing construct was kindly provided by Richard
Marais.

3. Results

3.1. In sarcoma-derived cell lines Spry2 and Spry4 protein levels
correlate

In an initial experiment we measured Spry2 and Spry4 protein
levels in logarithmically growing sarcoma-derived cell lines.

In all 13 tested cell lines Spry2 was detected, although a wide
variation in expression could be observed. When compared to pri-
mary WI-38 fibroblasts, about half of the cell lines (n = 6) had in-
creased levels of Spry2 while Spry2 expression was decreased in
the other seven lines (Fig. 1A). In case of Spry4 expression, only
four of the tested cell lines showed slightly increased levels versus
WI-38 expression. The cell lines with higher levels of Spry4 also ex-
pressed significantly more Spry2 than the cells exhibiting low level
of Spry4 (Fig. 1B) and vice versa cell lines with reduced levels of
Spry2 were also expressing significantly lower amounts of Spry4
protein (Fig. 1C).

These data suggest that in sarcoma-derived cells Spry4 and
Spry2 protein levels are determined by similar mechanisms.
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Fig. 1. Endogenous Spry2 and Spry4 expression in sarcoma-derived cell lines. (A) Endogenous Spry2 and Spry4 levels in 13 different sarcoma-derived cell lines were
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3.2. Ectopic expression of Spry2, but not Spry4 inhibits cell
proliferation in osteosarcoma-derived cell lines

Next we wanted to test the influence of Spry proteins on cell
proliferation of sarcoma-derived cells. We selected two osteosar-
coma-derived cell lines with low and high endogenous Spry pro-
tein levels as representative to measure the influence of ectopic
Spry2 and Spry4 expression on cell proliferation. U2OS cells have
the lowest endogenous Spry2 as well as Spry4 protein levels. Since
143B cells were hardly to infect with adenoviruses, the MG63 cell
line was selected to represent osteosarcoma with high endogenous
levels of Spry proteins. Logarithmically growing cells were infected
and clonogenic assays as well as growth curves were performed. In
both cell lines, the number of clones measured after 10 days was
not reduced when Spry4 was ectopically expressed. In contrast,
Spry2 expression halved the amount of clones in U2OS cells when
compared to control treated cells (Fig. 2A). In MG63 cells showing
high endogenous levels of Spry2, the additionally expressed Spry2
reduced the number of clones to about 60% compared with the one
measured in mock treated cells (Fig. 2A). In line with these data,
Spry2 overexpressing U2OS cells doubled not even twice within
the monitoring period (96 h), while the control cells have almost
quadrupled. Although in MG63 cells the observed inhibition of pro-
liferation by Spry2 expression (0.84 ± 0.09 compared to 1.15 ± 0.02
doublings) was less pronounced than in U2OS cells, the measured
interference of Spry2 with cell doubling was considerable. In case
of Spry4 expression, cell proliferation was not significantly chan-
ged when compared to mock treated control osteosarcoma cells
(Fig. 2B). Both Spry4 and Spry2 were clearly overexpressed by
the respective recombinant adenovirus as verified by immunoblot
(Fig. 2C).

These data demonstrate that in osteosarcoma Spry2 interferes
with cell proliferation.

3.3. Spry2 expression interferes with cell migration of osteosarcoma-
derived cells

To evaluate if the interference with proliferation is also detected
in other mitogen-dependent processes, we measured the influence
of ectopic Spry2 and Spry4 expression on cell migration. To this
end MG63 cells were infected and 48 h post infection a scratch as-
say was performed.

The time to close the gap was significantly delayed when cells
expressed ectopic Spry2 (Fig. 3A). On average Spry2 overexpressing
cells cover a distance of 12 lm in an hour, while control treated
cells move about 1.3-fold faster. Spry4 overexpression rather in-
creases the velocity of gap closure than inhibiting it (Fig. 3A and B).

These data demonstrate that like proliferation, cell migration of
osteosarcoma-derived cells is inhibited specifically by Spry2.

3.4. Inhibition of MAPK pathway is more pronounced in case of Spry2
expression when compared to the influence of increased Spry4 levels

In response to mitogens Spry proteins are mainly described as
inhibitors of MAPK activation, but also PI3K induced pathways can
be negatively influenced via PTEN [6]. In order to investigate the
influence of Spry expressions on signalling pathways, U2OS cells
were serum starved for 24 h before infected with adenovirus
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expressing either lacZ, Spry2 or Spry4 proteins. One day after infec-
tion serum was added for 5, 10, 15 or 30 min before protein extrac-
tion. MAPK activation was evaluated by measuring pERK levels in
the cellular extracts. As depicted in Fig. 4A and B, serum addition
caused an immediately induction of pERK levels in control cells as
well as in Spry4 expressing cells. In U2OS cells with elevated Spry2
levels phosphorylation of ERK was slightly delayed and peaked after
10 min. Furthermore it was obvious that the levels of pERK in serum
deprived cells were reduced to one half and a fourth in Spry4 and
Spry2 expressing cells, respectively. Inhibition of ERK phosphoryla-
tion in serum deprived cells was significantly stronger in cells
expressing Spry2 when compared to cells expressing Spry4
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(Fig. 4B). In addition to MAPK activation, cell signalling via PI3K was
evaluated by measuring phosphorylation of ribosomal protein S6
(Fig. 4A and C). While in control treated U2OS cells serum induction
had no influence on the levels of phosphorylated ribosomal protein
S6 (prPS6), expression of both Spry2 and Spry4 reduced the levels of
prPS6 and after serum addition the levels were clearly induced. In
contrast to the influence of Spry proteins in case of MAPK activation,
signalling via PI3K in response to serum addition was comparable in
Spry2 and Spry4 expressing cells. These data indicate that the more
potent inhibition of Spry2 on ERK activation could be necessary for
the Spry2 specific interference with cell proliferation, although both
Spry2 and Spry4 influence mitogen induced cell signalling in U2OS
cells.

3.5. The NH2-terminus of Spry2 exerts the specific inhibitory effect in
osteosarcoma-derived cells

Spry proteins are characterised by a conserved cystein-rich do-
main at the COOH-terminus. Their NH2-terminus is variable but
contains two short homologous sequences [25]. In order to study
which domains are important for the Spry2 specific inhibitory
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3.6. The NH2-terminus of Spry2 is involved in inhibition of ERK
phosphorylation

In order to investigate if the N-terminal sequences of Spry2 are
required for the strong inhibition of Spry2 on MAPK activation,
U2OS cells expressing Spry2/4 were serum deprived for 24 h
and infected with adenovirus expressing the hybrid construct.
After another 24 h serum was added to the cells. After 0, 5, 10,
15 and 30 min cells were lysed and immunoblots were per-
formed. Like in the case of Spry2 expression (Fig. 4B), the levels
of phosphorylated ERK in serum deprived U2OS cells were re-
duced to almost a fourth of the signal strength observed in con-
trol treated cells, when cells were expressing a Spry2/4 fusion
protein (Fig. 6A and B). As consequence of serum addition ERK
phosphorylation was induced, but the induction was delayed
and slightly reduced when cells were expressing a Spry protein
harbouring the NH2 terminus of Spry2. To determine if the N-ter-
minal Spry2 sequences are able to interfere with MAPK activation
via the earlier described interaction with Raf, we performed a pull
down experiment using a fusion protein of GST with the N-termi-
nal 150 aa of Spry2. Bacterial expressed and GST purified N-ter-
minus of Spry2 was able to bind detectable amounts of cRaf,
when incubated with cellular extract of U2OS transfected with
cRaf, while in parallel GST incubated with the second half of
the cell extract failed to pull down Raf.

These data indicate that the NH2-terminus of Spry2 is involved
in inhibition of MAPK pathway.

4. Discussion

The presented data demonstrate that Spry2 expression in oste-
osarcoma-derived cells interferes potently with cell proliferation
and migration. This indicates that Spry2 seems to function as an
inhibitor of the malignant phenotype in osteosarcoma. Although
most of the reports investigating the role of Spry proteins in malig-
nant tissue show a tumour antagonistic function of the different
Spry protein members [17,19,20,26–29], the few known studies
investigating Spry proteins in sarcoma show that Spry proteins ful-
fil a tumour supporting function. In H-RasV12-transformed human
fibroblasts as well as in fibrosarcoma Lito and colleagues observed
that elevated Spry2 levels are required for colony formation in agar
and tumour formation in mice [21]. In line with these observations
a study performed in rhabdomyosarcoma demonstrated that in the
embryonal rhabdomyosarcoma subtype Spry1 is beneficial for can-
cer cell proliferation and survival [22]. However, the tumour-sup-
porting functions of Spry1 was only observed in cells harbouring
oncogenic Ras, which can be detected in about 40% of the rhabdo-
myosarcom, but in osteosarcoma Ras is rarely mutated [30]. To our
knowledge the present study is the first to provide data suggesting
that a Spry protein member may have a protective role in sarco-
mas. Spry2 protein is a good candidate to act as tumour suppressor
in osteosarcoma. Corroborating with our data it is known that the q
arm of chromosome 13 containing the SPRY2 gene frequently
shows gene copy number losses in osteosarcoma [31,32]. Addition-
ally it is shown that Spry2 expression interferes with ERK activa-
tion after FGF stimulation of osteoblasts [33].

In contrast to Spry2, Spry4 fails to negatively influence cell pro-
liferation and migration in osteosarcoma. Also in other tumour
entities it was observed that specific Spry protein family members
can antagonise malignant phenotypes, while others fail to do so. In
prostate cancer for example Spry1 is able to interfere with cell pro-
liferation and migration [17] while Spry4 only diminishes migra-
tion velocity [29]. Additionally Spry4 did not affect tumour
outgrowth or malignancy in pancreatic cells [34]. Although Spry4
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can interfere with cell proliferation and migration of cancer cells as
it is demonstrated for NSCLC-derived cells [28], our data indicate
that in osteosarcoma the cellular context is not appropriate for
Spry4 to interfere with these biological processes. An experimen-
tally validated explanation for the observed difference between
Spry2 and Spry4 is still missing, but our data illustrate that differ-
ences in the N-terminus are responsible for the specific antiprolif-
erative function of Spry2 in osteosarcoma. This part of the protein
is the more variable part of the Spry family, therefore these data
are not surprising [35]. Few proteins were shown to bind to the
N-terminus of Spry2. Most of them, including Cbl [36], SIAH2
[37], Mnk-1 [38] or Nedd4 [39] are involved in regulating Spry2
stability in order to ensure its properly timed appearance and dis-
appearance during cell cycle phases [40]. Additionally an intact N-
terminus is necessary for the direct interaction of Spry1 and Spry2
with PLCc and the inhibition of Ca2+ signalling via the PLCc path-
way [41]. The interaction between Spry4 and PLCc was not explic-
itly explored, but it is shown that unlike Spry1 and Spry2, Spry4
expression is not associated with decreased PLCc phosphorylation
[42]. Additionally, in the case of Spry2 protein it is reported that
Raf1 binding [33] as well as GRB2 binding [43] requires intact
structures at the N-terminus. Spry4 can interact with Raf1 via
the C-terminus, but this interaction is mainly involved in regula-
tion of Ras-independent MAPK activation [44]. Concerning inhibi-
tion of ERK activation via Ras-dependent pathways Spry2 is
shown to be much more efficient than Spry4 [45]. In accordance
with these data we observed that although both Spry2 and Spry4
protein expression were able to modulate ERK activation in osteo-
sarcoma-derived cells, Spry2 was more potent in inhibition of
MAPK pathway. Phosphorylated ERK levels were significantly
stronger reduced in serum deprived cells and activation of ERK
was timely delayed. Therefore inhibition of MAPK activation via
Spry2 unique elements in the NH2-terminus can account for the
observed Spry2 specific inhibition of cell proliferation. A hybrid
expressing the NH2-terminus of Spry2 fused to the COOH-terminus
of Spry4 reduces the levels of phosphorylated ERK to comparable
extents as observed in case of Spry2 expression. Accordingly the
NH2-terminus of Spry2 is able to bind Raf protein when incubated
with osteosarcoma-derived protein extracts.

To elucidate if additionally other mechanisms are responsible
for the Spry2-mediated inhibition of cell proliferation and migra-
tion in osteosarcoma further investigations are needed.

In summary our results propose Spry2 as tumour suppressor in
osteosarcoma-derived cells.
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