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a b s t r a c t

Here we propose a definition of regular parallelism in a linear space not necessarily
embedded onto a projective space and we investigate its properties in the particular case
of kinematic spaces. We prove that the kinematic parallelisms are always regular in that
sense and we deduce some results on the group of translations acting transitively on the
pointset.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction and motivations

In an earlier paper [3] we extended the classical definition of Clifford parallelisms in the real 3-dimensional projective
space PG(3,R) to the case of a general commutative field F of characteristic different from 2. One of our main tools in this
investigation is the hyperbolic quadrics of the projective space PG(3,K), whereK is a suitable quadratic extension of F and,
among other results, we can prove that the Clifford parallelisms we build are regular, in the sense that their spreads contain
with any three pairwise skew lines also all the lines of the (unique) regulus defined by those lines.
Since it is well known that PG(3,R) endowed with the two Clifford parallelisms is an example of a kinematic space, our

aim here is to generalize the notions of regulus and regular parallelism of a 3-dimensional projective space to the more
general situation of kinematic spaces (or even of linear spaces) not necessarily embedded into a projective space. A first
step in this direction has been made by considering those kinematic spaces which are obtained from projective spaces by
removing a prescribed set of points, namely the porous kinematic spaces (see e.g. [10,8]). In particular Herzer in [6] introduces
two axioms which define a ‘‘regular’’ parallelism in a projective space deprived of some points, and then shows that the
particular class of kinematic spaces he is interested in (those arising from kinematic algebras) fulfills those axioms. In this
way he can answer (implicitly) for that class of kinematic spaces the long time outstanding question whether it is possible
that the group of translations acting transitively on the pointset is not a normal subgroup of the group of all collineations of
the geometric structure: this cannot happen (see Theorem 10).
Here we are interested in extending both the definition of ‘‘classical’’ regular parallelism and of Herzer’s regular

parallelism dropping the assumption that the kinematic space is projective, in order to obtain some results similar to
Herzer’s. Since our framework is heavily poorer, our results are weaker than those known for projective kinematic spaces,
in particular in order to prove the normality of the group of translations we need to assume further hypotheses on the
kinematic space we are considering, which restricts the range of kinematic spaces for which our results are feasible.
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2. Setting and known results

In this section to fix the notation we recall the main results known for regular parallelisms and kinematic spaces for
future reference.

2.1. Regular parallelisms in projective spaces

Let (P ,L) = PG(3, F) denote the 3-dimensional projective space over a commutative field F that we always assume of
characteristic different from 2. Recall that for a subsetM ⊆ L a line L ∈ L is said to be transversal toM if Lmeets each line
M ∈M in exactly one point.

Definition 1 ([14, Ch. 18]).A regulus of PG(3, F) is the set of all lines ofL transversal to three pairwise skew lines T1, T2, T3 ∈
L.

A spread (or parallel class) S ⊆ L is a partition of the pointset P into lines, thus it has the property that each point p ∈ P
lies on exactly one line Lp ∈ S. A parallelism of PG(3, F) is a set of mutually disjoint spreads which covers the whole lineset
L. Once a parallelism is given, we say that two lines L,M ∈ L are parallel (L //M) if they belong to the same spread.

Definition 2. A spread in a Pappian 3-space is said to be regular if whenever it contains three pairwise skew lines L1, L2, L3,
then it contains also all the lines of the unique regulus through L1, L2, L3. A regular parallelism is a parallelism consisting of
regular spreads only.

Regular spreads and regular parallelisms arise in many different contexts and have been the target of many investigations
(see e.g. [5,4]). In particular the classical Clifford parallelisms in the real projective space PG(3,R) and their generalization
introduced in [3] turn out to be regular parallelisms (see [3, Cor. 4.8]).

2.2. Kinematic spaces and kinematic algebras

For the results here collected we refer e.g. to [1,9,7,12].

Definition 3. Let P be a nonempty set whose elements we call points, L a family of subsets of P we call lines and ‘‘ // ’’
a binary relation on L called parallelism. The triple (P ,L, // ) is an affine parallel structure (ap-structure) if it fulfills the
following properties:

(AP1) for any pair of distinct points p and q there exists exactly one line p, q ∈ L such that p, q ∈ p, q (hence (P ,L) is a
linear space);

(AP2) ‘‘ // ’’ is an equivalence relation on L such that, for any line R ∈ L and for any point p ∈ P there exists exactly one
line S ∈ L such that p ∈ S and S // R (euclidean parallel axiom); we will denote the line S byL(p // R);

(AP3) in P there exist at least three non collinear points and every line contains at least two points.

Definition 4. Two ap-structures (P ,L, // ) and (P ′,L′, // ′) are isomorphic if there exists a bijection φ : P −→ P ′ which
maps lines onto lines and preserves the parallelism. If (P ,L, // ) and (P ′,L′, // ′) coincide, the isomorphism φ is called an
automorphism or a collineation. A dilatation of (P ,L, // ) is a collineation φ such that, for any R ∈ L, R // φ(R); a translation
is the identity or a dilatation without fixed points.

Definition 5. An ap-structure (P ,L, // ) is an affine parallel translation structure (apt-structure or André structure) if there
exists a group T of translations of (P ,L, // ) which acts transitively (and hence regularly) on P . A kinematic space is a
quadruple (P ,L, //` , //r )where (P ,L, //` ) and (P ,L, //r ) are apt-structures and moreover the following axioms hold
for all a, b, c , a1, a2, a3, b1, b2, b3 ∈ P distinct:

(K1) L(b //` a, c) ∩L(c //r a, b) 6= ∅;
(K2) If a1, b1 //` a2, b2 //` a3, b3, b1, b2 //r a1, a2 and b1, b3 //r a1, a3, then also b2, b3 //r a2, a3;
(K3) If a1, b1 //r a2, b2 //r a3, b3, b1, b2 //` a1, a2 and b1, b3 //` a1, a3, then also b2, b3 //` a2, a3.

Note that, by [9], the quadruple (P ,L, //` , //r ) is already a kinematic space if (P ,L, //` ) and (P ,L, //r ) are ap-structures
satisfying (K1), (K2) and (K3).
Recall that a fibration (or partition) of a group (G, ·, 1G) is a family F of non-trivial subgroups of G such that for all

X, Y ∈ F , if X 6= Y then X ∩ Y = {1G} and for all g ∈ G there exists X ∈ F such that g ∈ X; a fibration F of the
group G is said to be normal if, for every F ∈ F and for every g ∈ G, F g := gFg−1 ∈ F . It is well known that apt-structures
and kinematic spaces are related to groups with a fibration.

Theorem 6 (André [1], Karzel–Kroll–Sörensen [9]). Let G be a group and F a normal fibration of G. The quadruple
(G,L(F ), //` , //r )made up of:
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(1) the set of elements of G;
(2) the set L(F ) of the (left) cosets of the elements of F ;
(3) the binary relations ‘‘ //` ’’ and ‘‘ //r ’’ defined as follows:

∀ a, b ∈ G, ∀ F1, F2 ∈ F :
aF1 //` bF2 ⇐⇒ F1 = F2
aF1 //r bF2 ⇐⇒ F a1 = F

b
2

is a kinematic space, denoted by [G,F ], with transitive translation group isomorphic to G.
Conversely if (P ,L, //` , //r ) is a kinematic space, o ∈ P and T the group of translations with respect to //` regular on the
point-set P , then the set P can be endowed with an operation which makes it into a group isomorphic to T and such that the set
Lo := {L ∈ L | o ∈ L} is a normal fibration of P and, moreover, [P ,Lo] ∼= (P ,L, //` , //r ).

Note that, differently from the case of affine translation spaces (which is a special case of apt-structures), in a general
apt-structure the regular group T of translations need not be a normal subgroup of the group of all collineations (see [2]
for an example). To the best of our knowledge, however, it is not known whether it is possible to provide an example of a
kinematic space such that T is not normal. In [12] the following result is proved.

Theorem 7 ([12, Thm 5]). Let (P ,L, //` , //r ) be a kinematic space. If //r is the only parallelism of (P ,L)which fulfills along
with //` the axioms (K1), (K2) and (K3), then the group T of left translations acting regularly on P is normal in the group of all
collineations.

In the followingwewill refer to a situation like the one described in the statement of Theorem7by saying that //r is uniquely
determined by //` .
In the paper [6] of 1980 A. Herzer succeeded in proving that //r is uniquely determined by //` in the particular situation

that the kinematic space is built starting from a kinematic algebra.

Definition 8. A kinematic algebra (or quadratic algebra) A over a commutative field F is a F-algebra such that for all a ∈ A:
a2 ∈ F+ Fa.

Starting from a kinematic algebra and the multiplicative subgroup of its invertible elements in [7] is described how to
construct in a canonical way a kinematic space which turns out to be the projective space PG(3, F) deprived of a suitable
setQ of singular points in such a way that on every line at most 2 points are removed.

Theorem 9 ([6, (1) and (2)]). If (P ,L, //` , //r ) is the kinematic space obtained from a kinematic algebra, then the parallelism
//` fulfills the following properties:

(H1) If H1, H2, H3 are distinct parallel lines intersecting a line L, then H1 6 H2 + H3, where by H2 + H3 we denote the smallest
projective space containing both H2 and H3 deprived of its singular points;

(H2) If L, L′ ∈ Lmeet three distinct parallel lines H1, H2, H3 and T , T ′ ∈ L are parallel lines such that T meets both L and L′ and
T ′ meets L, then T ′ and L′ are coplanar. Moreover if L and L′ are skew, then T ′ ∩ L′ 6= ∅.

In the following we will refer to a parallelism fulfilling properties (H1) and (H2) as H-regular. One of the main results of
the aforementioned paper (even if it is not explicitly stated in this form) is the following.

Theorem 10. If (P ,L, //` , //r ) is a kinematic space obtained from a kinematic algebra, then //r is uniquely determined by
//` , thus the group T of left translations acting regularly on the pointset is normal in the group of all collineations.

In Herzer’s proof of Theorem 10 the hypothesis that (P ,L, //` , //r ) is obtained from a 3-dimensional projective space
by removing a prescribed set of points is heavily used both to prove that //` is H-regular and to prove that //r is the only
parallelism consistent with //` with respect to (K1), (K2) and (K3). The definition of H-regular parallelism however, once
opportunely restated, can be sensitive also in the more general context of linear spaces, thus our interest in investigating it
also in a non-projective setting.

3. Regular parallelisms in linear spaces

In this section we extend the definition of regular parallelism to the case of a linear space not necessarily embedded into
a projective space and we compare the definition with that of H-regular parallelism introduced in Theorem 9.
Before starting recall (see e.g. [15, Ch. 4]) that, if (P ,L) is a linear space, a linear subspace of (P ,L) is a linear space

(P ′,L′) such that P ′ ⊆ P andL′ ⊆ L. If X ⊆ P is a set of points of (P ,L), then the closure of X , denoted by C(X), is the
intersection of all the linear subspaces of (P ,L) which contain X; the points of the set X are called generators of C(X). If
X = {p1, p2, . . .} ⊆ P we say that the points p1, p2, . . . are independent if none of the pi ∈ X belongs to the closure of the
remaining ones. A linear space (P ,L) is said to be an exchange space if it fulfills the following axiom, namely the exchange
axiom:

(E) for any pair of points p, q ∈ P and for any subset X of P such that p 6∈ C(X), if p ∈ C ({q} ∪ X), then q ∈ C ({p} ∪ X).
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If (P ,L) is an exchange space, the dimension of a linear subspace (P ′,L′) of (P ,L), denoted by dim(P ′,L′), is the
number of independent generators of (P ′,L′) diminished by 1; a plane is a linear space of dimension 2.
From now on let (P ,L) be an exchange linear space.

Definition 11. Two lines L1, L2 ∈ L are said to be skew if there exists no plane containing both L1 and L2. A regulus is the
set of all lines intersecting three pairwise skew lines. A parallelism of (P ,L) is said to be regular if whenever three distinct
skew lines are contained in the same parallel class, then all the reguli containing those lines belong to the parallel class.

Note that, of course, if the linear space (P ,L) is a projective space of dimension at least three, then this definition is
consistent with the classical Definition 2. Note also that, in general, we can have different reguli all containing three fixed
skew lines. On the other hand three pairwise skew lines could have less than three distinct common transversals: in this
case we agree that the regulus defined by those lines is empty.

Remark 12. Definition 11 above is not the most general possible. In fact, in general, in a linear space with parallelism a
situation which has no corresponding in the projective or affine setting arises: there can be coplanar distinct lines that are
neither parallel nor incident in a point (see e.g. [13], but be careful: there the name ‘‘skew’’ is reserved to this kind of lines).
One would like to have a definition of regulus and regular parallelism which somehow involves also lines in this situation,
but this seems to be rather difficult to obtain.

From now on we assume that (P ,L, //` , //r ) is an exchange kinematic space.

Lemma 13. Let (P ,L, //` , //r ) be a kinematic space, L,H1,H2,H3 ∈ L such that Hi //` Hj, L ∩ Hi 6= ∅ and Hi are pairwise
skew, i, j = 1, 2, 3. If h1 ∈ H1 \ L, then L′ is a line through h1 intersecting both H2 and H3 if and only if L′ = L(h1 //r L). The
situation is analogous with //` and //r interchanged.

Proof. One implication is obvious by (K1), thus assume that L′ is a line through h1 intersecting both H2 and H3, write
L′′ = L(h1 //r L) and by contradiction assume L

′
6= L′′. Of course L′ and L′′ are coplanar since L′ ∩ L′′ = {h1}, moreover

by (K1), L′′ intersects both H2 and H3, thus the lines H2 and H3 are coplanar as well, a contradiction. �

Theorem 14. Let (P ,L, //` , //r ) be a kinematic space. Then both //` and //r are regular parallelisms.

Proof. The proof is analogous for //` and //r thus we will prove the statement only for //` . Let L1, L2 and L3 be pairwise
skew left parallel lines and consider any three distinct transversals H1, H2 and H3 to these lines. Then by Lemma 13 above
H1 //r H2 //r H3, thus, since these transversals are obviously pairwise skew, a line L intersecting all of themmust be left parallel
to Li. �

We would like now to compare this new definition of regular parallelism with Herzer’s definition of H-regularity. In
order to make the definition of H-regular parallelism sensitive in this new context, for any pair of linear subspaces H1,H2
of (P ,L) let us agree to write H1 + H2 for the linear subspace C(H1 ∪ H2).

Theorem 15. In a kinematic space (P ,L, //` , //r ) property (H1) is always fulfilled with respect both to //` and //r . If,
moreover, we assume for the assumptions of (H2) also one of the following conditions:

(1) the lines L, L′ are skew
(2) it holds T //` Hi (T //r Hi respectively),

then also (H2) holds true for //` ( //r respectively).

Proof. Let H1, H2 and H3 ∈ L be distinct left parallel lines intersecting a further line L and let h2 be a point on H2 \ L. Then
the line L′ ∈ L right parallel with L through h2 intersects both H1 and H3 by (K1), thus, in particular, the line H1 has two
points in H2 + H3, and hence it is completely contained in H2 + H3.
Now let the assumptions of (H2) be satisfied with L 6= L′. If we assume L and L′ skew, then also the lines H1, H2 and H3

are pairwise skew, thus by Lemma 13 L′ //r L, and by (K1) T
′
∩ L′ 6= ∅ (and T ′ and L′ are coplanar). If we assume T //` Hi (see

condition (2)) and L, L′ coplanar, then H1 and H2 are coplanar too, and since all the lines H1, H2, H3, T , T ′ meet the line L, the
lines T and T ′ are contained in H1 + H2 and in particular T ′ is coplanar with L′. The proof in the case of right parallel lines is
analogous. �

Definition 16. Let L,H be two distinct lines ofL. We define the sets

S`(L,H) :=
{
R ∈ L | R //` H and R ∩ L 6= ∅

}
,

Sr(L,H) :=
{
R ∈ L | R //r H and R ∩ L 6= ∅

}
and we refer to their linear closure as the left and right local linear subspaces defined by L and H . We will write also
s`(L,H) := dimC (S`(L,H)) and sr(L,H) := dimC (Sr(L,H)).
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Remark 17. Note that, as a consequence of (H1) and Theorem 15 the linear dimensions s`(L,H) and sr(L,H) are either 2
or 3. As it often happens, the case of dimension 2 is the most difficult to deal with, and in fact we do not have completely
satisfying results for it.

Section 4 will be dedicated to investigate some properties of these local linear subspaces, in particular concerning their
dimensions. Here we show how, by assuming a quite strong hypothesis on the dimension of the local linear subspace of any
pair of distinct lines, we can prove a result similar to Theorem 10.

Theorem 18. Let (P ,L, //` , //r ) be a kinematic space such that for any pair of distinct lines L,H ∈ L the dimension s`(L,H)
is 3 and let T be its group of left translations acting transitively on the pointset. Then //r is uniquely determined by //` and the
group T is normal in the group of all collineations.

Proof. Let L be a line in L and p ∈ P \ L. Consider any line H through p that intersects L and two lines H2,H3 intersecting
L and left parallel with H . By our assumption C(S`(L,H)) has dimension 3, thus the lines H , H2 and H3 are pairwise skew,
hence, by Lemma 13, the only line through p which can fulfill axiom (K1) with respect to Hi is L(p //r L), showing that the
right parallelism is uniquely determined. The second part of the statement is now a consequence of Theorem 7. �

4. Local linear subspaces

In this section we investigate some properties of the local linear spaces introduced in Definition 16. Since the situation
is symmetric with respect to //` and //r we concentrate only on //` , but we stress that analogous results can be proved for
//r as well.
First of all we investigate how the dimension of the local linear spaces is related to two pairs of distinct lines L,H and

L′,H ′. It is easy to show an example of a kinematic space where, for a suitable choice of the lines, the two linear spaces
C(S`(L,H)) and C(S`(L′,H ′)) have different dimension.

Example 19 (Motions of the Hyperbolic Plane). Consider the 4-dimensional algebra Mat2(R) of 2 × 2 matrices with
coefficients in R and identify each element of Mat2(R)with the quadruple of its coordinates with respect to the (canonical)
base. Then it is well known (see [7]) that the subgroup GL(2,R) of invertible matrices gives rise to a kinematic space
(P ,L, //` , //r ) obtained from the 3-dimensional projective space PG(3,R) by removing the hyperbolic quadric Q of
equation x1x4 − x2x3 = 0. The kinematic parallelisms are defined as follows. Write R` and Rr for the two reguli of Q
and fix a line H ∈ L. If this line is secant to the quadricQ in the distinct points h1 and h2 then through each of these points
there are two distinct lines, one belonging to each regulus; denote e.g. by I1, I2 the lines ofR`. Then, for every point p ∈ P
the left parallel line with H through p is the (unique) line ofL through pwhich intersects both I1 and I2, namely the unique
line of the hyperbolic linear congruence of axes I1 and I2 through p. If instead the line H is tangent to Q the lines I1 and I2
collapse to a unique line I ∈ R`, thus the left parallel lines with H are the lines of the parabolic congruence with axis I . If,
in the end, the line H intersects Q in two complex points, again through these points there exist two complex lines J1 and
J2 ofR` considered as a regulus in PG(3,C), and the left parallel class is made up with the lines of the elliptic congruence
having J1 and J2 as axes.
It is now easy to note that if H is tangent toQ and we fix a line L in the tangent plane π toQ through H , then S`(L,H) is

contained in π , thus s`(L,H) = 2, while if H is secant to Q and L is not coplanar with any of the lines I1 and I2 ofR`, then
s`(L,H) = 3.

We have the following.

Proposition 20. Let (P ,L, //` , //r ) = [G,F ] be a kinematic space and let H, L ∈ L and y ∈ P . Then

(1) s`(L,H) = s`(yL,H) = s`(L, yH), thus s`(yL, yH) = s`(L,H);
(2) s`(Ly,H) = s`(L, yHy−1) and s`(L,Hy) = s`(Ly−1,H);
(3) s`(Ly,Hy) = s`(L,H); if moreover y ∈ L ∪ H, then s`(L,Hy) = s`(L,H) = s`(Ly,H);
(4) if for all F ∈ F s`(L, F) = d, then s`(Ly, F) = d.

Proof. Consider the maps {yτ : x 7→ yx} and {τy : x 7→ xy} and let H1 be a line left parallel with H intersecting L. It is well
known that yτ and τy are translations preserving //` and //r respectively, hence yτ(H1) is a line left parallel with H and
intersecting yL, and thus S`(yL,H) = yτ(S`(L,H)) = y S`(L,H), which shows (1). Write now H1 = xH for a suitable x ∈ P

andH ∈ F , then τy(H1) = xHy = xy(y−1Hy)which shows that τy(H1) //` y
−1Hy, thus τy−1(S`(Ly,H)) = S`(L, yHy

−1), which
proves (2). The first part of claim (3) follows from S`(L,H)y = τy(S`(L,H)) = S`(Ly,Hy), while the second part is obvious.
Claim (4) is a straightforward consequence of (2). �

The next proposition tries to answer the questionwhether the local linear subspace defined by two distinct lines L,H ∈ L
is also a kinematic subspace, meaning that it is closed with respect to both //` and //r (see [12,11] for further details).

Proposition 21. Let (P ,L, //` , //r ) be a kinematic space and let (P ′,L′) be a linear subspace. Then the following facts are
equivalent:
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(1) (P ′,L′) is closed with respect to //` ;
(2) for any line L ∈ L′ and for any p ∈ P ′ there exists a line L′ ∈ L′ such that L′ //` L and for which a common transversal to L
and L′ through p exists.

Proof. Assume (P ′,L′) is closed with respect to //` . Then for any line L ∈ L′ its left parallel line through p is still a line of
L′ and obviously has a common transversal with L through p.
Conversely assume (2) holds and let L be any line ofL′, p ∈ P ′ and L′′ := L(p //` L). Let L

′ //` L be a line ofL
′ admitting a

common transversal T ∈ L′ with L through p. If L′′ = L′ ∈ L′ we are done; if this is not the case consider a point q ∈ L\T and
the line T ′ = L(q //r T ). Then by (K1) T

′meets L′, thus it is a line ofL′, and again by (K1) it meets also L′′, which consequently
has two points in P ′, and thus belongs toL′ as well. �

Remark 22. The property expressed by (2) of Proposition 21 above is a weakening of a statement which characterizes
projective spaces with sufficiently many points on every line. It is in fact possible to prove the following Proposition; we
cannot provide a useful reference, thus for the sake of completeness we propose here the following proof.

Proposition 23. Let (P ,L) be a linear space of dimension at least 3 and such that any line has at least four points. Then for any
couple of skew lines L1 and L2 and for any point p not on these lines there exists a common transversal T to L1 and L2 through p if
and only if (P ,L) is a 3-dimensional projective space.

Proof. One implication is obvious. Let a, b, c , d ∈ P be distinct points no three of which are collinear and assume that
a, b ∩ c, d 6= ∅, we claim that ac ∩ bd 6= ∅, namely that the Veblen axiom holds true. For, consider two distinct points
p, q of a, c \ {a, c} and let L be a line through p not contained in the plane π defined by the lines a, b and c, d. Then, by
our assumption there exists a common transversal T to L and b, d through q. The line T is contained in π , thus necessarily
intersect L in the point p, hence coincides with a, c , which concludes the proof. �
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