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a b s t r a c t

We consider symmetric indecomposable d-linear (d > 2) spaces of dimension n over
an algebraically closed field k of characteristic 0, whose center (the analog of the space
of symmetric matrices of a bilinear form) is cyclic, as introduced by Reichstein [B.
Reichstein, On Waring’s problem for cubic forms, Linear Algebra Appl. 160 (1992) 1–61].
The automorphism group of these spaces is determined through the action on the center
and through the determination of the Lie algebra. Furthermore, we relate the Lie algebra to
the Witt algebra.
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1. Introduction

A higher degree form, that is a form of degree d ≥ 3 over a field k, is a map φ : V −→ k satisfying φ(αv) = αdφ(v) for all
α ∈ k, v ∈ V . The map φ can be polarized to obtain a symmetric d-linear form θ : V × · · · × V −→ k. If k has characteristic
0 or greater than d, then this construction allows us to establish a correspondence between forms of degree d and d-linear
spaces (V ,Θ). Using this correspondence D. Harrison initiated an algebraic theory of higher degree forms (somehow similar
to the algebraic theory of quadratic forms).
Harrison, in [1] introduced the concepts of regularity, indecomposability of a higher degree form and also defined its

center Cent(Θ), the analog to the space of symmetric matrices with respect to a bilinear form. It turns out that the center is
a commutative subalgebra of End(V ). The automorphism group O(Θ) of a regular d-linear spaces (V ,Θ) is defined as the
group of all linear bijections σ : V −→ V such that Θ(v1, . . . , vd) = Θ(σ (v1), . . . , σ (vd)) for all vi ∈ V . Sometimes this
group is called the orthogonal group of (V ,Θ) in analogy with the quadratic case. The orthogonal group of a higher degree
form has been studied by several authors, for instance see [2–7,18].
In this paper we shall be interested in an action O(Θ) on Cent(Θ). In the case of forms of cyclic center, this action and

its induced action at Lie algebra level enables us to give a description of O(Θ).
The organization of the paper is as follows. In the next section we recall the definitions from the literature of the objects

mentioned above. We also introduce the concept of forms with maximal center and give examples of forms satisfying this
maximality property. We furthermore explain how an element of the center may be used to twist the Lie algebra of the
form. In the third section we recall the definition of cyclic forms. We show that they have maximal center and use the
twisting operation to give a precise description of the Lie algebra. This turns out to be quotient of the positive part of the
Witt algebra. In the last section,we combine the action ofO(Θ) on Cent(Θ)with the information on the Lie algebra gathered
in the previous section to give a description of O(Θ) in terms of a short exact sequence involving the automorphism group
of the k-algebra Cent(Θ). We finish the paper by calculating a concrete example.
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2. Forms of degree higher than 2

In this section we recall the relevant definitions and basic facts from the theory of higher degree forms. We introduce
the concept of maximal center and we explain how the center in general can be made into a module for the Lie algebra in a
canonical way. Finally, we show how it can be used to twist the bracket of the Lie algebra.
Let d be an integer d ≥ 2 and k a field of characteristic 0 or greater than d.

Definition 2.1. A d-linear space over k is a pair (V ,Θ)whereV is a finite dimensional k-vector space andΘ : V×· · ·×V −→
k is a symmetric d-linear form.

This means thatΘ(v1, . . . , vd) is k-linear in each of its d slots and is invariant under all permutations of those slots.
Under the conditions on k, it is known that there is a correspondence between d-linear spaces (V ,Θ) over k and

homogeneous polynomials of degree d in n unknowns and coefficients in k, see [1,8].
Two d-linear spaces (V ,Θ) and (V ′,Θ ′) over k are called isomorphic, if there is a bijective k-linear map f : V −→ V ′

such thatΘ ′(f (v1), . . . , f (vd)) = Θ(v1, . . . , vd) for every v1, . . . , vd ∈ V . In this case we write (V ,Θ) ∼= (V ′,Θ ′).
If (V ,Θ) is a d-linear space over k and K/k is a field extension one gets a d-linear space over K by extension of scalars.

We denote this space by (VK ,ΘK ).
The orthogonal sum of d-linear spaces (V1,Θ1) and (V2,Θ2) is denoted (V1,Θ1) ⊥ (V2,Θ2). It is the d-linear space on

the direct sum V1⊕ V2 with mapΘ1 ⊥ Θ2 given by (Θ1 ⊥ Θ2)(v1+ u1, . . . , vd+ ud) := Θ1(v1, . . . , vd)+Θ2(u1, . . . , ud).
A d-linear space is called decomposable if it is isomorphic to the orthogonal sum of two d-linear spaces, otherwise it is called
indecomposable.
Let (V ,Θ) be a d-linear space. Two subspaces S and T of V are called orthogonal if Θ(S, T , V , . . . , V ) = 0, that is

Θ(s, t, v3, . . . , vd) = 0 for every s ∈ S, t ∈ T and every vi ∈ V . For example, if V = V1 ⊥ V2 and we consider Vj
as subspaces of V , then V1 and V2 are orthogonal. Conversely, if S, T are orthogonal subspaces of V with S + T = V and
S ∩ T = 0, then V ∼= S ⊥ T .

Definition 2.2. Let (V ,Θ) be a d-linear space and suppose S ⊆ V . Then we define S⊥ := {w ∈ V : Θ(w, S, V , . . . , V ) = 0}.
We say that (V ,Θ) is 1-regular (or just regular) if V⊥ = 0.We say that (V ,Θ) is 2-regular ifΘ(w,w, V , . . . , V ) = 0 implies
w = 0.

Of course 2-regularity implies regularity and in fact we shall only consider spaces that are at least regular and of degree
d ≥ 3 from now on. Harrison proved that every regular d-linear space (V ,Θ) can be expressed as an orthogonal sum of
unique regular indecomposable spaces, [1, Proposition 2.3]. Moreover, he showed that the indecomposable components of
(V ,Θ) are determined by the ‘‘center’’, which is defined analogously to the space of symmetric matrices for a bilinear form:

Definition 2.3. Let (V ,Θ) be a (regular) d-linear space over k. The center is defined as Centk(V ,Θ) := {f ∈ Endk(V ) :
Θ(f (v1), v2, . . . , vd) = Θ(v1, f (v2), . . . , vd) for all vi ∈ V }.

Of course, by the symmetry of the form, the second slot can be replaced by the ith slot for i ≥ 2 in the above definition.
Let us mention the following useful properties of the center of regular spaces, also established by Harrison, [1, Section 4].
Note that d > 2.
(1) Centk(Θ) is a commutative k-subalgebra of Endk(V ) containing k.
(2) Centk((V1,Θ1) ⊥ (V2,Θ2)) ∼= Centk(V1,Θ1)× Centk(V2,Θ2) as k-algebras.
(3) CentK (VK ,ΘK ) ∼= Centk(V ,Θ)⊗k K ,where K is a field extension of k.
For many d-linear spaces the center reduces just to the ground field k. In fact, one can prove that if (V ,Θ) is 2-regular,

then Centk(Θ) = k, see [9].
We mention another d-linear space that has center equal to k.

Example 2.4. LetA be a central simple algebra over k, and let tr denote its reduced trace. Let (A, T d) be the d-linear space
corresponding to the degree d form tr(xd) onA. Explicitly, T d is given by T d(x1, . . . , xd) := 1

d! tr(
∑

π∈Sd
xπ(1) · · · xπ(d))where

Sd denotes the symmetric group of degree d. Then Centk(A, T d) ∼= k, see [10, Theorem 2.2].

We now give another example of a d-linear space that is constructed in quite a similar way to the space of the previous
example and still has a very different center. Instead of considering a central simple algebra over kwe this time consider K ,
a finite separable field extension of k.

Example 2.5. Let K be a separable finite extension of k and let b ∈ K , b 6= 0. Define the d-linearmapΨb : K×· · ·×K −→ k
by Ψb(x1, . . . , xd) := trK/k(bx1 · · · xd). The space (K ,Ψb) is regular, indecomposable and has center isomorphic to K ,
see [1,11].

Hence in general, the center of a regular d-linear space may be small as in Example 2.4 or large as in Example 2.5. Indeed,
the center of the latter example is as large as possible, that is, it is a maximal commutative subalgebra of Endk(V ), see
Lemma 2.7 below. The forms that we introduce in the next section as our main object of study also have center with this
maximality property, so let us formalize it:
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Definition 2.6. Let (V ,Θ) be a regular d-linear space over k. We say that (V ,Θ) has maximal center if Centk(V ,Θ) is a
maximal commutative algebra in Endk(V ).

Lemma 2.7. (1) The orthogonal sum of d-linear spaces with maximal center has maximal center. Maximality is preserved under
scalar extension.

(2) Let (K ,Ψb) be as in Example 2.5. Then (K ,Ψb) has maximal center.
(3) Let K be finite algebraic field extension of k and (V , sΘ) a regular indecomposable d-linear space over K withmaximal center.
Let s : K −→ k be a non-zero k-linear map and let be the d-linear space over k with map (v1, . . . , vd) 7→ s(Θ(v1, . . . , vd)).
Then (V , sΘ) is regular, indecomposable and has maximal center. Moreover Centk(V , sΘ) = CentK (V ,Θ).

(4) Let (A, T d) be as in Example 2.4, then its center is not maximal.

Proof. (1) A straightforward computation.
(2) Identify K with {ma : a ∈ K} ⊂ Endk(K) where ma denotes multiplication by a. Suppose f ∈ Endk(K) is such

that f ◦ ma = ma ◦ f for all a ∈ K . Then for each a ∈ K we have Ψb(f (a), x2 . . . , xd) = Ψb(f (ma(1)), x2 . . . , xd) =
Ψb(ma(f (1)), x2 . . . , xd) = Ψb(af (1), x2 . . . , xd). Since Ψb is regular this implies that f (a) = af (1) for each a ∈ K , with
f (1) ∈ K and hence f = mf (1) ∈ K as needed.
(3) The d-linear space (V , sΘ) over k is regular and indecomposable by [12, Proposition 3] and has Centk(V , sΘ) =

CentK (V ,Θ) by [13, Lemma 4.2 v)]. Since K ⊂ CentK (V ,Θ) one sees that any k-linear map on V which commutes with
every element in CentK (V ,Θ) is also K -linear and so Centk(V , sΘ) is maximal.
(4) The center is not maximal since scalar multiplication by an element of k commutes with all Endk(A). �

For more details on the forms (V , sΘ) given in (3) one may consult [1, Lemma 2.7], [13, Definition 2.3 iv)] and [12,
Proposition 3].
The orthogonal or automorphism group of a (regular) d-linear space (V ,Θ) is defined as the set of k-linear bijections of V

that leaveΘ invariant:

Definition 2.8. Let (V ,Θ) be a (regular) d-linear space over k. The orthogonal group of (V ,Θ) is

O(Θ) = {σ ∈ GLk(V ) | Θ(σ (v1), . . . , σ (vd)) = Θ(v1, . . . , vd) for all vi ∈ V }.

Example 2.9. The orthogonal group of the form given in Example 2.4 is computed in [10, Theorem 3.1] and is infinite if k is.
On the other hand the orthogonal group of Example 2.5 is finite, see [11, Theorem 3.12].

Using the correspondence between d-linear spaces and homogeneous polynomials given in the beginning of this section,
one sees that the orthogonal group O(Θ) of (V ,Θ) is a linear algebraic group. Hence there is a Lie algebra associated with
O(Θ) that we shall denoteLΘ . By [14, Proposition 4.2],LΘ can be defined/described directly as follows:

Definition 2.10. The Lie algebraLΘ associated with (V ,Θ) is a subalgebra of gl(V ). It can be described as

LΘ =

{
L ∈ gl(V )

∣∣∣∣∣ d∑
i=1

Θ(v1, . . . , L(vi), . . . , vd) = 0 for all v1, . . . , vd ∈ V

}

Example 2.11. The orthogonal groups of the spaces defined in Example 2.4 are computed in [10] fromwhich onemay derive
their Lie algebras. Let us use the above description to show that they are at least nontrivial. For a ∈ A, let La denote the left
multiplication by a inA and Ra denote the right multiplication by a inA.One checks that

∑d
i=1 T

d(x1, . . . , La(xi), . . . , xd) =∑d
i=1 T

d(x1, . . . , Ra(xi), . . . , xd), and hence by Definition 2.10 we have ada = Ra − La ∈ LTd . Then the Lie algebra has
dimension at least dimkA− 1.

On the other hand, by combining the next Proposition and example, one gets that the Lie algebras of the spaces in
Example 2.5 are trivial.

Proposition 2.12. Let (V ,Θ) be a regular d-linear space (with d > 2 as always) over k andLΘ be its Lie algebra.

(1) Suppose that (V ,Θ) ∼= (V1,Θ1) ⊥ (V2,Θ2). ThenLΘ
∼= LΘ1 ×LΘ2 .

(2) For a field extension K/k, one hasLΘK
∼= LΘ ⊗k K .

Proof. (1) See [14, Proposition 4.3]. (2) follows easily from Definition 2.10. �

Example 2.13. Suppose Θ is the d-linear form corresponding to the homogeneous polynomial F = a1xd1 + · · · + anx
d
n

of degree d ≥ 3 over k. Let {e1, . . . , en} be the the canonical basis of V = kn. Then we have that Θ(ei1 , . . . , eid) = ai1
if i1 = i2 = · · · = id and 0 otherwise. Thus we have an orthogonal decomposition V = ke1 ⊥ ke2 ⊥ . . . ⊥ ken.
Proposition 2.12 now implies that LΘ

∼= LΘ1 × LΘ2 × · · · × LΘn , where Θi denotes the restriction of Θ to kei. Since
char k > d or char k = 0 we getLΘi = 0 and henceLΘ = 0.
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A key property of the center of a d-linear space that we shall need in the following is its Lie module structure.

Proposition 2.14. Suppose (V ,Θ) is a d-linear space over k with center Centk(V ,Θ). For f ∈ LΘ and φ ∈ Centk(Θ) we have
[f , φ] ∈ Centk(V ,Θ) where the bracket is the commutator. This induces a module structure for LΘ on Centk(Θ).

Proof. The proof of [f , φ] ∈ Centk(V ,Θ) is a direct calculation involving the definitions/descriptions of Centk(V ,Θ) and
LΘ . The module structure on Centk(V ,Θ) follows then from the basic fact that the commutator satisfies the Jacobi identity.

�

We now describe how the elements of the center can be used to twist the Lie algebra structure onLΘ .

Proposition 2.15. Let ψ ∈ Centk(Θ). Then there is a new Lie algebra structure onLΘ given by

[f , g]ψ := fψg − gψ f for f , g ∈ LΘ .

We denoteLΘ with this Lie algebra structure byLψ
= L

ψ
Θ .

Proof. It is clear that [f , g]ψ is bilinear and satisfies [f , f ]ψ = 0 whereas the Jacobi identity is a simple calculation based on
the definition. Let us therefore verify that [f , g]ψ ∈ LΘ for any f , g ∈ LΘ . We must show that

Θ([f , g]ψv1, v2, . . . , vd)+Θ(v1, [f , g]ψv2, . . . , vd)+ · · · +Θ(v1, . . . , [f , g]ψvd) = 0. (1)

For the first term of the above summation we have

Θ([f , g]ψv1, v2, . . . , vd) = Θ((fψg − gψ f )v1, v2, . . . , vd)
= −Θ(ψgv1, f v2, . . . , vd)− · · · −Θ(ψgv1, v2, . . . , f vd)
+Θ(ψ f v1, gv2, . . . , vd)+ · · · +Θ(ψ f v1, v2, . . . , gvd)

= Θ(f v1, gv2, . . . , ψvd)+ · · · +Θ(f v1, ψv2, . . . , gvd)
−Θ(gv1, f v2, . . . , ψvd)− · · · −Θ(gv1, ψv2, . . . , f vd)

where in the last equality we used that ψ ∈ Centk(Θ) to move it to an ‘unoccupied’ slot. Expanding in the same way
the other terms of (1) we obtain similar expressions. Therefore, for each pair of distinct indices (i, j), there are exactly
two terms in (1) of the form Θ(v1, . . . , f vi, . . . , gvj, . . . , ψvl, . . . , vd) for l 6= i, j, one term from the expansion of
Θ(v1, . . . , [f , g]ψvi, . . . , vj, . . . , vd) and another from the expansion ofΘ(v1, . . . , vi, . . . , [f , g]ψvj, . . . , vd). Since the two
terms have opposite signs, their sum is zero. �

3. Cyclic spaces

We shall from now on focus on the ‘‘cyclic spaces’’, which are the d-linear spaces whose center contains a cyclic map. In
this section we recall the definition and basic facts of these spaces and then go on to calculate their Lie algebras, using the
results from the previous section. Somewhat surprisingly, we find that they are closely related to the Witt algebra.
We assume from now that k is algebraically closed and char k = 0 even though some of the results may hold in a greater

generality.

Definition 3.1. Let (V ,Θ) be a d-linear space. We say that (V ,Θ) is cyclic if Centk(Θ) contains a cyclic element ψ for
End(V ). This means that there exists v ∈ V such that V = span{v, ψ(v), ψ2(v), . . . , ψN(v)} for some N.

We need the following result from [15]:

Proposition 3.2. Let (V ,Θ) be regular and cyclic with cyclic element ψ ∈ Centk(Θ). Then Centk(Θ) = k[ψ] and is of
dimension n (where n = dim V).

Regular indecomposable cyclic spaces exist in any dimension n ≥ 2 and for any degree d > 2. Moreover for fixed n, d
they are unique up to multiplication by a scalar. There is a concrete construction of them, due to Reichstein [16], which we
shall recall now:

Definition 3.3. Let {v1, . . . , vn} be a basis of the vector space Vn and d > 2 an integer. Let Θd be the d-linear form defined
by:

Θd(vi1 , vi2 , . . . , vid) =

{
1 if i1 + i2 + · · · + id = (d− 1)n+ 1
0 otherwise.

Then (Vn,Θd) is regular, indecomposable and cyclic. Indeed, let ψ : Vn −→ Vn be the linear map defined by ψ(vi) = vi−1
(where we define v0 := 0). Then ψ belongs to Centk(Vn,Θd) and is cyclic. Denote the center of (Vn,Θd) by Centk(n, d) and
the Lie algebra byL(n, d).
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We know by Proposition 3.2 that Centk(n, d) = k[ψ]. The next series of results aim at computingL(n, d).

Lemma 3.4. (Vn,Θd) has maximal center.

Proof. Let ψ ∈ Centk(n, d) be as above and consider Vn as k[X]-module through X 7→ ψ . Since ψ is cyclic, this gives an
isomorphism of k[X]-modules Vn ∼= k[X]/(Xn) ∼= spank{1, X, . . . , Xn−1}. Hence if f ∈ Endk(Vn) commutes with ψ , it may
be viewed as a linear map on spank{1, X, . . . , Xn−1} commuting with X . We then have f (1) = P(X) for some P(X) ∈ k[X]
and f (X i) = X if (1) = P(X)X i mod Xn. In other words, f acts on Vn as multiplication by P(ψ), that is f ∈ Centk(n, d) as
claimed. �

Proposition 3.5. Assume that (Vn,Θd) is as above. ThenL(n, d) is a subalgebra of the upper triangular matrices of gln(k) and
hence solvable.

Proof. Let ψ and {v1, . . . , vn} be as in the above definition and take f ∈ L(n, d). By Proposition 2.14 we have that
[f , ψ] = fψ − ψ f ∈ Centk(n, d). But [f , ψ] is traceless and so it belongs to ψ Centk(n, d) = ψk[ψ]. Since [f , ψ i] =
ψ i−1[f , ψ] + [f , ψ i−1]ψ for i ≥ 1 we get now by induction that [f , ψ i] belongs to ψ ik[ψ]. Set v := vn so that vi = ψn−iv.
We then have

f vi = fψn−iv = ψn−if v + [f , ψn−i]v ∈ ψn−ik[ψ]v = span{vi, vi−1, . . . , v1}

and the proposition is proved. �

Lemma 3.6. For any d > 2 and n ≥ 2 we have

dimkL(n, d) < dimk Centk(n, d) = n.

Proof. We need only check the first inequality. Proposition 2.14 gives rise to a linear map i : L(n, d)→ Centk(n, d), f 7→
[f , ψ], where ψ is as above. We show that i is injective.
Suppose that f ∈ L(n, d)∩ker i. Then f ∈ Centk(n, d), since (Vn,Θd) hasmaximal center, that isΘd(f (u1), u2, . . . , ud) =

Θd(u1, f (u2), . . . , ud) = · · · = Θd(u1, u2, . . . , f (ud)) for all u1, . . . , ud ∈ Vn. But we also have

Θd(f (u1), u2, . . . , ud)+Θd(u1, f (u2), . . . , ud)+ · · · +Θd(u1, u2, . . . , f (ud)) = 0

since f ∈ L(n, d). Combining, we getΘd(f (u1), u2, . . . , ud) = 0 for all u1, . . . , ud ∈ Vn (recall char k = 0). This implies that
f = 0 because (Vn,Θd) is regular, and so indeed i is injective. Moreover, since tr[f , ψ] = 0 we have 1 6∈ im i and the Lemma
is proved. �

For small n and dwe can compute the Lie algebraL(n, d) explicitly.

Example 3.7. We haveL(3, 3) =
{[
−2a b 0
0 a −2b
0 0 4a

]
: a, b ∈ k

}
andL(4, 3) =

{[a −2b c 0
0 0 b −2c
0 0 −a 4b
0 0 0 −2a

]
: a, b, c ∈ k

}
.

These examples suggest that there might be a sort of inclusion of the n dimensional case into the n + 1 dimensional case.
We shall show that this is indeed the case.
Let ψ ∈ Centk(n, d) be as above. Define the linear maps

ι : Vn → Vn+1, ι(vi) = vi, π : Vn+1 → Vn, π(vi) = vi−1.

Then we have

Proposition 3.8. The map ρ : L(n, d)ψ → L(n+ 1, d) defined by f 7→ ι ◦ f ◦ π is a Lie algebra embedding, whereL(n, d)ψ
is the twisted Lie algebra structure onL(n, d) introduced in Proposition 2.15.

Proof. Certainly ρ is an injection of vector spaces. Since π ◦ ι = ψ we have that

[ρ(f ), ρ(g)] = ιfπιgπ − ιgπιfπ = ιfψgπ − ιgψ fπ = ρ([f , g]ψ )

and hence it is a Lie algebra homomorphism. It only remains to be proved that ρ(f ) ∈ L(n+ 1, d). But this follows from the
following formula and its permutations:

Θd(ιvi1 , vi2 , . . . , vid) = Θd(vi1 , πvi2 , . . . , πvid)

for vi1 ∈ Vn, vi2 , . . . , vid ∈ Vn+1. It can be read off from the standard forms given in Definition 3.3. �

Lemma 3.9. Define Dn ∈ Endk(Vn) by Dn : vi 7→ (n− 1− d(n− i))vi, for all i. Then Dn is a semisimple element of L(n, d).
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Proof. By definitionΘd(vi1 , vi2 , . . . , vid) 6= 0⇒
∑
j ij = (d− 1)n+ 1. But

Θd(Dnvi1 , vi2 , . . . , vid)+ · · · +Θd(vi1 , vi2 , . . . ,Dnvid) = d
(
(n− 1)−

∑
(n− ij)

)
Θd(vi1 , vi2 , . . . , vid)

= d
(
(n− 1)− dn+

∑
ij
)
Θd(vi1 , vi2 , . . . , vid) = 0,

and hence Dn ∈ L(n, d). Moreover, since L(n, d) is a linear Lie algebra and Dn acts diagonally in Vn, it follows that it is a
semisimple element in the sense of Lie algebras. The Lemma is proved. �

Lemma 3.10. The following commutation rule holds inL(n, d).

[Dn, ψ] = dψ.

Proof. Apply Dn to the equation ψvi = vi−1. �

Theorem 3.11. L(n+ 1, d) = ρ(L(n, d))
⊕
kDn+1 and dimkL(n, d) = n− 1.

Proof. We proceed by induction. Take f ∈ L(2, d) and write f =
[
a1 a2
a3 a4

]
with respect to the basis {v1, v2} of V2. The

condition

Θd(f (v2), v2, . . . , v2, v1, v1)+Θd(v2, f (v2), . . . , v2, v1, v1)
+Θd(v2, v2, . . . , f (v1), v1)+Θd(v2, v2, . . . , v1, f (v1)) = 0

implies that a3 = 0. Similarly one gets that a2 = 0 by acting on (v2, v2 . . . , v2) and finally a1 + (d− 1)a4 = 0 by acting on
(v2, v2 . . . , v2, v1). We conclude thatL(2, d) has dimension 1.
Assume now inductively that the theorem is true for L(r, d) for r ≤ n. We then get by Proposition 3.8 that ρ(L(n, d))

consists of nilpotentmatrices. Thus, the vector space sumof the theorem is direct and so dimL(n+1, d) ≥ dim ρ(L(n, d))+
1. The assertion on the dimension now follows using Lemma 3.6 and from this we get that ρ(L(n, d)) and Dn+1 span
L(n+ 1, d). �

Remark 3.12. Recall that the Witt algebra W is the Lie-algebra on generators {Ln | n ∈ Z} and relations [Ln, Lm] =
(m− n)Ln+m.

The following theorem states that L(n, d) is a quotient of a certain subalgebra ofW , namely the one given by {Ln | n =
0, 1, 2, . . .}. It is the main theorem of this section.

Theorem 3.13. Let D′n :=
1
dDn and Xr = (D

′
n + r

d−1
d I)ψ

r . Then we have

(i) {Xr | r = 0, . . . , n− 2} is a basis of L(n, d)

(ii) [Xr , Xs] =
{
(s− r)Xs+r if s+ r < n− 1
0 otherwise.

Proof. (i) We first claim that Xr 6= 0 for r = 0, . . . , n − 2. But this is a consequence of the formula Xrvn = n−1−r
d vn−r that

follows easily from the definitions. Since {vi | i = 1, . . . , n} is a basis of Vn we even see from this that {Xr | r = 0, . . . , n− 2}
is a linearly independent subset of Endk(Vn). So we just have to show Xr ∈ L(n, d). For this it is enough by linearity to check
that

Θd(Xrvi1 , vi2 , . . . , vid)+Θd(vi1 , Xrvi2 , . . . , vid)+ · · · +Θd(vi1 , . . . , Xrvid) = 0.

By definition ofΘd we only need to check the case i1 + i2 + · · · + id = (d− 1)n+ 1+ r.
Now we have for all j = 1, . . . , d:

Θd(vi1 , . . . , Xrvij , . . . , vid) =
n− 1
d
− (n− ij + r)+ r

d− 1
d

.

Summing up we find

Θd(Xrvi1 , vi2 , . . . , vid)+ · · · +Θd(vi1 , vi2 , . . . , Xrvid) = n− 1− nd− rd+ r(d− 1)+ (d− 1)n+ 1+ r = 0

as claimed.
(ii) One proves first that [D′nψ,ψ

s
] = sψ s by induction on s using the formula [D′n, ψ] = ψ from Lemma 3.10

together with [D′n, ψ
s
] = ψ[D′n, ψ

s−1
] + [D′n, ψ]ψ

s−1. From this one gets [D′nψ
r , ψ s] = sψ r+s by induction on r and
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then [D′nψ
r ,D′nψ

s
] = (s− r)D′nψ

r+s. This formula is valid for all integers r, s ≥ 0. But now

[Xr , Xs] =
[(
D′n + r

d− 1
d
I
)
ψ r ,

(
D′n + s

d− 1
d
I
)
ψ s
]

= [D′nψ
r ,D′nψ

s
] + s

d− 1
d
[D′nψ

r , ψ s] − r
d− 1
d
[D′nψ

s, ψ r ]

= (s− r)D′nψ
r+s
+ (s2 − r2)

d− 1
d

ψ s+r = (s− r)Xs+r

as claimed. Hence to get the expression of (ii), we must check that Xr = 0 for r ≥ n− 1. For r ≥ n this is clear sinceψn = 0.
And for r = n−1 it follows from vl = 0 for l ≤ 0 and from the formula Xrvn = n−1−r

d vn−r thatwe used in the proof of (i). �

Remark 3.14. Note that neitherL(n, d) nor Centk(n, d) depends on d.

Remark 3.15. Onemay ask if it is possible to realize theWitt algebra itself as the Lie algebra of a higher degree form.Allowing
infinite dimensional vector spaces, one possible way of doing so is to let V be the vector space with basis { vi | i ∈ Z } and
defineΘd by

Θd(vi1 , vi2 , . . . , vid) =

{
1 if i1 + i2 + · · · + id = 0
0 otherwise.

We leave out the details.

Question 3.16. Is it possible to realize the Virasoro algebra, the central extension of theWitt algebra, as the Lie algebra of a higher
degree form?

4. The orthogonal group

In this section we use the results from the previous section to obtain a precise description of the orthogonal group in the
cyclic case.
In general, in order to determine the orthogonal group of a regular space (V ,Θ) with d > 2 one may assume that it is

indecomposable. Indeed, under the action of an automorphism of (V ,Θ), the indecomposable components are just being
permuted, as one sees by the uniqueness of the components.
The following Lemma is the key point for the results of this section. It is the group theoretical version of Proposition 2.14.

Lemma 4.1. Let (V ,Θ) be a regular d-linear space over k. Then O(Θ) acts on Centk(Θ) by conjugation, that is for each
σ ∈ O(Θ) and f ∈ Centk(Θ), we have σ f σ−1 ∈ Centk(Θ).

Proof. Follows directly from the definitions. �

Let µd := {ζ ∈ k | ζ d = 1}, which by the assumptions on k has order d. Note that µd may be identified with a subgroup
ofO(Θ). Let G be the group of automorphisms of the k-algebra Centk(Θ). It is an algebraic group and the action ofO(Θ) on
Centk(Θ) induces a homomorphism of algebraic groups χ : O(Θ)→ G.We can now formulate our next theorem:

Theorem 4.2. Let (V ,Θ) be a regular indecomposable d-linear space over k with maximal center. Then χ induces the following
exact sequence of groups

1 −→ µd −→ O(Θ)
χ
−→ G.

Proof. Suppose that σ ∈ O(Θ) satisfies χ(σ) = 1, that is σρσ−1 = ρ for all ρ ∈ Centk(Θ). Then σ is in the centralizer of
Centk(Θ), which by maximality implies that σ ∈ Centk(Θ). Hence for all v1, . . . , vd ∈ V , we have

Θ(v1, . . . , vd) = Θ(σ (v1), . . . , σ (vd)) = Θ(v1, . . . , σ
d(vd)).

By regularity of the space we get from this σ d = idV . Therefore the minimum polynomial of σ divides Xd − 1 in k[X] and
so the eigenvalues of σ are multiplicity free and σ is diagonalizable. If σ had more than one eigenvalue, then (V ,Θ)would
be decomposable by [15, Lemma 2.6]. Hence σ has exactly one eigenvalue and we conclude that σ = ζ idV with ζ d = 1 as
needed. �

We now return to the cyclic spaces (Vn,Θd) of the previous section. The following is our main theorem.

Theorem 4.3. Let (Vn,Θd) be the regular, indecomposable cyclic d-linear space over k with cyclic element ψ ∈ Centk(n, d).
Then the homomorphism χ induces the following short exact sequence of groups

1 −→ µd −→ O(Θd)
χ
−→ G −→ 1.
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Before we can give the proof of the theorem we need a couple of preparatory lemmas. Let us first analyse the group
G in more detail. Consider the set G′ := k× × kn−2 and define ρ1 : G′ → Centk(n, d) by a = (a1, a2 . . . , an−1) 7→
a1ψ + a2ψ2 + · · · an−1ψn−1. Define moreover ρ2 : G′ → Matn(k) by

ρ2(a) :=


1 0 0 · · · 0
0 a1 0 · · · 0
0 a2 a21 0
...

...
. . .

...

0 an ? ? an−11


where the ith column consists of the entries of ρ1(a)i. This induces an operation m : G′ × G′ → G′ where m(a, b) is the
second column, with the first entry deleted, of the matrix product ρ2(a)ρ2(b).

Lemma 4.4. Let (Vn,Θd) be as above. Then G′ is a group with multiplication given by m and neutral element e :=
(1, 0, 0, . . . , 0). The groups G′ and G are isomorphic.

Proof. Notice first that a ∈ G is completely determined by a(ψ) since a is a k-automorphism of Centk(Θ). Moreover,
a(ψ) = a1ψ +· · ·+ an−1ψn−1 for ai ∈ k and a1 6= 0 becauseψn = 0 andψ j 6= 0 for j ≤ n−1. Hence a determines a vector
f (a) = (a1, . . . , an−1) ∈ k× × kn−2, and so we have a map f : G→ G′. Since Centk(Θ) is generated by ψ , we deduce that
f is bijective. The multiplication and neutral element of G give by transport of structure via f exactly the multiplication m
and neutral element e on G′ and the Lemma is proved. �

Lemma 4.5. G is a connected algebraic group.

Proof. From the previous Lemma we know that ρ2 : k× × kn−2 → Matn(k)makes k× × kn−2 in bijection with its image G.
The inverse map is given by projection on the second column. Hence, as a variety G is isomorphic to k× × kn−2 and so G is
connected. �

Lemma 4.6. The dimension of G is n− 1.

Proof. By [17, section 13.2] the Lie algebra g of G is the Lie algebra of derivations of k[ψ]. But any derivation d : k[ψ] −→
k[ψ] is uniquely determined by d(ψ) and so g has dimension n− 1. Hence also G has dimension n− 1. (Alternatively, one
can argue directly using G ∼= k× × kn−2). �

We are now able to prove Theorem 4.3.

Proof. We need only show χ : O(Θd) −→ G is surjective. Set H := χ(O(Θd)). It is a closed subgroup of G, [17, Section
7.4, Proposition B]. By Theorem 3.11, the Lie algebra of (Vn,Θd) has dimension n− 1 and hence also O(Θd) has dimension
n − 1. Then G/H is a variety of dimension 0 and so H contains the identity component G0, [17, Proposition 7.3 (b)]. But by
Lemma 4.5, G is connected and therefore G = H. �

By Theorem 4.3, χ induces an isomorphism O(Θd)/µd ∼= G. In general, however, we do not know how to describe the
inverse map of χ directly without passing through the Lie algebras.
Of course for small values of n and d, one can use an ad hoc approach. Let us give an explicit example. Assume that

n = d = 3. From the above description, G is generated by the elements ρ =
[1 0 0
0 α 0
0 0 α2

]
and ε =

[
1 0 0
0 1 0
0 β 1

]
.We look for

σ ∈ O(Θ3) such that χ(σ) = ρ and τ ∈ O(Θ) such that χ(σ) = ε. Let us start with σ .
Such σ must satisfy χ(σ)(ψ) = σψσ−1 = αψ . Combining with ψ(vi) = vi−1 and writing σ(v3) = av1 + bv2 + cv3

an easy computation shows that σ =
[
α2c αb a
0 αc b
0 0 c

]
. Then, using the fact that σ is an automorphism of Θ3 we obtain the

following system of equations: α2c3 = 1, αbc2 = 0, b2c + ac2 = 0. Solving this system and denoting by 3
√
α a fixed cubic

root of α we see that the matrix of σ is

σ =

α 3
√
α 0 0
0 3

√
α 0

0 0 3
√
α/α

 .
To obtain τ ∈ O(Θ)we proceed similarly and find

τ =

ζ 2βζ/3 −β2ζ 2/9
0 ζ −βζ/3
0 0 ζ

 ,
where ζ a cubic root of 1.
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