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Abstract 

Interleukin-6 (IL-6) is a pleiotropic cytokine with an important role in both immune regulation and exercise 
metabolism. During exercise, IL-6 is predominantly produced within, and released from, the working skeletal muscle, 
with the magnitude of IL-6 release related to the duration and intensity of the exercise bout. IL-6 (a) is the first 
cytokine to appear in circulation following initiation of exercise and (b) undergoes the most pronounced increase as 
compared to any cytokine in response to exercise. In the last decade, studies have suggested a role for IL-6 as a 
muscle energy sensor, pointing to its potential role as a biomarker of overtraining. Currently, ELISA and western blot 
is the staple detection technique for IL-6. However, they require substantial time, cost, machinery and specialist 
training. On the other hand, a Graphene Oxide-based amperometric sensor can provide real-time, low-cost yet 
sensitive protein detection. But, the coverage of mono-layered Graphene Oxide (GO) flake on SiO2 substrate is 
limited due to rinsing and unwanted crosslinking of the 3-AminoPropylTriEthoxy Silane (APTES) adhesion layer, 
thus leading to low available GO surface area, high variability of electrical conductivity between chips and low sheet 
transconductance that limits sensitivity of the sensor. This work had overcome this limitation by depositing carbon on 
the edges of GO flakes using an ethanol chemical vapor deposition (CVD). Then, the post-treated GO is fabricated 
into a liquid-gated biosensor and the detection window for IL-6 is presented. Our work yielded a highly conductive 
and electrically homogeneous carbon-based transducer to enable low-cost, facile, real-time yet sensitive 
amperometric sensors for IL-6. 
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1. Introduction 

Interleukin-6 (IL-6) is an important pleiotropic cytokine, which is reported to have both pro- and anti-
inflammatory effects [1, 2]. During acute exercise, IL-6 is released from the working skeletal muscle, 
with changes in plasma IL-6 levels detectable after 30 minutes of treadmill running[3]. IL-6 levels 
increase as a function of the intensity and duration of the exercise bout, with duration accounting for more 
than 50% of the variation in circulating IL-6 levels[4]. This increase is not linear, but rather follows a 
near-exponential pattern: plasma IL-6 concentrations have been reported to increase more than 100-fold 
after a marathon [5], while more modest increases are usually observed[4]. In extreme cases, such as 
ultramarathon running, IL-6 levels reach those only seen in severe sepsis, with an 8000-fold increase 
reported in finishers of the 246 km Spartathlon race[6]. IL-6 levels peak at the cessation of exercise, or 
shortly thereafter, followed by a rapid decrease to baseline levels [3, 4]. This is followed by the induction 
of an anti-inflammatory cytokine profile, with increases in circulating IL-1 receptor agonist (IL-1ra), IL-
10 and cortisol levels [5, 7].  

Studies [8, 9] have reported the detection of IL-6 in the sweat of healthy premenopausal women, and 
those with Major Depressive Disorder (MDD), using Recycling Immunoaffinity Chromatography (RIC). 
In this detection method, samples pass through a succession of affinity columns. In RIC studies on human 
sweat [8, 9], subjects wore sweat patches for 24 hours – plasma and sweat IL-6 levels were found to 
correlate, with no significant differences between IL-6 levels in each fluid. These studies therefore 
present interesting theoretical grounding for developing non-invasive IL-6 sensor technology. 

From a review of literature, no group has reported the electrical detection of IL-6 using graphene or 
reduced graphene oxide. Currently, ELISA or western blotting is the staple for detection of IL-6. These 
techniques require substantial time, machinery and specialist training. The same is true of the RIC method 
used for analysis of sweat samples. In comparison, low-cost Graphene Oxide-based amperometric Field 
Effect Transistor (FET) sensors allow for facile analyte detection, while remaining highly-sensitive.  
However, the coverage of mono-layered Graphene Oxide flake on SiO2 substrate is limited to ca. 60-90% 
due to rinsing and unwanted cross-linking of 3-AminoPropylTriEthoxy Silane (APTES) adhesion layer. 
This partial coverage of Graphene Oxide leads to low and large variability in electrical conductivity that 
limits the sensitivity of the sensor. In this paper, we show a technique of novel post-processing of 
Graphene Oxide which can fill the whole chip and homogenize the carbon, yielding a low-cost and facile 
platform suitable for sensitive detection of IL-6. Finally, we present the detection window for IL-6.  

2. Experimental 

Graphite flakes of 3-5mm were obtained from NGS Naturgraphit GmbH, Germany. All the chemicals 
(research grade) were obtained from Sigma Aldrich and Merck. IL-6 protein and antibody were obtained 
from BD (ELISA kit No. 555220). Graphene oxide (GO) sheets were prepared by the modified 
Hummers’ method from natural graphite flakes as reported [10, 11]. Briefly, graphite flakes were pre-
oxidized using ultra-sonication and then oxidized using H2SO4 (120ml) and KMnO4 (15g). Then H2O2 
(20ml) was added into the mixture. Finally, the resulting floating GO particles were scooped out and 
stirred overnight in DI water (500ml) to obtain a stock solution of GO. This solution was then centrifuged 
at 3000xg for 5 minutes and further purified by dialysis (cutoff 3000MW) against DI water for one week. 

Then, silicon dioxide chips were silanized using APTES and the GO solution was drop-cast. The 
silanization enabled a mono-layer of GO to be electrostatically attached. The chips were then placed in an 
atmospheric pressure ethanol CVD furnace and processed at 950ºC. In the CVD, H2 (20sccm) and Ar 
(100sccm) gas are mixed and passed through an ethanol bubbler before entering the furnace. Finally, the 
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chip was then fabricated into a liquid-gated FET biosensor with 1-pyrenebutanoic acid, succinimidyl ester 
(PBSE) linker, IL-6 antibody with blocking agents bovine serum albumin and ethanolamine. 

3. Results and discussion 

According to Lerf-Klinowski’s graphene oxide model, carboxyl (-COOH) groups are found at the 
edges of GO[12-14]. Thus an etching action by H2 is added to activate the carbon sites, followed by 
possible carbon deposition at the edges. Scanning Electron Microscopy (SEM) is performed and the 
image of GO before growth (Figure 1a), after a 30-minute CVD treatment growth (Figure 1b) and a high 
magnification image of the carbon growth observed near the edges of GO (Figure 1c) are shown. In the 
images, the GO flakes are highlighted in purple and the new carbon growths are highlighted in yellow. 
Since we observed no carbon growth using clean wafer substrates and no carbon growth on SiO2 has been 
reported, the carbon deposition must be due to carbon deposition initiated by the initial GO flake. 

 

 

Fig. 1. SEM images of (a) GO flakes before ethanol CVD treatment with ca. 60% coverage (b) reduced GO flakes after 30-minutes 
CVD treatment with ca. 75% coverage in total. (c) high-magnification on the new growths between two reduced GO flakes. [GO 
flakes and new carbon growths are highlighted in purple and yellow respectively] 

An optical image of a 2-hour ethanol CVD processed chip is shown in Figure 2a. It is observed that 
after 2-hour ethanol CVD treatment, the carbon new growth completely covers the silicon dioxide 
substrate. This is shown in a Raman mapping in Figure 2b. 2-D peak (~2700cm-1) that is characteristic of 
graphene is observed on and out of pre-existing GO flake as shown in Figure 2c.  It is reported that an up-
shift in the Raman 2D peak position corresponds to an increase in the number of graphene layers [15]. 
From the Raman map, the overall growth of the substrate is 100%. 

 

Fig. 2. (a) Optical microscope image of 2-hour processed reduced GO flakes on SiO2 substrate (b) Raman mapping at edges of RGO 
flakes showing 100% carbon coverage. (c) Raman spectrum of both on and out of RGO flakes. 
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GO on SiO2 substrates were treated with 15, 60 and 120 minutes of ethanol CVD and hydrazine 
vapour (n=5). The electrical resistivity was then measured with a 4-point probe and presented in Table 1. 
The average electrical resistance after 15 minutes of ethanol CVD treatment is 2 magnitudes less than the 
hydrazine reduced samples, due to improved graphitization. However, the standard deviation only 
decreases marginally by 9.8%. As the ethanol CVD process time increased to 2 hours, the standard 
deviation decreased dramatically by 79.5% while the electrical resistance also decreased by 79.5% 
compared to the hydrazine reduced samples. The resistance drop and standard deviation decrease could be 
due to the complete 100% carbon coverage of the sample chips, as shown in SEM and the Raman map.  

Table 1. Electrical measurements of reduced GO processed under different conditions 

Reduction Conditions Hydrazine Vapor Reduction Ethanol CVD Reduction 
 12 hours 15 mins 1 hour 2 hours 

Average Resistance ( /ϒ) 1.99E+06 6.10E+04 2.23E+04 4.68E+03 
Absolute Standard Deviation  

( ) 1.60E+06 4.42E+04 7.14E+03 7.70 +02 
Relative Standard Deviation 

(%) 80.5 72.6 32.1 16.5 

 
To test the reduced GO electrical properties, back-gated FETs based on 2-hours ethanol CVD 

processed GO sheets were fabricated and their electrical properties tested under ambient temperature and 
pressure. The channel length was 100 m to ensure transport is bulk-limited and the role of the all contacts 
minimized. Figure 3a shows the drain current (Id) versus drain voltage (Vd) curve prepared with ethanol 
CVD processed reduced GO FET at six discreet gate voltages (Vg). The Id –Vd graph shows linear output 
behaviour indicative of a good ohmic contact between the GO film and electrodes. Figure 3b illustrates 
the same transistor Id under sweeping Vg at fixed Vd=0.1V. The threshold voltage is shifted to the positive 
side due to p-doing from atmospheric moisture and oxygen. The device showed a clear increase in 
conductance as the gate voltage changed from +100V to -100V, indicating that the reduced GO films 
behaved as a p-type semiconducting material. 

 

 

Fig. 3. (a) Id-Vd output characteristics under different applied Vg (b) Id-Vg transfer curve of of the ethanol CVD-processed reduced 
GO transistor device. 

The ethanol CVD-treated reduced GO chips were then fabricated into liquid gated FETs in order to test 
their bio-sensing capability. As shown in Figure 4a, gate voltage applied via the reference electrolyte, 
shifted the reduced GO Fermi level and resulted in a conductance change. When the Fermi level crosses 
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over the Dirac point(VD), the majority charge carrier is changed and lead to ambi-polar behavior[16]. For 
liquid gating, two transport regimes are observed on both sides of the Dirac point, the hole (Vg<VD) and 
electron (Vg>VD) regime. The minimum current with sweeping Vg is the Dirac point and is observed at 
Vg=+230mV. This shift in Dirac point is due to substrate-induced doping. As every FETs will have 
varying Dirac point due to persistent doping, the gate voltage is fixed at +400mV for subsequent bio-
sensing experiments. 

The isoelectric point of IL-6 is approximately 4~5.3 and the pH of the buffer used is 7.4. Hence IL-6 
possesses a net negative charge. At measurement of Vg = +400mV, binding of IL-6 to the antibody 
modified GO surface would induce a consequential decrease in conductance because of the n-type 
conducting regime of the GO (Vg>Vd) as shown in Figure 4b. The sensor response correlated to the 
conductance change before and after protein bound to the functionalized GO surface. It was found that the 
fabricated chip is stable in an aqueous environment for more than 4 hours. The results show that GO-
based transducers with antibody can sense for clinical relevant quantities down to 4.7pg/ml. 

 

 

Fig. 4. (a) Drain current vs. gate voltage curve obtained with different concentration of IL-6 concentrations. (b) Isd characteristic 
measurement with different clinically relevant concentrations of IL-6 protein at fixed gate voltage. 

Previous studies have reported resting IL-6 levels of ~10pg/ml in sweat samples from healthy women 
[8, 9]. These values were demonstrated not to be significantly different from plasma levels (p = 0.19; 
[8]).The ranges reported in the control group for each study were within the detection limit of this sensor. 
However, other studies on physically active subjects have reported resting plasma IL-6 levels of 1pg/ml 
[5, 17]. In light of this, further work will be required to improve the detection limit of the sensor further. 
Nonetheless, we believe this research provides a promising starting point for future development of 
highly-sensitive, real-time IL-6 detection. 

4. Conclusion 

We have successfully demonstrated that a post-treatment ethanol chemical vapor deposition of 
graphene oxide can be utilized to increase the coverage of Graphene Oxide to 100%, lower the electrical 
resistivity deviation between chips by 79.5% and demonstrated it for bio-sensitive sensing for Interleukin-
6 (IL-6) down to the body physiological-relevant range. Finally, we believe that the results from this 
experiment will support both the research of IL-6 and carbon biosensors with this facile, low-cost, real-
time bio-sensor. 
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