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Introduction 

It is well known (see [2,9, 151) that the tangent bundle TM of a Riemannian manifold (M, R) 

has a structure of almost Kaehlerian manifold with an almost complex structure determined 

by the isomorphic vertical and horizontal distributions VTM, HTM on TM (the last one 

being determined by the Levi-Civita connection on M) and the Sasaki metric on TM (see also 

[ 14,16]). However, this structure is Kaehler only in the case where the base manifold is locally 

Euclidean. On the other hand, Calabi (see [I]) defined a new Riemannian metric on the cotangent 

bundle of a Kaehler manifold, by using a special Lagrangian defined by a smooth real valued 

function depending on the density energy only and has obtained a new almost complex structure. 

which together with the original one determines a structure of hyper-Kaehler manifold on the 

cotangent bundle of a Kaehler manifold of holomorphic constant positive sectional curvature. 

In the present paper we have been inspired by the idea of Calabi to consider a regular 

Lagrangian on a Riemannian manifold (M, R) defined by a smooth function L depending on the 

energy density only. An interesting result is that the usual nonlinear connection determined by 

the Euler-Lagrange equations associated to L (see 14, 10,l 1.1) does coincide with the nonlinear 

connection defined by the Levi-Civita connection of g, thus the horizontal distribution HT M 

used in this paper is the standard one. Then we have obtained a Riemannian metric G on 

the tangent bundle TM such that the vertical and horizontal distributions VT M, H T M are 
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orthogonal to each other but they are no longer isometric. Then we have considered an almost 

complex structure J on TM related to the above Riemannian metric G such that (TM. J, G) 

is an almost Kaehlerian manifold (Theorem 2). From the integrability conditions of the almost 

complex structure J we have obtained our main result: If (M, g) has positive constant sectional 

curvature then we may obtain a certain smooth function L on the subset TOM of the nonzero 

tangent vectors to M such that the structure (TOM, 1, G) is Kaehlerian (Theorem 3). Next 

we have obtained the Levi-Civita connection V of G and its curvature tensor field showing 

that the Kaehlerian manifold (TOM, J, G) cannot be an Einstein manifold and cannot have 

constant holomorphic sectional curvature (see [Z. 6,9,15], for the expression of the Levi-Civita 

connection of the Sasaki metric and that of its curvature tensor field). Next, the covariant 

derivative of the curvature tensor field K with respect to the Levi-Civita connection V of G is 

studied and we obtain that the components of the covariant derivative of K with respect to V are 

expressed as linear combinations of the components KIi, ans $‘,, of the curvature tensor held K. 

The manifolds, tensor fields and geometric objects we consider in this paper are assumed 

to be differentiable of class CX (i.e.. smooth). We use computations in local coordinates but 

many results may be expressed in an invariant form. The well-known summation convention 

is used throughout this paper, the range for the indices i, j. k. 1.17. s, Y being always { 1, . . , n) 

(see [5,3, 12,131). We shall denote by T(T M) the module of smooth vector fields on TM. 

1. The tangent bundle and special Lagrangians. 

Let (M, g) be a smooth n-dimensional Riemannian manifold and denote its tangent bundle 

by r : TM --$ M. Recall that TM has a structure of 2rz-dimensional smooth manifold induced 

from the smooth manifold structure of M. A local chart (U. cp) = (U. x’. . . , P) on M 

induces alocal chart (t-‘(U), @) = (rP’(U).x’, . . .x”. y’. . . . . y”) on TM where the local 

coordinate xi, _v’ ; i = 1, . . . , 17 are defined as follows. The first 17 local coordinates xi = 
xiOt; i = 1, . . . . n on TM are the local coordinates in the local chart (U, cp) of the base point 

of a tangent vector from r-’ (U). The last n local coordinates yi: i = 1, . . . , 11 are the vector 

space coordinates of the same tangent vector, with respect to the natural local basis in the 

corresponding tangent space defined by the local chart (U, cp). 

This special structure of T M allows us to introduce the notion of M-tensor field on it (see [7]). 

An M-tensor field of type (p, q) on TM is defined by sets of functions 

~j~;~~i~: il.. . . , i,,. ,jl.. . . ,jcf = 1.. . . n 

assigned to any induced local chart (5-l (U), @) on TM, such that the change rule is that of the 

components of a tensor field of type (p, q) on the base manifold, when a change of local charts 

on the base manifold is performed. Remark that any M-tensor field on TM may be thought of 
as an ordinary tensor field T with the expression 

However, there are many other posibilities to interpret an M-tensor field as an ordinary tensor 
field on TM. Remark also that any ordinary tensor held on the base manifold may be thought of 



as an M-tensor field on TM, having the same type and with the components in the induced local 

chart on TM, equal to the local coordinate components of the given tensor field in the chosen 

local chart on the base manifold. In the case of a covariant tensor field on the base manifold M. 
the corresponding M-tensor field on the tangent bundle TM may be thought of as the pull back 

ol’the initial tensor field defined on the base manifold, by the smooth submersion T : TM- M. 

The tangent bundle TM of a Riemannian manifold (M. ,q ) can be organized as a Riemannian 

01 a pseudo-Riemannian manifold in many ways. The most known such structures are gi\,en 

b! the Sasaki metric on TM defined by g (see [14,2]) and the complete lift type pseudo- 

Riemannian metric defined by g (see 116, IS, 10, 1 11). Recall that the Levi-Civita connection 

ol ,:’ detines a direct sum decomposition 

TTM = VTM@HTM (1) 

ol the tangent bundle to TM into the vertical distribution VT M = Ker r, and the horizontal 

distribution HTM. The vector fields (a/;,~‘. . . d/d~“) detine a local frame field for VTM 

and for HTM we have the local frame field (6/6n-’ , . . . . S/W’) where 

and r)’ (.v) are the Christoffel symbols detined by the Riemannian metric g. 
The distributions VT M and H TM are isomorphic to each other and it is possible to derive an 

almost complex structure on TM which, together with the Sasaki metric, determines a structure 

ol‘ almost Kaehlerian manifold on TM (see 121). Consider now the density energy (the kinetic 

energy or “forza viva.” according to the terminology used by Levi-Civita) 

t = ;Ly;~(_\.)\~‘? (2) 

detined on T h/l by the Riemannian metric g of M. We shall find some interesting properties ot 

7.M by using a Lagrangian function defined as the antiderivative (indefinite integral) of a real 

smooth function depending on kinetic energy only. i.e.: 

m,here II : W+ = [O, cc) + R is a smooth function. In the sequel it will be necessary to make 

some supplementary assumptions concerning the function U, in order to assure the regularity 

of‘ the Lagrangian L. As usual in Lagrange geometry (see [4, 10, 1 l] ), we may consider the 

s! mmetric M-tensor field of type (0, 2) on TM, defined by the components 

M,here gl), = s/~,?.“. The matrix (Gij) has the inverse with the entries 

b;herc III = --1t’/(ll’ + 2ru~i’). We shall assume that U(T) > 0, l!‘(t) > 0 for r 3 0 \o that 
the functions G”‘: ,j, I, = 1. . . . , II do always exist. The components G/” define a symmetric 
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M-tensor field of type (2,O) on TM and the symmetric matrix Gij is positive definite. It follows 

that, under these conditions, the Lagrangian L = j u(t) dt is regular. 

A regular Lagrangian L defines a nonlinear connection on TM given by the horizontal 

distribution H’T M spanned, locally, by the vector fields 

i = l,...,n, 

where 
aL 

ax1 

(see [4,10,11]). We have: 

Proposition 1. Ifthe regular Lagrangian L is given by (3) then H’TM = H TM. 

Proof. We have 

az_ i bkl k 1 ~-~ 

axi - 
2Uax’Y Y = UgoJihg, 

Then 
a2L 

yh- = 
aylaXh h/h + u’gOlgOh)r;O + UgOhr;O, 

where r& = Ik.y’yi, and by using (5) we get 

?!l?.” _ 3 
aylax 

= rio. 

Then N,! = rik,, showing that H’TM = HTM and (6/6x’)’ = S/8x’. 

Hence the horizontal distribution HTM defined by the Levi-Civita connection V of g may 

be used in the study of the Lagrange geometry of M, defined by the Lagrangian (3). 

2. A Riemannian metric on the tangent bundle 

Consider the symmetric M-tensor field of type (0,2) on TM, defined by the components 

1 
tij = gikGklg/j = ; gij + wgoigoj. (6) 

Then the following Riemannian metric may be considered on TM: 

G = Gi,j dx’ dxj + HijVyiVyj, (7) 



where Vy’ = dy’ + r), dxj is the absolute differential of J+ with respect to the Levi-Civita 

connection V of g. Equivalently, we have 

Note that HTM. VTM are orthogonal to each other with respect to G but the Riemannian 

metrics induced from G on HTM. VTM are not the same, so the considered metric G on 

TM is no longer a metric of Sasaki type. Note also that the system of 1 -forms (dx ’ . . dr”, 

vy’..... VJ”) defines a local frame of T*TM, dual to the local frame (6/6.~‘, . . S/S.u” 

;jjijJ’. . . . , d/ay”) adapted to the direct sum decomposition ( 1). 

An almost complex structure J may be defined on TM by 

where 

1 H,k = __Hjjg.jk = _Gk”gh; = -. 6: - wvkgcl;. (!,I 

M 

Theorem 2. (TM, J, G) is an almost Kaehlerian man[fold. 

Proof. First of all we may check easily that J2(S/Sx’) = -6/&r’, J’(a/ay’) = -?l/;ly’: thus 

.I really defines an almost complex structure on TM. Then we have 

XI Gik~kLIGj,,~"hS~,(.G"dKr,,~ = Gi,j = G (sp,. $). 
‘l‘he relations 

G(Jn’t’. J&) =G($+) 
G(J$,J$)=G($+)=O 

may be obtained in a similar way, thus G is almost Hermitian with respect to J. The associated 

?-form 52 is given by 
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Hence we have 

s-2 = g,;vq.; A ‘1.d (‘0) 

and Q is closed since it does coincide with the 2-form associated to the Sasaki metric on TM 

(see [2]). 

3. The Kaehlerian structure on TOM 

In order to study the integrability of the almost complex structure defined by .I on TM 

we need the following well-known formulas for the brackets of the vector fields a/8$. 6/6x’; 

i = l,....n: 

where R{ij, = Riijy’ and R[,j are the local coordinate components of the curvature tensor held 

of V on M. 

Theorem 3. The almost complex structure J on TM is integrable if and orlly $’ (M, g) has 

positive constant sectional curvature c and thefknctinn LL (t) sutisjes the ordinary diferentiul 

equation 

2t(u’)’ = c. (12) 

Proof. First of all, the following formulas can be checked by straightforward computation: 

s 
ViGjk = z Gj/, - lY~G/,~ - rF,Gi, = 0, 

Vi Hjk = $ Hj/_ - l?f: H/lk - lY:k Hj/l = 0, 

v,~~=~~~+r~~~:‘-ri;~i:=o. 

V;H,j = $ Hi + Tj’,H,f - $H,j = 0. 

Then, by using the definition of the Nijenhuis tensor field NJ of J we have 



The coefficient of HL((6/Sx’) is just VjJf - V;J,f = 0 so, we have to study the vanishing of 

the coefficient of i3/3y’. By using the expression (9) of Jf we get: 

It follows that the curvature tensor field of V must have the expression 

Rk;, = c.(S:,ql,j - s~ghi)- 

u here (’ is a constant and the function u(t) must satisfy the condition ( 12). Next, we have 

Hence, thecondition NJ(S/~X’, 6/6xj) = Oimplies that N,,(i3/8~‘. S/8x/) = Oand N,,(i)/if~‘. 

;)/a!‘) = 0. 

It follows that (M, R) must have constant positive sectional curvature and the function 1’1 

must be a solution of the differential equation (12). The general solution of the differential 

equation (12) may be obtained easily. Since we look for a solution ~1 defined for t > 0. for 

which II r 0, 14’ > 0, we may take 

1’ 

11l= 5. $ u=2/2ct. (13) 

It follows 

.I 1 
L= u(t)dt = $‘%. w=--p- 

4&z 

Remark that the Lagrangian L = s u(t) dt is smooth only on the nonzero tangent vectors of M. 
Hence we obtain, in fact, a Kaehler structure only on the manifold T,,M = the tangent bundle 

to M minus the null section. 

3. The Levi-Civita connection of the metric G and its curvature tensor field 

It is well known that in the case of the Kaehler manifolds (M, J, g) the almost complex 

structure operator J is parallel with respect to the Levi-Civita connection V of the corresponding 
Riemannian metric g. We shall obtain the explicite expression of the Levi-Civita connection V 

of the metric G on TM in the general case where G is given by (7), then we shall consider the 
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particular case where (TOM, J. G) is Kaehler, i.e., M is a space form having positive constant 

sectional curvature c and the function u(t) is a solution of the differential equation (12). 

Recall that the Levi-Civita connection V on a Riemannian manifold (M. s) is obtained from 

the formula 

2g(VxY. Z) = X(g(Y, Z)) + Y(x(X, Z)) - Z(g(X. Y)) 

+ g([X. Yl, Z) - s([X. Zl, Y) - g(lY, Zl, XI, 
vx, Y, ZEr(M). 

We shall use this formula in order to obtain the expression of the Levi-Civita connection V on 

TM, determined by the conditions 

VG=O, T = 0, 

where f is the torsion tensor of 0. 

Theorem 4. The Levi-Civita connection 0 of G has the following expression in the local 

adaptedframe (i3/ay’, . . . , a/ay”, 6/6x’. . . . ,6/6x”): 

Consider now the case where (TOM, 1, G) has a structure of Kaehler manifold, i.e., M 

has positive constant sectional curvature c and the function u is given by (13). Introduce, for 

convenience, the following M-tensor fields on TOM: 

1 
aij = Si.j - 5 SOi $?Oj , a: = 8: - & goi~‘k. 

Remark that we have aio = aoi = aijy j = 0 and aij = a,kgkj = afukj. Then we obtain 

Gij = 1/2ctgij + 

Hij = ___ & g!i - & gOiSOj = &(aij + t SOi&TOj), 

(14) 

Hjk = &gjk + 

and 



Theorem 5. The Levi-CiLxitcl connection of’ thr Kaehler manjfdrl (TOM. J. G 1 is gi\,rrl I>>, 

Then the expression of the operator J is given by 

and it can be checked easily that 0 J = 0. 

Denote by K the curvature tensor field of the Levi-Civita connection 0 of the Riemannian 

metric G on ToM. when (M, g) has positive constant sectional curvature (‘ and the function 

II (t 1 is given by ( 13). Then we get by a straightforward computation 
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From the above formulas, we get by a straightforward computation that the local coordinate 

expression of the Ricci tensor S(Y, 2) = trace(X --+ K(X, Y)Z) in the local frame adapted 

to the direct sum decomposition (I ) is given by 

(‘8) 

Comparing the obtained expressions with the expressions (15) of the components of G we 

obtain: 

Proposition 7. The Kaehlerian mangold (TOM, J, G) cannot be an Einstein manifold. 

From the expression (16) of K it follows also: 

Proposition 8. The Kaehlerian manifold (TOM, J, G) cannot have constant holomorphic sec- 

tional curvature. 

Finally, we should like to study the covariant derivative of the curvature tensor field K with 

respect to 0. To do this, it is useful to compute the expressions of the derivatives of the M-tensor 

fields aij and af. The following formulas are obtained by a straightforward computation: 

a 1 
7 ajk = -- gojaik - 
aY 2t 

Then we have: 

and it follows that the components of the covariant derivative of K with respect to 0 are 

expressed as linear combinations of the components Ktk and $k. In fact, if we denote, for 

convenience 

6 
_ = Si, 

a 

6.x’ 
_ = di, 
af 
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