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Introduction

Itis well known (see [2, 9, 15]) that the tangent bundle 7'M of a Riemannian manifold (M, g)
has a structure of almost Kaehlerian manifold with an almost complex structure determined
by the isomorphic vertical and horizontal distributions VT M, HT M on TM (the last one
being determined by the Levi-Civita connection on M) and the Sasaki metric on T M (see also
[14,16]). However, this structure is Kaehler only in the case where the base manifold is locally
Euclidean. On the other hand, Calabi (see [ 1]) defined a new Riemannian metric on the cotangent
bundle of a Kaehler manifold, by using a special Lagrangian defined by a smooth real valued
function depending on the density energy only and has obtained a new almost complex structure.
which together with the original one determines a structure of hyper-Kachler manifold on the
cotangent bundle of a Kaehler manifold of holomorphic constant positive sectional curvature.

In the present paper we have been inspired by the idea of Calabi to consider a regular
Lagrangian on a Riemannian manifold (M, g) defined by a smooth function L depending on the
energy density only. An interesting result is that the usual nonlinear connection determined by
the Euler—Lagrange equations associated to L (see |4, 10, 11]) does coincide with the nonlinear
connection defined by the Levi-Civita connection of g, thus the horizontal distribution HT M
used in this paper is the standard one. Then we have obtained a Riemannian metric G on
the tangent bundle T M such that the vertical and horizontal distributions VT M, HT M are
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orthogonal to each other but they are no longer isometric. Then we have considered an almost
complex structure J on T M related to the above Riemannian metric G such that (T M. J, G)
is an almost Kaehlerian manifold (Theorem 2). From the integrability conditions of the almost
complex structure J we have obtained our main result: If (M, g) has positive constant sectional
curvature then we may obtain a certain smooth function L on the subset TyM of the nonzero
tangent vectors to M such that the structure (7oM, J, G) is Kaehlerian (Theorem 3). Next
we have obtained the Levi-Civita connection V of G and its curvature tensor field showing
that the Kaehlerian mamifold (7M. J, G) cannot be an Einstein manifold and cannot have
constant holomorphic sectional curvature (see [2,6,9, 151, for the expression of the Levi-Civita
connection of the Sasaki metric and that of its curvature tensor field). Next, the covariant
derivative of the curvature tensor field K with respect to the Levi-Civita connection V of G is
studied and we obtain that the components of the covariant derivative of K with respect to V are
expressed as linear combinations of the components K ,", cans S ,", « of the curvature tensor field K .
The manifolds, tensor fields and geometric objects we consider in this paper are assumed
to be differentiable of class C™ (i.e., smooth). We use computations in local coordinates but
many results may be expressed in an invariant form. The well-known summation convention
is used throughout this paper, the range for the indices i, j, k. /. h. s, r being always {1. ..., 1}
(see [5,3,12,13]). We shall denote by ['(T' M) the module of smooth vector fields on 7M.

1. The tangent bundle and special Lagrangians.

Let (M, g) be a smooth n-dimensional Riemannian manifold and denote its tangent bundle
by t : TM—— M. Recall that T M has a structure of 2n-dimensional smooth manifold induced
from the smooth manifold structure of M. A local chart (U, ¢) = (U. oo xMon M
induces a local chart (z='"(U), ®) = (7 "(U). x', ... x". yl, ....¥") on TM where the local
coordinate x’. v';i = 1,...,n are defined as follows. The first n local coordinates x' =
x'otii = 1,....nonTM are the local coordinates in the local chart (U, @) of the base point
of a tangent vector from 7' (U). The last n local coordinates v/:i = 1,..., n are the vector
space coordinates of the same tangent vector, with respect to the natural local basis in the
corresponding tangent space defined by the local chart (U, ¢).

This special structure of T M allows us to introduce the notion of M -tensor field on it (see [7]).
An M-tensor field of type (p, ¢) on T M is defined by sets of functions

iyodp . . . .
T/l--~./z/‘ Ly,.o.o., Ipa J1eovos Jg = l..... n

assigned to any induced local chart (z~'(U), ®) on T M, such that the change rule is that of the
components of a tensor field of type (p, g) on the base manifold, when a change of local charts
on the base manifold is performed. Remark that any M -tensor field on T M may be thought of
as an ordinary tensor field T with the expression

ii, O : ,
T=T,"" R - ® Rdx" ® -+ Qdx’,

,/""jq a\,h

ay H Il

However, there are many other posibilities to interpret an M-tensor field as an ordinary tensor
field on T M. Remark also that any ordinary tensor field on the base manifold may be thought of
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as an M-tensor field on T M, having the same type and with the components in the induced local
chart on T M, equal to the local coordinate components of the given tensor field in the chosen
local chart on the base manifold. In the case of a covariant tensor field on the base manifold M.,
the corresponding M -tensor field on the tangent bundle 7'M may be thought of as the puil back
ol the initial tensor field defined on the base manifold, by the smooth submersion v : TM-—> M.

The tangent bundle 7 M of a Riemannian manifold (M. ¢) can be organized as a Riemannian
or a pseudo-Riemannian manifold in many ways. The most known such structures are given
by the Sasaki metric on TM defined by g (see [14,2]) and the complete lift type pseudo-
Riemannian metric defined by g (see [16,15,10,11]). Recall that the Levi-Civita connection
ol ¢ defines a direct sum decomposition

TTM=VITM®HTM (h
of the tangent bundle to TM into the vertical distribution VT M = Ker 7, and the horizontal
distribution HT M. The vector fields (3/dy'.....3/3y") define a local frame field for VT M
and for HT M we have the local frame field (6/8x'. .. .. 5/8x") where

5 0 0
R N N AR
Syl ! i0 E).\,/I ’ i0 ik

and T4 (x) are the Christoffel symbols defined by the Riemannian metric g.

The distributions VT M and HT M are isomorphic to each other and it is possible to derive an
almost complex structure on T M which, together with the Sasaki metric, determines a structure
of almost Kaehlerian manifold on T M (see [2]). Consider now the density energy (the kinetic
energy or “forza viva,” according to the terminology used by Levi-Civita)

r= L (2)

defined on 7'M by the Riemannian metric g of M. We shall find some interesting properties ot
T M by using a Lagrangian function defined as the antiderivative (indefinite integral) of a real
smooth function depending on kinetic energy only, i.e.:

L= /u(z)di :/u(% g,-/\.(x)y"'\") %d(gu_\":\’k). (3

where u 1 R, = [0, oc) — R is a smooth function. In the sequel it will be necessary to make
some supplementary assumptions concerning the tfunction u. in order to assure the regularity
ol the Lagrangian L. As usual in Lagrange geometry (see [4, 10, 11]), we may consider the
symmetric M-tensor field of type (0, 2) on T M, defined by the components

Gij = . = ugij + 180, ()
av'dy
where gy = g5 v". The matrix (G;;) has the inverse with the entries
ih b Pk
Gt = - gt wy v (5)
I
where v = —u'/(” + 2tuu’y. We shall assume that «(r) > 0.u'(r) > 0 forr > 0 so that

the functions G/*: j k = 1...., n do always exist. The components G/* define a symmetric
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M-tensor field of type (2, 0) on T M and the symmetric matrix G;; is positive definite. It follows
that, under these conditions, the Lagrangian L = [ u(r) dt is regular.

A regular Lagrangian L defines a nonlinear connection on TM given by the horizontal
distribution H'T M spanned, locally, by the vector fields

8 ) 9 NEGe ) 9 .
) = -~ N (x,y)—:; i=1,...,n,
sxi ) T ax YR

1 o 9%L JaL
k Kl h
Ni=5—=I|6G Ta iy 1)
29y dy' 9x ox

(see [4,10,11]). We have:

where

Proposition 1. [f the regular Lagrangian L is given by (3) then HTM = HT M.

Proof. We have

oL 1 dgu ,
T = — - Y — F y
axt 2 " ax' > Hgon o

where gon = g1y, Tly = Fijj, and

9°L
oyl ox" = u(guTho + sk T'h;) + 1’8080k Tho-
Then
p 0°L , , \
y aylaxh = (“glh +u gclgOh)FOO + ugonl'jy,

where Ty = I'/; '3/, and by using (5) we get

9%L oL
kl h k
G <8y18xhy - 8xl) = Too-

Then N¥ = %), showing that H'TM = HT M and (§/8x) = §/8x".

Hence the horizontal distribution HT M defined by the Levi-Civita connection V of g may
be used in the study of the Lagrange geometry of M, defined by the Lagrangian (3).

2. A Riemannian metric on the tangent bundle
Consider the symmetric M-tensor field of type (0, 2) on T M, defined by the components
k! 1
H;; = g G g1y =  8i + wgoi go; - (6)
Then the following Riemannian metric may be considered on TM:

G = Gyjdx'dx’ + H;;Vy'Vy/, (7)



N

Kaehler structure on the nonzero tangent bundle

where Vy' = dy' 4 I',ydx/ is the absolute differential of y' with respect to the Levi-Civita
connection V of g. Equivalently, we have

N 9 0 98 5 9
ol 2. 2 V=6, o[, S )=ty oS, 2 )=c(". %) =0
Sx' §x/ : av' - ay’ : vt Sx’ Sx! ay!

Note that HT M, VTM are orthogonal to each other with respect to G but the Riemannian
metrics induced from G on HTM, VTM are not the same, so the considered metric &G on

T M is no longer a metric of Sasaki type. Note also that the system of 1-forms (dx'. . ... dx",
Uyl Vy") defines a local frame of T*T M, dual to the local frame (8/8x". .. .. 8/8x",
a/ov!. ..., 9/3y") adapted to the direct sum decomposition (1).
An almost complex structure J may be defined on TM by
s gl (8)
sxt T T ayk” ay Tt axk ’

where , ‘ ’
I =Gig™" = ust +u'y g

k ik ki I« k )
HY = —Hjjg"" = —GTgp = —- & — wy"goi-
Theorem 2. (TM. J, G) is an almost Kaehlerian manifold.

Proof. First of all we may check easily that J2(8/8x) = —8/8x", J*(3/3y") = —d/0y": thus
J really defines an almost complex structure on 7M. Then we have

G(1°2 12 ) = Gugc ””G(a i
sxit gl ) TS nd ay“’ay”)

AN

) )
k hb d ,
= Gikg anhgl ga('G( 8db = (’i./ = G(EXi. SX/ )

The relations

0 a a 0
GlJ—.J— =Gl —.—|.

ay' oy’ ay' 9y’

0 8 a 38

ay' Sx/ ay' Sx’

may be obtained in a similar way, thus G is almost Hermitian with respect to J. The associated

2-form 2 is given by
3 & 8 ) 8 i 0
Ql —, — -1 =G 7,,_]% =G —’ng\ = 0.
Sx' xt Sx' Sx/ sx' oy
d d d J { d )
Q—,— =G J—)=G|—.H — ) =0,
d)" 8)"/ ayl ayj 8)’[ K Sx

Q(a 5 )_G 0,8 )_ch( b0 >—I"‘H e
8yi' 8_Xf/ - 8)71-7 Sx/ - / 8\,1q a.vk 0 , ik — ({31_/-
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Hence we have
Q= g,-»,—Vy" Adx! (10)

and  is closed since it does coincide with the 2-form associated to the Sasaki metric on T M
(see [2]).

3. The Kaehlerian structure on TyM
In order to study the integrability of the almost complex structure defined by J on TM

we need the following well-known formulas for the brackets of the vector fields 9/9y’. §/5x";
i=1,....n:

Ja 4d —0 d 8| o d § 8| R d (n
ayi ’ ayj - ayi ’ 8Xj o i 8.\711 ’ 8.Xi ' (SX‘/ - vij ay/l ’
where R , o= Rl j y* and R}, ; are the local coordinate components of the curvature tensor field
of Von M.

Theorem 3. The alimost complex structure J on TM is integrable if and only if (M, g) has
positive constant sectional curvature ¢ and the function u(t) satisfies the ordinary differential
equation

2ty = c. (12)

Proof. First of all, the following formulas can be checked by straightforward computation:

5
5 Gk —T},Gu = TGy =0,

ViGu = dx

1)
ViHj = i Hj; — F,thhk —ThH;, =0,

s . 4
ViJi = S J+ThJE =Tl =0,
X

) $ . . :
V,H] = = H! + T, H! - Tl H] =0.

Then, by using the definition of the Nijenhuis tensor field N, of J we have

é é o ) 6 ) ) S ) 8
Y7 [y [ R S (R | (Y G Ry | IV S [ PR
Sx' Sx/ Sx' Sx/ Sx' Sx/ dx' 8x/ Sx' 8x/

— (Jhajll\ _Jha‘/ik —{-R/\ )8
= i ay/, J ay/; 0ij 8yk

8 k 8 k hk hk 18
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The coefficient of HA{((S/BX ) is just V;JX — V;J4 = 0 s0, we have to study the vanishing of
the coefficient of 3/9y*. By using the expression (9) of J§ we get:

2’y 20;8% = 2t (u’ ) 80;9; Ay Ré',-j =0.
It follows that the curvature tensor field of V must have the expression
Riij = (8 gnj — 87.8m).
where ¢ 1s a constant and the function u(¢) must satisty the condition (12). Next, we have

J 8 al 8 5 & k gl AN
N’(d\’ sz’) = H; ( J_,' - 787«’:]” + ij_,' - rjl‘]lr 5‘7

lel
o ph o 7h
+ H{H! [ —R! _{_J"giL — J(,(,{JL K
h Ol { a»\,r J a‘\,r 5.X'k
and

(L 8,) HEH] i ’—\—J + T -1 J~“>Hhi
v ay/ sxk " k BT syt

iR, = (Uhj ) 2

ity Okl () Uk ().’ )\/1

Hence. the condition N;(8/8x", §/8x/) = 0 implies that N, (3/9v'. 8/8x/) = 0and N, (d/dy' .
d/av/) = 0.

It follows that (M, g) must have constant positive sectional curvature and the function
must be a solution of the differential equation (12). The general solution of the differential
equation (12) may be obtained easily. Since we look for a solution u defined for r > 0, for
which i > 0, 4’ > 0. we may take

u = i u = ~2ct. (13)
It follows

2t |
L= /u(l)dt = —+2ct, w=-——Fr=.
3 4t/ 2ct
Remark that the Lagrangian L = [ u(r) dt is smooth only on the nonzero tangent vectors of M.
Hence we obtain, in fact, a Kaehler structure only on the manifold T, M = the tangent bundle
to M minus the null section.

4. The Levi-Civita connection of the metric G and its curvature tensor field

It is well known that in the case of the Kaehler manifolds (M, J, g) the almost complex
structure operator J is parallel with respect to the Levi-Civita connection V of the corresponding
Riemannian metric g. We shall obtain the explicite expression of the Levi-Civita connection V
of the metric G on T M in the general case where G is given by (7), then we shall consider the
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particular case where (TyM, J, G) is Kaehler, i.e., M is a space form having positive constant
sectional curvature ¢ and the function u(r) is a solution of the differential equation (12).

Recall that the Levi-Civita connection V on a Riemannian manifold (M, g) is obtained from
the formula

28(VxY, Z) = X(g(Y, 2)) + Y((X, Z)) — Z(g(X,Y))
+ g([X. Y], Z2) —¢(X. Z]. Y) — g(lY. Z], X),
VX,Y, Zel'(M).

We shall use this formula in order to obtain the expression of the Levi-Civita connection V on
T M, determined by the conditions

VG =0, T=0,
where T is the torsion tensor of V.

Theorem 4. The Levi-Civita connection V of G has the following expression in the local
adapted frame (3/8y",....8/9y",8/8x". ..., 8/8x"):
V _8_ _ llek(aH(k 3Hi.k 3 BH,«_,-) 9
‘;7 ayj 2 By’ ay/ ayk ayh )
9 W 0 178G ; o 6
— =T+ | = + HyRy, |G
5o oy’ Tayh T2 ( 3y’ J1R0ik P

-5 1[0G; o 0
\Y m:_( !+H,»,R{)jk)G‘h—,,

v

a%&cj 2\ oy S5x”
.8 5 1 9G;; 9
Vs — =Th—+ =R, — —2LH")—.
5%78)6’ ij (th 2( 0ij ayk 8y/1

Consider now the case where (TyM, J, G) has a structure of Kaehler manifold, 1.e., M
has positive constant sectional curvature ¢ and the function u is given by (13). Introduce, for
convenience, the following M-tensor fields on Ty M:

1 1

aij = 8ij = 5 80i8oj» af =8 — % goiy*. (14)

Remark that we have a;o = ao; = a;;y/ = 0 and a;; = a¥g; = aay;. Then we obtain

[ ¢ 1
G,‘j = +/2ct gij —+ 2—{ 80igoj = V 2ct (a,j + ? gOing>a

]

1 1 1
H; = i~ i80j = —==\ aij + - 8oi&o; ),
T 2t 8u 4t/ 2ct 80807 v2c~t( T 4 80 go,> (15)
: 1 . 1 . i
G+ = ik A ypk
~2ct 8 4t/ 2ct -

H* = V2ct g/t +,/—2%yfyk,

and
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Theorem 5. The Levi-Civita connection of the Kaehler manifold (ToyM . J. G) is given by

~ d

( 1 5 1 5 1 h) 0
Do = T 80i%; — -5 80i80j NV ) -
,)\L N T4 80i0; 4 80,9, P 80i 80 EJV\'/’
- 0 d 1 | 1 S
Vs —— = (’. 4+ { — JI»-\*/' + — 9 Sh — 5 00, & ‘\~/’>
e TN (4zéL g 8000 T g2 SUSOIT g
p 0 . ( | e 1 8 8
=TI da;; LR .
Y é).\'/' 4 4r 8o; Sxl
S ) ] m | 8 1 ,I) 8
VTS = *("\ ——80i0; — =5 80i&o;V |~
i aad T N\ SN g S0 T g SO0 g
1 "y g, )
=\ —ajy &7 goi
(41 . 4 g() (S /I
~ ) 8 0
Vs —— =T" " eyt +8"0h)—.
o 5’(, i (lez (g’./» i !5()./ ) () \,II

Then the expression of the operator J is given by

3 /¢ d 0 ' ! | )
J— = [ V218" + *’,‘\’k)f~. J— = (~ 8+ ’i\'A) .
Sy’ ( ! 2t soi. avk o' V2er U 412t s st

and it can be checked easily that VJ = 0.

Denote by K the curvature tensor field of the Levi-Civita connection V of the Riemannian
metric G on TyM, when (M, g) has positive constant sectional curvature ¢ and the function
i(ty is given by (13). Then we get by a straightforward computation

Theorem 6. The local coordinate expression of the curvature tensor field K of the Kaehler
manifold (ToM . J. G) is given in the adapted local frame (3/0v'. §/8x") by

90 b 9 NSs 1, @
k(-2 -2 k(- )2 = kD
oyt Oy vt oyl ) sx 4 sy

D1, 0
H ()\A - 4f kij av\,/l '

K(HW(Y>3:16%JS. K(a, 8)§ LS
ovi T axd Javh T 4 M sxh oy sxl ) oxt 27K G

(2 2 ) o = skt k(o i )i = 5K

sx T axd Joavk T 2T M gy Sx Sy ) sk T 2 ki g h
where we have denoted
h 1 l I h
Kiij = {RA/; Y gOARo,, + > JsII\ R(),/ } =a;aj — djay.
SA:/ = giké‘(f + g./kfs,h 21 [g()l /A\ 't 8()_/g,'k,\‘/' + gmgoky/-' + go_/g(wS,{'] (7

|
]
+ ;;;-ggm 80 8ok N

/ /
=da/uj + a/-'cuk.
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From the above formulas, we get by a straightforward computation that the local coordinate
expression of the Ricci tensor S(Y, Z) = trace(X — K (X, Y)Z) in the local frame adapted
to the direct sum decomposition (1) is given by

S 0 d 1 1 1
PR = iy = A, i i | = — 57 4dijs
oy oyl ) T 20| BT o 808U 2
S ) 1
S ST xl = =¢|8ij ~ 5, 80i8j —cay;, (18)

d )
S| —.—1=0
ay' dx’

Comparing the obtained expressions with the expressions (15) of the components of G we
obtain:

Proposition 7. The Kaehlerian manifold (ToM, J, G) cannot be an Einstein manifold.
From the expression (16) of X it follows also:

Proposition 8. The Kaehlerian manifold (ToM, J, G) cannot have constant holomorphic sec-
tional curvature.

Finally, we should like to study the covariant derivative of the curvature tensor field K with
respectto V. To do this, it is useful to compute the expressions of the derivatives of the M-tensor
fields a;; and a}. The following formulas are obtained by a straightforward computation:

8 h

St aj =T} ahk+rzka/h’ Sx ah rlha

3 1 1 o . 1, 1,

——ag = —— 80jdik — ~ 8okGij, — a5 =——a;y" — —ago,.

gy kT T g S0iMik Ty Sokdlije T ) T TR YT o i80S
Then we have:

8 h h r

gKljk— —Tj Ky + T K + T K + DK,

8 h h r

6—xiS[jk —T}, St + Tl S + T Spyic + TieSs

d I 1 l; h h h
a—y,- K[}k = _Z(airK[,‘kyl + g0 K + gOkKl_j; + gozK,;,-k),
d h

1 ) h h
oy Siik = —z‘t(airsf,-k)’l + 80 Sk + 8o Sy + 8015,-/};(),

and it follows that the components of the covariant derivative of K with respect to V are
expressed as linear combinations of the components K, ,hjk and S,'}k. In fact, if we denote, for
convenience
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we have
6 K58 5_( Sh h h roh
(Vs K)(8;.01)6 = £} {—go_/ it gOkS,j,- + g()/l(,-_/-,\, — a,-,K,_/-,\,» }8;,,
- ¢
h / h h roo B
(Vi, K)(8;. 808 = & {280 K} + 280, K[ — 280K} — 28Ky — ain K[ ¥ |81,
(Vs K)(67. 800 = — 12808k — 2908l — g KDy + a K] 3"}
8, PO = e 80,91k 80k — S0 Ry T i Ky N pOh
~ s
. i / / i AP
(V;i, K)(a/', (S,\,)()/ = 8; {—Zg(),'K/}k + 2g()_/' K/i‘i — Zg()kK/.;,- — 8ol Kj_jik - 261,‘, K;M,.\'I}()/,.
- r'ed "
= . ¢ J / i S
(Vi K)(9;. 0008 = {go.j K + 2g0c K[y + 280180, — air Spiy" }on-
— - C f - o -
(Vo K)(0;. 808 = o {220 + 20;S) + 280k S} + 280 STy 4 2ai STy Yo,
(O N/Aa. 879 Corooph + 24 oh ALoor Lhg
(Vs K)o, 0 jop = g 1 '),1\//\1 -+ Lg()kA//, 801 i — £dir O ¥ [ Ohs
~ |
. . ok oh ¢l L ch . L
(Va, K3(8;. 80)0 = 1612 {—250,'51' — 80 Si: — 280kSy; — 8uiSiik — @ir S ’}5/'1-
~ Ie
_ h h 4 rooh
(Vs K )((’/ Yo = 8‘1 {“g(‘:_w,’/‘.,’ + 80k + Zg(},’K,M !Ifi‘K[,'/\‘ } )
- | .
(V;, K)(d/ ();\)8‘1 = — !—Zg(),,,,h«. + Qg):K.h,,- — 2ok K,h e 7()(\/[({1-, —a;, K/, \'hl(gg,
i 1642 { [jK [N i 1Y < iji < ijk {1h J
(Vs K)D;, 900 = : g0 8" W y oy
5 I L))o = 5 Y80 — ok, —gn[K--y‘{-(,ll‘, K. .y &y
16,_ 1 / IRt tjl ff FES
~ | y !
(Vo KO, 008 = —— [ 200K}, + g0 KL, — gon kI — g K — 2a;, K[ " Yo,
i - 16T,1 L < 1K Gy 1K & iji [ ijK IR I

Similar results are obtained for the components of the covariant derivative of the Ricci tensor
field §:

6 Q\(X;'ﬁy\:(). (@\S\(ﬁ o) = (ona: 4 o0:ai 4+ oona:: ).
§; 20 i K7 VTR N g K7 2[ ASUIM Jh 7T SUGTIR T SURSj g
-~ C ~
(V5,8)(9;.8¢) = Zt(go,,-a,-k — 2g0kdij). (Vi S$)(9;.8¢) = 0.
- o - ‘ 1
(V5,8)(0;,0) =0,  (Vy,8)0;.0;) = o (2goiax + gojai + gunai;)-
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