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Abstract

In this Letter we explore an alternative to the central point of the Randall–Sundrum brane world scenario, nam
particular non-factorizable metric, in order to solve the hierarchy problem. From a topological viewpoint, we show
exponential factor, crucial in the Randall–Sundrum model, appears in our approach, only due to the brane existence
a special metric background. Our results are based in a topological gravity theory via a non-standard interaction betw
and non-Abelian degrees of freedom and in calculations about localized modes of matter fields on the brane. We poin
we obtain the same results of the Randall–Sundrum model using only one 3-brane, since a specific choice of a ba
metric is no longer required.
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May the standard model be placed in form of t
recent insights coming from string theories, whe
several dimensions appear so naturally? The stan
model for strong, weak and electromagnetic inter
tions, described by the gauge groupSU(3) × SU(2) ×
U(1), has its success strongly based on experim
tal evidences. However, it has several serious
oretical drawbacks suggesting the existence of n
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and unexpected physical facts beyond those discu
in the last years. One of these problems is the
calledgauge hierarchy problem which is related to the
weak and Planck scales, the fundamental scales o
model. The central idea of this problem is to expl
the smallness and radiative stability of the hierarc
Mew/Mpl ∼ 10−17. In the context of the minimal stan
dard model, this hierarchy of scales is unnatural si
it requires a fine-tuning order by order in the pert
bation theory. The first attempts to solve this probl
were the technicolor scenario[1] and the low energy
supersymmetry[2].
nse. 
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With the string theories, the search of man
dimensional theories became important. The ba
idea is that extra dimensions can be used to solve
hierarchy problem: the fields of the standard mo
must be confined to a(3 + 1)-dimensional subspace
embedded in an-dimensional manifold. In the sem
nal works of Arkani-Hamed, Dimopoulos, Dvali an
Antoniadis[3], the 4-dimensional Planck mass is r
lated toM, the fundamental scale of the theory,
the extra-dimensions geometry. Through the Ga
law, they have foundM2

pl = Mn+2Vn, whereVn is
the extra dimensions volume. IfVn is large enough
M can be of the order of the weak scale. Howev
unless there are many extra dimensions, a new
erarchy is introduced between the compactificatio
scale,µc = V −1/n, andM. An important feature o
this model is that the space–time metric is facto
able, i.e., then-dimensional space–time manifold
approximately a product of a 3-dimensional space
a compact(n − 3)-dimensional manifold.

Because of this new hierarchy, Randall and S
drum [4] have proposed a higher-dimensional s
nario that does not require large extra dimensions,
ther the supposition of a metric factorizable manifo
Working with a singleS1/Z2 orbifold extra dimen-
sion, with three-branes of opposite tensions locali
on the fixed points of the orbifold and with adequa
cosmological constants as 5-dimensional source
gravity, they have shown that the space–time me
of this model contains a redshift factor which depen
exponentially on the radiusrc of the compactified di-
mension:

(1)ds2 = e−2krc|φ|ηµν dxµ dxν − rc dφ2,

where k is a parameter of the order ofM, xµ are
Lorentz coordinates on the surfaces of constanφ,
and−π � φ � π with (x,φ) and(x,−φ) identified.
The two 3-branes are localized onφ = π andφ = 0.
In fact, this scenario is well known in the conte
of string theory[5]. The non-factorizable geometr
showed in Eq.(1) has at least two important cons
quences that will be discussed here. The first on
that the 4-dimensional Planck mass is given in te
of the fundamental scaleM by

(2)M2
pl =

M3

k

[
1− e−2krcπ

]
,

in such a way that, even for largekrc, Mpl is of the
order of M. The second one is that because of
exponential factor on the space–time metric, a fi
confined to a 3-brane atφ = π with mass parame
ter m0 will have physical massm0e

−krcπ and forkrc
near of 12, the weak scale is dynamically generate
the fundamental scaleM which is of the order of the
Planck mass.

On the other hand, background independent
ories are welcome. As an example it is worth m
tioning the quantum loop gravity, developed main
by Asthekar et al.[6,7]. Also the problem of back
ground dependence of string field theory has not b
successfully addressed. The string field theory ha
theoretical problem: it is only consistently quantiz
in particular backgrounds, which means that we h
to specify a metric background in order to write dow
the field equations of the theory. This problem is fu
damental because a unified description of all str
backgrounds would make possible to answer quest
about the selection of particular string vacua and
general to give us a more complete understandin
geometrical aspects of string theory[8].

In this Letter we explore an alternative to the ce
tral point of the Randall–Sundrum model, namely,
particular non-factorizable metric. Using a topologi
theory, we show that the exponential factor, crucia
the Randall–Sundrum model, appears in our appro
only due to the brane existence instead of a spe
metric background.

Some searches have been made trying to im
ment branes as topological defects in order to so
the hierarchy problem[9]. Here the brane is simu
lated by a 3-dimensional domain wall embedded
a 5-dimensional space–time. Domain walls are sim
ple solitons, objects whose great stability is due
the non-trivial topology of the parameter space
the theory[10]. They only appear after phase tran
tions, specifically, when discrete symmetries are b
ken.

In order to study the hierarchy problem we choo
to work with topological gravity. Motivated by cur
rent searches in the quantum gravity context[6,11], we
study topological gravity ofB ∧F type[12,13]. Then,
we can affirm that our model is purely topological b
cause (1) the brane exists due to the topology of
parameter space of the model and (2) gravity is m
ric independent. We will see that these features g
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us interesting results when compared to the Rand
Sundrum model.

The model is based on the following action:

(3)

S =
∫

d5x

[
1

2
∂µθ∂µθ + kεµναρλθHa

µναF a
ρλ − V (θ)

]
.

In this action theθ field is a real scalar field that i
related to the domain wall. In this context, the pr
ence of a kinetic term for theθ field (together with the
symmetry breaking potential), is required to constr
a topological defect (the domain wall). We remark th
the θ field acts as a background field in order to p
vide a brane where we have an effective BF-type t
ory. The fieldsHa

µνα andFa
ρλ are non-Abelian gaug

fields strengths and will be related to the gravitatio
degrees of freedom. Namely, in pure gauge the
Ha

µνα = ∂µBa
να − ∂νB

a
αµ − ∂αBa

µν + gf abcAb
µBc

να and
Fa

µν = ∂µAa
ν −∂νA

a
µ +g′f abcAb

µAc
ν . The second term

of this action is a topological term that generaliz
to D = 5 the theta-term of QCD. To see this, it
enough to do a simple dimensional reduction, nam
defineBa

µ5 = −Ba
5µ = V

µ
a , Aa

5 = ϕ, ε5ναρλ ≡ εναρλ

and∂5G(xµ) = 0, whereG is any field of this model
Then, the theta-term arises as a result from the c
pactification procedure defined above, as
∫

d5x kεµναρλθHa
µναF a

ρλ

(4)→
∫

d4x k′εναρλθV a
ναF a

ρλ,

whereV a
να = ∂νV

a
α −∂αV a

ν +gf abcV b
ν V c

α . Identifying
V a

α with Aa
α we obtain the term discussed. Becau

of this fact, theθ field can be thought as the axion
field. The axion has appeared as a proposal to solv
strong CP problem[14]. The presence of instanton
in the theory results in an effective term added to
QCD action, namely,∼ ∫

d4x εναρλθF a
ναF a

ρλ, which
violates CP symmetry. The problem is solved wh
we add to the theory the axionic field with the impo
tion of a new symmetry, the Peccei–Quinn symme
that isθ → θ + a (a is a constant which contains th
CP violating quantities of the theory). The action(3)
is invariant under the Peccei–Quinn symmetry tra
formation

(5)θ → θ + 2πn.
The axionic potential is

(6)V (θ) = λ(1− cosθ),

which preserves the Peccei–Quinn symmetry. Ne
theless, it is spontaneously broken in scales of the
der ofMPQ ∼ 1010–1012 GeV. This value is obtaine
from cosmological and experimental constraints[15].
The potential(6) is not interesting for our purpose
The fact is that domain walls appeared for the fi
time in the universe in the QCD phase transition e
i.e., whenTQCD ∼ 100 MeV [16], a scale relatively
close to the weak scaleMew ∼ 103 GeV. In this situa-
tion, the Peccei–Quinn symmetry is explicitly brok
(UPQ(1) → Z(N)) by instanton effects. It is possib
to simulate this explicit break by a simple theoreti
field toy model. For such, we writeV (θ) as a poli-
nomial potential in powers ofθ , what is equivalent to
take terms only up to the second order in the expan
of the Eq.(6). We propose the following potential

(7)V (θ) = λ

4

(
θ2 − v2)2

,

which explicitly breaks theUPQ(1) Peccei–Quinn
symmetry, in order to generate a brane in an ene
close to the weak scale. With this particular cho
of the potential, the existence of the brane is put
more consistent grounds. In other words, the brane
pears almost exactly in an energy scale of the univ
near the symmetry breaking scale of the electrow
theory. This feature was assumed in previous wo
without a careful justification. However, this mec
anism leads to a large disparity between the Pla
massMpl ∼ 1018 GeV and the scale of explicit brea
ing of UPQ(1) which is relatively close to the wea
scale,Mew ∼ 103 GeV: we assume this disparity as
new version of the hierarchy problem.

The equation of motion of theθ field considering
the potential(7) is the following:

(8)θ + λθ3 − λv2θ = kεµναρλH
a
µναF a

ρλ.

This equation is easily solved. Supposing a static c
figuration and thatθ ≡ θ(x4), the solution is:

(9)θ(x4) = v tanh

(√
λ

2
vx4

)
.

This solution defines a 3-brane embedded in a(4+1)-
dimensional space–time. The mass scale of this m
is m = √

λv and the domain wall-brane thickness
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m−1. With this information we can now discuss th
effective theory on the domain wall-brane. An integ
tion by parts of the topological term in the action(3)
will result in

(10)
εµναρλθ(x4)H

a
µναF a

ρλ = −3εµναρλ∂µθBa
ναF a

ρλ + · · · ,

where we do not consider complicated interactio
and linear terms onθ (the function(9) is odd). Be-
cause ofθ ≡ θ(x4) the summation on theµ index will
result only in a derivative term of thex4 coordinate.
Then, the Levi-Civita tensorεµναρλ will be an authen-
tic four-dimensional tensor:ε4ναρλ ≡ εναρλ. We have
assumed that the tensorsBa

µν andAρa are weakly de-
pendent on thex4 coordinate. Then, the second te
of the action(3) is rewritten as

(11)

S ∼
∫

d4x εναρλB
a
ναF a

ρλ

[
lim

rc→+∞ k′
rc∫

0

dx4∂4θ(x4)

]
,

whererc represents the extra dimension. This last c
clusion denotes the domain wall-brane contribut
to the effective four-dimensional theory. We can s
that, effectively on the domain wall-brane, the theo
is purely 4-dimensional (this is important) and is d
scribed by a non-Abelian topologicalB ∧F term. The
importance of this fact is that there are several
proaches to topological gravity by means ofB ∧ F

type models inD = 4 and by Chern–Simons mode
in D = 3. In Ref.[12], the authors construct aSU(2),
D = 4 BF gravity in a basis independent formulatio
The point we would like to comment on that artic
is that the tensorial fieldB is a 1-form gauge value
field. We stress that the structure of the BF term in
work is the same as in Ref.[12], i.e., our BF gravity
on the brane is of the typeSU(2), D = 4.

Note that this approach opens the possibility
implement topological gravity on the brane. In the
models, the fundamental fields are known. For exa
ple, the tetrad fields inD = 4: the metric is, by itself,
a secondary object. The gauge symmetries of th
theories are, actually, the symmetries of the gen
relativity [13]. It can be shown that, under paramete
zations by tetrad fields, aB ∧ F type action gives us

(12)
∫

d4x kεναρλBa
ναF a

ρλ → k

∫
d4x

√
gR,
which is the Einstein–Hilbert action for the gravit
tional field, whereR is the scalar curvature andg
stands for the space–time metric[12]. It is not well
understood if Eq.(11) can really describe the dynam
ics of the gravitational field[17]. In a model like this,
the constantk has a direct relation with the Planc
mass. From Eqs.(11) and (12), we can see the relatio
between the Planck massk4 in D = 4 and the extra
dimension:

(13)k4 = lim
rc→+∞ k′

rc∫
0

dx4∂4θ(x4).

The limit rc → +∞ ensures the topological stab
ity of the domain wall-brane. By the substitution
Eq. (9) in Eq. (13), considering a finiterc (which
means that the domain wall-brane is a finite obje
we can show that

(14)k4 = k′v
(
1− e−2y

)(
1+ e−2y

)−1
,

where y = √
λ/2vrc is the scaled extra dimensio

This result is very interesting: as our model is a to
logical one, the exponential factor must not app
from any special metric. Here, the exponential fac
appears only due to the domain wall-brane existe
As in the Randall–Sundrum model, even for the la
limit rc → +∞, the 4-dimensional Planck mass ha
specific value. This is the reason why we believe t
our model can be used to treat the hierarchy proble

We can make an estimative of the order of the
tra dimension considering that the domain wall-bra
thickness is of the order ofMew ∼ 103 GeV. This
means that the fields confined to the domain w
brane do not perceive the extra dimension, unless
interact with energies greater thanMew. In this case,
they can escape out of the brane, living in the high
dimensional space–time[18]. By the calculation of
domain wall-brane energy per unity volumeσ we can
find a simple polynomial equation of third degree
the z = θ(rc) variable, containing all phase transitio
information:

(15)m−1σ = √
2vz − √

2m−1z3.

For the case of the Randall–Sundrum model, the e
dimension is calculated through the normalized ra
oscillation field (referred by some authors as rad
field [19]), i.e., it is stabilized by a mechanism of sym
metry breaking involving bulk fields[20].
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We will now discuss about matter confined to t
brane. It is a well-known fact that domain walls m
have bound states of fields attached to them[18]. For
the case of scalar fields, it was shown using WKB
proximation that a particular zero-mode living in t
domain wall-brane is given by the following field:

ϕ′(x0,x, x4) = dϕ(x4)

dx4 exp
(−ik · x + iEx0);

(16)E2 = (k · k)2.

In the last equation,dϕ(x4)/dx4 = Ce−2Ax4(1 +
e−Ax4)−2, C and A are constant parameters. In p
ticular, a similar result is true for fermions. Then t
zero-modes, bosonic or fermionic ones, are sca
by an exponential factor, just like in the Randa
Sundrum scenario. Despite the fact that they are n
massive fields, there are mechanisms involving sev
interacting fields[21] that generate spontaneous sy
metry breaking in the defect core. In this way, t
confined fields can acquire non-zero masses. In o
to show this for the case of scalar fields, we use
real scalar fields:φ(x0,x, x4) andη(x0,x). We regard
the first one as a 4-dimensional confined field, i
φ(x0,x, x4) = f (x4)ϕ(x0,x), wheref (x4) is just the
warp factor that comes from the extra dimension. T
second one is a massless and purely 4-dimensi
field. We built the following Lagrangian density

(17)L = 1

2
∂µη∂µη + 1

2
∂µφ∂µφ − gφ2η2 − V (φ),

whereV (φ) = −m2φ2 + λ
4!φ

4 is a potential that spon
taneously breaks theφ → −φ symmetry. In this case
if the extra dimension is finite and constant then, d
ing the phase transition, only theϕ field will oscillate,
i.e.,φ = f (x4)ϕ → f (x4)[v + χ], wherev is the vac-
uum expectation value of theφ field andχ is the fluc-
tuation around the vacua. Working out this idea in
last Lagrangian we can show that, after the phase t
sition, theη field will acquire a mass of the order o
f (x4)v ∼ e−2Ax4(1 + e−Ax4)−1v. This expression is
analogous to the Randall–Sundrum result[4], which
provides a physical mass for fields of the stand
model corrected by the warp factor. Therefore, t
simple mechanism allows us to generate scales f
fields confined to a domain wall-brane, without the
quirement of a particular metric.

There is a final remark about gravity in this co
text: the matter zero-modes live effectively inD = 4
l

and, then, they must contribute to the effective fo
dimensional energy–momentum tensor. They are
fact, gravitational sources in the domain wall-bra
space–time. Consequently, we can construct a p
agation term for the gravitational field inD = 4 (on
the brane). However, as can be seen from Eq.(12) it is
possible to build a propagation term for gravity from
topological term. Therefore it is interesting to discu
if we can use Eq.(11)as an authentic propagation ter
for these gravitational degrees of freedom. This will
discussed in a forthcoming paper[22].

Summarizing, we have shown that a simple to
logical model in field theory has the necessary featu
to solve the gauge hierarchy problem in a very sim
way to the one found by L. Randall and R. Sundru
With this model we have built a stable 3-brane (a
main wall-brane) that simulates our four-dimensio
universe and we have argued the possibility of topo-
logical gravity localization. Because of these fac
the exponential factor appears only due to the e
tence of the domain wall-brane and not from a spe
metric. Then, we have calculated the effective Pla
mass inD = 4, pointing out the great similarity be
tween our result and that of the Randall–Sundr
model. We have calculated a polinomial equation
the size of the extra dimension using some featu
of models containing domain walls. Finally, we ha
made a commentary about the zero-modes bounde
the domain wall-brane, remarking the fact that the
are scaled by an exponential factor. This inform
tion makes possible the emergence of the electrow
scale.

We did not comment about how to introduce t
cosmological constant in this model. In fact, in t
Randall–Sundrum model the cosmological constan
extremely important because it is responsible for
final form of the metric given by Eq.(1). Another
interesting fact is that brane models can answer
following question:why is the cosmological constant
so small? These are good problems for future inves
gations in this topological approach.

The analysis of models containing several dom
walls is also interesting. In this case, the poten
that implements the phase transition has various st
vacua. Domain walls will appear interpolating the
vacua in well defined positions: the distance betw
two domain walls is constant due to the topologi
stability of the model. Can we see this as anot
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By virtue of the simplicity of this model, we can ex
tend it to include supersymmetry. Indeed, brane wo
models suggests alternative mechanisms to the br
ing of supersymmetry in our universe. All of the
subjects are interesting research objectives.
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