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Abstract

We give new sufficient conditions for a continuum to be a remainder ofH . We also show that any
non-degenerate subcontinuum ofH ∗ maps onto any continuum of weight6 ω1, thus generalizing a
result of D.P. Bellamy. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

LetX be a completely regular space. A compact Hausdorff spaceαX is a compactifica-
tion of X if αX contains a dense copy ofX. A space of the formαX \X whereαX is a
compactification ofX is called a remainder ofX. As usual we denote byβX the Stone–
Čech compactification of the spaceX and byX∗ its Stone–̌Cech remainderX∗ = βX \X.
By a theorem of Magill [8] we know that the remainders of a locally compact spaceX

are exactly the continuous images ofX∗. For this reason, given a locally compact spaceX

and a compact spaceK, it is equivalent to say that “K is a remainder ofX” or that “K is
a continuous image ofX∗”. If the spaceX is also locally compact we denote byωX the
Alexandroff one-point compactification ofX.

One of the general problems in the study of the compactifications of a spaceX is to
characterize internally the class of its remainders. This is generally a very hard task and we
are usually not able to give a definitive answer. However it is sometimes possible to find
classes of spaces that are remainders ofX, thus giving a partial answer to the problem.
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The most studied spaceX from this point of view is probablyω, the discrete set of
natural numbers. Some of the most important results on the remainders ofω are the
following:

Fact 1. LetX be a compact space of weight6 ω1. ThenX is a remainder ofω.

The original proof is due to Parovičenko [9]. An interesting different proof can be found
in [3].

Fact 2. LetX be a compact perfectly normal space. ThenX is a remainder ofω.

The proof is due to Przymusiński and can be found in [10].

Fact 3. LetX be a compact separable space. ThenX is a remainder ofω.

This fact is well known and can be seen for instance as follows. Letf :ω→ X be an
infinite to one function that mapsω onto a countable dense subset ofX. Define on the
setZ = ω ∪X the following topology:ω is discrete and a basic neighborhood of a point
x ∈ X is given byU ∪ (f−1(U) \ F) whereU is a neighborhood ofx in the original
topology ofX andF ⊂ ω is finite. It is easily checked thatZ is a compactification ofω
with remainderX. (This is an example of a singular compactification, for more information
see, for example, [6].)

Another space that deserves a special attention is the half open intervalH = [0,∞). The
reason why we do not usually consider the real lineR is that the Stone–̌Cech remainder of
R is the topological sum of two copies ofH ∗. Some of the most important results on the
remainders ofH are the following:

Fact 4. LetX be a remainder ofH , thenX is a continuum(i.e., compact and connected).

This is well known, see, for example, [12].

Fact 5. LetX be a continuum of weight6 ω1. ThenX is a remainder ofH .

The proof, involving elementarity consideration, is due to Dow and Hart [5].
We recall that a weak Peano space is a compact Hausdorff space that contains a dense

continuous image of the real lineR.

Fact 6. LetX be a weak Peano space. ThenX is a remainder ofH .

This is a consequence of Fact 7, or we can use a procedure similar to that one we used
to show Fact 3. Letg :R→ X be a continuous dense function. Definef :H → X as
f (x) = g(x sin(x)). Define on the setZ = H ∪ X the following topology: the topology
onH is the same as before and a basic open neighborhood of a pointx ∈X is given by a
set of the formU ∪ (f−1(U) \F) whereU is a neighborhood ofx in the original topology
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of X andF ⊂ H is compact. It is easily checked thatZ is a compactification ofH with
remainderX.

We recall that a continuumX is irreducible about a subsetS ⊂ X if there is no proper
subcontinuum ofX containingS. In particular we say that a continuumX is irreducible
between two pointsa andb if X is irreducible about{a, b}.

Fact 7. Let X be a continuum irreducible about some separable subsetS ⊂ X. Assume
thatX can be embedded as aGδ-set into a connected, locally pathwise connected, locally
compact spaceY . ThenX is a remainder ofH .

This was proved by Bellamy in his Ph.D. Thesis [2].
By a “Tychonoff cube of weightκ” we mean a product ofκ intervals

∏
α<κ Iα . As

an immediate consequence of Fact 7 we get that any separable continuum that can be
embedded as aGδ-set into a Tychonoff cube of weight6 c is a remainder ofH .

In this paper we will find more classes of spaces that are remainders ofH . In particular
we will show the following

(1) LetX be a continuum that can be embedded as aGδ-set into a Tychonoff cube of
weight6 c. ThenX is a remainder ofH (Corollary 3).

(2) Let X1 be any remainder ofH and letX2 be a separable pathwise connected
continuum. ThenX1×X2 is a remainder ofH (Theorem 5).

(3) LetX be a continuum that can be embedded as aGω1-set into a Tychonoff cube of
weight6 c. ThenX is a remainder ofH (Corollary 6).

(4) Let X be a continuum irreducible about some separable subsetS ⊂ X. Assume
thatX can be embedded into a connected locally compact spaceY as a countable
intersection of a family of pathwise connected sets{An: n < ω} such thatAn+1 ⊂
An for all n < ω. ThenX is a remainder ofH (Theorem 7).

(5) LetX be a product of no more thanc separable continuaXα , and assume that each
Xα can be embedded into a connected locally compact spaceYα as a countable
intersection of a family of pathwise connected sets{Aαn : n < ω} such thatAαn+1 ⊂
Aαn for all n < ω and for allα. ThenX is a remainder ofH (Theorem 9).

Observe that (4) is a generalization of Bellamy’s Theorem (Fact 7). In fact, suppose that
the spaceX is aGδ-set in a locally pathwise connected locally compact spaceY . Then
using the fact thatY is locally pathwise connected and locally compact we can writeX

as a countable intersection of a family of pathwise connected (open) sets{An} such that
An+1⊂ An for all n < ω. An example of a space that satisfies the conditions of (4) but is
not aGδ-set is given in Theorem 9. Both Theorems 7 and 9 have been suggested by some
unpublished notes of Faulkner and Vipera.

In parallel with the study of remainders, there is an entire theory of mappings of
the remainders, embeddings into the remainders, and mappings from and onto special
subsets of the remainders. Many of these theorems have remnants of the universality of
the mappings from the Stone–Čech remainder. An example is the following theorem from
Bellamy’s Thesis [2].
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Theorem 1. Any non-degenerate subcontinuum ofH ∗ maps onto any metric continuum.

One of the main steps in the proof of Theorem 1 is to show thatH ∗ maps onto any metric
continuum. This was proved in [2] and also in [1]. Since we know now that something more
is actually true, i.e., thatH ∗ maps onto any continuum of weight6 ω1, we naturally ask if
any non-degenerate subcontinuum ofH ∗ maps onto any continuum of weight6 ω1. The
proof that this is actually true is the main result of Section 3 of this paper (Theorem 14).

2. Remainders ofH

Let X =∏α<κ Xα be a product ofκ spaces. LetB =⋂δ∈∆ π
−1
δ (Uδ) be a basic open

set ofX, whereUδ ⊂Xδ is open,Uδ 6=Xδ and∆⊂ κ is a finite set of indices. We say that
∆ is the support ofB (∆= supp(B)). If A=⋃n

i=1Bi is a finite union of basic open sets
we say thatS =⋃n

i=1 supp(Bi) is the support ofA (S = supp(A)).

Lemma 2. A compact spaceX can be embedded into a Tychonoff cube of weightκ as the
intersection ofµ< κ open sets if and only ifX is homeomorphic to the productM × Iκ of
a compact spaceM of weight6 µ and the Tychonoff cubeIκ .

Proof. AssumeX=M × Iκ wherew(M)6 µ< κ . SinceM is compact andw(M)6 µ,
M can be embedded into the Tychonoff cubeIµ as the intersection ofµ open sets. Say
M =⋂α<µBα whereBα ⊂ Iµ are open sets. ThenX =⋂α<µ(Bα × Iκ )⊂ Iµ× Iκ is the
intersection ofµ open sets inIµ × Iκ .

Assume now thatX =⋂α<µ Aα ⊂ Iκ whereAα are open sets in the Tychonoff cube
Iκ . Without loss of generality we can assume thatAα is a finite union of basic open sets,
so thatAα is supported by a set of finitely many indecesSn. PutS =⋃n<ω Sn. Observe
that|S |6 µ.

Let πS : Iκ →∏
δ∈S Iδ be the projection. ThenX = πS(X)× Iκ\S ' πS(X) × Iκ and

w(πS(X))6 µ. 2
In particular the lemma above says that a compact spaceX can be embedded as aGδ-set

in a Tychonoff cubeIκ = [0,1]κ if and only ifX is either metrizable or it is homeomorphic
to the productM × Iκ of a compact metric spaceM and the Tychonoff cubeIκ .

Corollary 3. LetX be a continuum that can be embedded as aGδ-set into a Tychonoff
cube of weight6 c. ThenX is a remainder ofH .

Proof. By Lemma 2,X =M × Iκ whereM is metrizable. Sinceκ 6 c, X is separable.
ThereforeX is a separable continuum that can be embedded as aGδ-set into the connected
locally pathwise connected locally compact spaceIκ and we can apply Fact 7.2

In particular, Corollary 3 together with Lemma 2 tell us that the product of a metric
continuum and a Tychonoff cube of weight6 c is always a remainder ofH .
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We will show that something more is actually true.

Lemma 4. A compact spaceX is a remainder ofH if and only if there exists a compact
spaceZ in whichX is embedded and a continuous functionh :H →Z such that

(1) for any neighborhoodU ofX in Z, there is ann ∈ ω such thath([n,∞))⊂U ,
(2) for any open setV ⊂Z such thatX∩V 6= ∅ the set{t ∈H : h(t) ∈ V } is unbounded.

Proof. AssumeX is a remainder ofH . Let αH be a compactification ofH such that
αH \H =X. Let e :αH → Iw(αH) be the Tychonoff embedding of the completely regular
spaceαH into the cubeIw(αH) =Z. Letα :H → αH be the inclusion mapping. We claim
that the functionh= e ◦ α is as required.

To check (1) observe that any unbounded sequence ofh(H)must cluster to some points
of X. To check (2) observe that any open set ofαH \H meetsH in an unbounded set.

Assume now thatX is embedded into a compact spaceZ and that there is a function
h :H → Z satisfying (1) and (2). We can embedZ into a Tychonoff cube of weightκ and
consider the maph : H → Iκ . This new map still satisfies (1) and (2). Definef :H →
Iκ × I asf (t) = 〈h(t),2−t 〉. Then the closure off (H) in Z × I is the compactification
needed. 2

Observe that the conditions of the above lemma are equivalent toX being the singular
set of the mappingh [4].

Theorem 5. LetX1 be any remainder ofH and letX2 be a separable pathwise connected
continuum. ThenX1×X2 is a remainder ofH .

Proof. SinceX1 is a remainder ofH by Lemma 4 there is a compact spaceZ in whichX1

is embedded and there is a continuous functionh :H → Z such that
(1) for any neighborhoodU of X1 in Z, there is ann ∈ ω such thath([n,∞))⊂U ,
(2) for any open setV ⊂ Z such thatX1 ∩ V 6= ∅ the set{t ∈ H : h(t) ∈ V } is

unbounded.
Let {dn: n ∈ ω} be a dense subset ofX2.

Claim. Letf :H →Z×X2 be a continuous function and assume that
(a) for everyn> 0 andt > n, f (t) ∈ h([n,∞))×X2,
(b) for n− 16 t < n andi 6 n the point〈h(t), di〉 is in the range off |[n−1,n).
Then the functionf satisfies also the properties:
(c) for any neighborhoodU ×X2 of X1 ×X2 in Z ×X2, there is ann ∈ ω such that

f ([n,∞))⊂U ×X2,
(d) for any basic open set(V ×W) ⊂ (Z ×X2) such that(X1×X2) ∩ (V ×W) 6= ∅

the set{t ∈H : f (t) ∈ V ×W } is unbounded.

Proof. Suppose thatf :H → Z × X2 is a continuous function that satisfies (a) and (b).
To show thatf satisfies (c) letU × X2 be a neighborhood ofX1 × X2 in Z × X2. By
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Fig. 1.f 0([0,1]).

property (1) of the functionh there is ann such thath([n,∞)) ⊂ X1; by (a) we have
f ([n,∞))⊂U ×X2.

To show thatf satisfies (d) letV ×W be an open set ofZ ×X2 such that(U ×W) ∩
(X1×X2)= (V ∩X1)× (W ∩X2) 6= ∅. There are infinitely manydn ∈W ∩X2. Pick one,
saydn1. By property (2) of the functionh there is at ∈ [k1, k1+ 1) with k1> n1 such that
h(t) ∈ V . By property (b) the point〈h(t), dni 〉 is in the range off |[ki ,ki+1) and therefore
there is ans ∈ [k1, k1+ 1) such thatf (s)= 〈h(t), dni 〉 ∈ V ×W . 2

The claim shows that a functionf satisfying properties (a) and (b) satisfies the
hypothesis of Lemma 4 and therefore, once we have such a function, we can conclude
that the spaceX1×X2 is a remainder ofH .

It remains to show that we can construct a function satisfying properties (a) and (b). We
will define it by induction on each interval of the form[n,n+ 1] as follows.

Definef 0 : [0,1]→Z×X2 as follows. Subdivide the interval[0,1] into 5 partsIi with
06 i 6 4; let

f 0
0 : I0→

{〈h(r), d0〉: r ∈ [0,1]
}⊂Z×X2

be defined as

f 0
0 (s)=

〈
h(5s), d0

〉
.

Let f 0
1 be the path backwardsf 0

1 (s)= 〈h(1− 5s), d0〉. Then we move the second variable
along a path connectingd0 to d1; let g2 : [25, 3

5] → {h(0)} × X2 be such a path, then put
f 0

2 (s) = 〈h(0), g2(s)〉. Next let us move the first variable again; definef 0
3 to be a path

parallel tof 0
0 at the leveld1, connecting〈h(0), d1〉 with 〈h(1), d1〉. Finally we go down to

leveld0 with a path connectingd1 to d0 and fixing the second variableh(1). See Fig. 1.
Suppose we have definedf k : [k, k + 1] → Z × X2 for all k < n. Definef n : [n,n +

1] → Z × X2 as follows. Subdivide the interval[n,n + 1] into 5+ 3n parts Ii with
06 i 6 4+ 3n. For 06 i 6 3n definef ni : Ii → Z × X2 asf n−1

i with the appropriate
parametrization and replacingh(n− 1) with h(n) andh(n) with h(n+ 1). f n3n+1 will be
asf n3n backwards, connecting〈h(n + 1), dn〉 with 〈h(n), dn〉; f n3n+2 is a path connecting
〈h(n), dn〉 to 〈h(n), dn+1〉 and fixing the first variable;f n3n+3 connects〈h(n), dn+1〉 to
〈h(n + 1), dn+1〉. Finally f n3n+4 connects〈h(n + 1), dn+1〉 back to 〈h(n + 1), d0〉. See
Fig. 2.

It is now easily seen that the mapf :H → Z×X2 given by the union of thefn satisfies
(a) and (b). 2
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Fig. 2.f 0([0,1]) ∪ f 1([1,2]) ∪ f 2([2,3]).

Corollary 6. Let X be a continuum that can be embedded as aGω1-set (i.e., as the
intersection ofω1 open sets) into a Tychonoff cube of weight6 c. ThenX is a remainder
ofH .

Proof. By Lemma 2 we know that such a space can be written as the product of a
Tychonoff cubeT and a space of weight6 ω1. Since by Fact 5 a continuum of weight
6 ω1 is a remainder ofH we can apply Theorem 5.2

We can generalize both Fact 7 and Corollary 3 by weakening the requirement that the
space is aGδ as follows:

Theorem 7. Let X be a continuum irreducible about some separable subsetS ⊂ X.
Assume thatX can be embedded into a connected locally compact spaceY as a countable
intersection of a family of pathwise connected sets{An: n < ω} such thatAn+1 ⊂ An for
all n < ω. ThenX is a remainder ofH .

Proof. LetD = {dn: n < ω} be a dense set inS. For anyn < ω let hn : I → An be a path
connectingdn with dn+1. LetωY be the one-point compactification of the locally compact
spaceY .

Define a continuous functionh :H → ωY by h(x)= hn(x − n) if x ∈ [n,n+ 1].
The functionh :H → ωY is such that
(1) for any neighborhoodU of X in ωY , there is ann ∈ ω such thath([n,∞))⊂U ,
(2) for any open setV ⊂ ωY such thatS ∩ V 6= ∅ the set{t ∈ H : h(t) ∈ V } is

unbounded.
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To check (1) letU be a neighborhood ofX in ωY . SinceAn+1⊂An for all n there is an
n < ω with An ⊂ U (suppose not, then

⋂
n<ω An \ U 6= ∅ since{An \ U : n < ω} has the

finite intersection property). Thereforef (x) ∈U for all x > n.
To check (2) letV ⊂ ωY be an open set and suppose thatS ∩ V 6= ∅. SinceD is dense

in S there are infinitely elementsdi ∈ D ∩ V . Sincedi = h(i) we conclude that teh set
{t ∈H : h(t) ∈ V } is unbounded.

We just showed that the functionh satisfies properties (1) and (2) of Lemma 4 except
that in property (2) above the setS plays the role ofX. So we cannot immediately conclude
thatX is a remainder ofH . As in the proof of Lemma 4 we can assume without loss of
generality that the functionh is one–one and thath(H)∩X = ∅ (otherwise we can replace
ωY with ωY × I andh with f :H → ωY × I given byf (t)= 〈h(t),2−t 〉). By property (1)
we get that clωY (h(H)) ⊆ X. By property (2) and by the fact thath(H) ∩ X = ∅ we
get thatS ⊂ clωY (h(H)) \ h(H). Since the space clωY (h(H)) \ h(H) is a remainder
of H , by Fact 4 it is a continuum. SinceX is irreducible aboutS we conclude that
clωY (h(H)) \ h(H)=X. 2
Corollary 8. Let X be a separable continuum that is a countable intersection in a
Tychonoff cube of weight6 c of a family of pathwise connected sets{An: n < ω} such
thatAn+1⊂An for all n < ω. ThenX is a remainder ofH .

As a consequence of Theorem 7 we have the following interesting result:

Theorem 9. LetX be a product of no more thanc separable continuaXα , and assume
that eachXα can be embedded into a connected locally compact spaceYα as a countable
intersection of a family of pathwise connected sets{Aαn : n < ω} such thatAαn+1⊂ Aαn for
all n < ω and for allα. ThenX is a remainder ofH .

Proof. We haveX ⊂∏α6κ Yα = Y for someκ 6 c. Y is connected and locally compact.
We will apply Theorem 7 by showing thatX can be written as a countable intersection of
pathwise connected sets nested in the right way. We have

X =
∏
α6κ

Xα =
∏
α6κ

( ⋂
n<ω

Aαn

)
=
⋂
n<ω

(∏
α6κ

Aαn

)
.

PutBn =∏α6κ A
α
n . Bn is pathwise connected and

Bn+1=
∏
α6κ

Aαn+1⊂
∏
α6κ

Aαn = Bn for all n < ω. 2

As a consequence we get the following corollary, proved by Faulkner and Vipera.

Corollary 10 (Faulkner and Vipera).Let X be a product of no more thanc metric
continua. ThenX is a remainder ofH .

Proof. We observe that any metric continuumXα is aGδ-set in the metric Tychonoff
cubeIω. Moreover, since a Tychonoff cube is locally pathwise connected we can assume
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without loss of generality thatXα = ⋂n<ω U
α
n whereUαn is pathwise connected and

Uαn+1⊂Uαn for all n < ω. Therefore we can apply Theorem 9.2
Theorems 7, 9 and its corollaries give conditions for a continuum to be a remainder of

H . All of them consider practically separable spaces that can be embedded in a cube in a
special way. The next step would be to drop at least one of these conditions. In this sense
we can ask the following:

Question 11. Is any separable continuum a remainder ofH?

Question 12. Is any continuum that is a remainder ofω and that can be embedded in a
Tychonoff cube as a countable intersection of strongly nested pathwise connected sets a
remainder ofH?

3. Do non-degenerate subcontinua ofH ∗ map ontoH ∗?

In his Ph.D. Thesis Bellamy proved the following results:
(a) Any non-degenerate subcontinuum ofH ∗ maps ontoβH (and hence onto any weak

Peano space).
(b) Any non-degenerate subcontinuum ofH ∗ maps onto any metric continuum.
We ask if it is possible to generalize the above mentioned results. In particular the final

goal is to see if it is true that any non-degenerate subcontinuum ofH ∗ can be mapped onto
H ∗ itself and hence onto any continuum that is a remainder ofH . Bellamy proves (b) by
using the following three lemmas:

(B1) LetK be a metric continuum, then there is a compactificationαH of H whose
remainder is homeomorphic toK.

(B2) Any metric continuum is a retract of a metric continuum which is irreducible
between two of its points.

(B3) Any non-degenerate subcontinuum ofH ∗ maps onto any metric continuum which
is irreducible between two of its points.

The reader may notice that (B1) follows by (B2) and (B3); however Bellamy first
proved (B1) and then he used that result to prove (B3).

It is known [5] that (B1) can be generalized to any continuum of weight6 ω1. It is
also possible to see [5] that any standard subcontinuumIu of H ∗ can be mapped onto
any continuum of weight6 ω1. We want to show that actually the same is true for all
non-degenerate subcontinua ofH ∗.

We first prove a lemma that generalizes Bellamy’s (B2).

Lemma 13. LetK be a continuum of weightκ , then there is a continuumT of weightκ
such that

(1) There is a subspaceJ ⊂ T homeomorphic to the unit intervalI .
(2) There is a subspaceK ′ ⊂ T homeomorphic toK.



62 F. Obersnel / Topology and its Applications 108 (2000) 53–65

(3) For any t ∈ [0,1)⊂ J there exists a continuous functionf :T \ [0, t)→K onto.
(4) T \ [0, t) is irreducible betweent ∈ [0,1)⊂ J and any point ofK ′.

Proof. Let {aα: α < κ} be a dense set of points ofK and assume thata2α = a0 for any
α < κ , in particular for any limit ordinalγ we haveaγ = a0. We also assume that for any
γ < κ the set{aα: α > γ } is still dense inK.

We denote byW(κ) the long segment (= the compactified long line) of lengthκ . By
transfinite induction we will construct for allα 6 κ a continuumLα ⊂K and a continuum
Tα ⊂K ×W(κ) with the following properties:

– Tα ⊂K × [0, α] andTα ∩K × {α} = Lα × {α};
– Tα ⊂ Tβ for α < β ;
– (aα,α) ∈ Tα ;
– Tγ ∩K × (α,α + 1)= {aα} × (α,α + 1) for anyα < γ .
Let T0= {(a0,0)} andL0= {a0}. Assume we have definedLα andTα for all α < γ .
Assume firstγ = µ + 1. Let Lγ be a continuum irreducible betweenaµ andaγ . Put

Tγ = Tµ ∪ ({aµ} × [µ,γ ])∪ (Lγ × {γ }). Tγ is clearly closed and it is connected because
the point(aµ,µ) belongs to bothTµ and{aµ} × [µ,γ ] and the point(aµ, γ ) belongs to
both{aµ} × [µ,γ ] andLγ × {γ }. All the properties required are easily checked.

Assume next thatγ is a limit ordinal. Define

Tγ = clK×W(κ)
( ⋃
α<γ

Tα

)
and Lγ = πK

(
Tγ

∖( ⋃
α<γ

Tα

))
,

whereπK is the projection ofK ×W(κ) onto its first factor. The spaceTγ is connected
being the continuous image of the closure of a nested union of connected sets. We clearly
haveLγ × {γ } ⊂ Tγ ∩K × {γ }; if (x, γ ) ∈ Tγ ∩K × {γ } we have(x, γ ) ∈ Tγ \⋃α<γ Tα

hencex ∈ Lγ . ThereforeLγ × {γ } = Tγ ∩K × {γ } andLγ is connected. Finally observe
that (aγ , γ ) = (a0, γ ) and this point is clearly inTγ being the limit of the sequence
{(a2α,2α)} ⊂⋃α<γ Tα . See Fig. 3.

We claim that the spaceT = Tκ is as required.
(1) holds takingJ = {a0} × [0,1], where[0,1] is the initial interval inW(κ);
(2) holds takingK ′ = Lκ × {κ} =K × {κ};
(3) holds taking asf the projectionπ :K ×W(κ)→K restricted toT \ [0, t).

Fig. 3. The spaceT .
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To prove (4) pick a pointz ∈K and assume thatP ⊂ T is a subcontinuum that contains
both (z, κ) and (a0,0) (for sake of simplicity we pick the point(a0,0) ∈ J , clearly the
same argument would work for any other point(a0, t) with t ∈ [0,1)).

Since the projection ofP ontoW(κ) contains{0, κ} it is all of W(κ). SinceTγ ∩K ×
(α,α+ 1)= {aα} × (α,α+ 1), P must contain all intervals{aα} × (α,α+ 1), hence (P is
closed) all closed intervals{aα} × [α,α + 1]. LetPα = P ∩ (K × {α}).

We observe that for any non limit ordinalα we havePα = Lα × {α}. To show this
it is sufficient to prove thatPα is connected, since in this casePα is a subcontinuum of
Lα × {α} containing both points(aα−1, α) and (aα,α) and the continuumLα × {α} is
irreducible between these points. So let us assume thatPα is not connected. Then we can
write Pα = U ∪ V whereU andV are both open inPα , U ∩ V = ∅, (aα−1, α) ∈ U and
(aα,α) ∈ V (if the two points are in the same component, this must be allLα × {α} since
Lα is irreducible betweenaα−1 andaα). Then the sets

U ∪ {(x, t): t ∈W(κ), t < α} and V ∪ {(x, t): t ∈W(κ), t > α}
disconnectP and we get a contradiction.

We have shown thatP ∩ (K × {α})= T ∩ (K × {α}) for all non limit ordinalsα. Since
P is closed we must haveP = T . 2
Theorem 14. Any non-degenerate subcontinuum ofH ∗ maps onto any continuum of
weight6 ω1.

Proof. LetF ⊂H ∗ be a non-degenerate subcontinuum ofH ∗ and letK be any continuum
of weight ω1. Let T ⊂ K × W(ω1) be as in Lemma 1 and letS be the following
“longer” version ofT : S = T ∪ [0,1] where we identify the point 0∈ [0,1] with the point
〈a0,ω1〉 ∈K × {ω1} ⊂ T . We will denote with 0,1, s, t, . . . the points ofJ ⊂ T and with
0′,1′, s′, t ′, . . . the points of the new interval we added. It is clear that for any choice of
t ∈ [0,1) and t ′ ∈ (0′,1′] the continuumS \ ([0, t) ∪ (t ′,1′]) is irreducible between the
pointst andt ′. S is a continuum of weightω1 and therefore by Fact 5 it is a remainder of
H . Let αH be a compactification ofH such thatαH \H = S. LetA andB be open sets
of αH such thatA∩ S ⊂ {a0} × [0, 1

2) andB ∩ S ⊂ ((1
2)
′,1′].

Let {an: n < ω} and{bn: n < ω} be two sequences inH such thatan ∈ A, bn ∈ B and
an < bn < an+1 for all n < ω.

Fix two pointsx andy of F and pick two standard neighborhoods with disjoint closures
U andV of x andy, respectively (we recall that a standard open set inβH is an open
set of the formβH\clβH(H \⋃n<ω(xn, yn)) where{(xn, yn): n < ω} is an unbounded
sequence of disjoint open intervals inH ; see [7]). Let(pn, qn) and(rn, sn) be the intervals
in H that generateU andV , respectively. Without loss of generality we can assume that
pn < qn < rn < sn < pn+1 for all n < ω. Define a functiong :H →H as follows:

g(t)=


an if t ∈ [pn, qn],
bn if t ∈ [rn, sn],
connected linearly elsewhere.
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Considerg as a map fromH into αH and let f :βH → αH be its Stone–̌Cech
extension.

Observe thatf (x) ∈ A andf (y) ∈ B, so thatS \ ([0, f (x) ∪ (f (y),1′]) is irreducible
betweenf (x) andf (y). Sincef (F ) is connected we haveT ⊂ f (F ).

Finally defineh :F →K ash(p)= π(f (p)) whereπ :S→K is the projection. 2
Corollary 15. (CH) Any non-degenerate subcontinuum ofH ∗ maps ontoH ∗, and hence
onto any remainder ofH .

In the proof of Theorem 14 we used the fact thatw(K)6 ω1 only when we claimed that
the spaceS is a remainder ofH . The same argument of the proof can be used to show that
any non-degenerate subcontinuum ofH ∗ maps ontoK provided that the corresponding
spaceS is a remainder ofH . This observation is of no use to try to generalize Theorem 14
in ZFC; in fact ifS is a remainder ofH then the projectionprW(κ)S is also a remainder of
H and we know that if we addω2 Cohen reals to a model of GCH the long segmentW(κ)

is not a remainder ofH for κ > ω1 (see [5]). However we have the following:

Proposition 16. Let κ be a cardinal number and assume that any continuum of weight
< κ is a remainder ofH . Then any non-degenerate subcontinuum ofH ∗ can be mapped
onto any continuum of weight< κ .

Corollary 17. (MA) Any non-degenerate subcontinuum ofH ∗ can be mapped onto any
continuum of weight< c.

Do we have a similar situation forω? In this case of course we should replace continua
with compact spaces and to avoid trivial cases non-degenerate subcontinua with infinite
closed subsets ofω∗. The theorem above is easily shown to be false forω. In fact there
are non-trivial (= infinite) separable closed subsets ofω∗ (e.g., copies ofβω) and clearly
such spaces cannot be mapped onto a non-separable compact space. Let us remark that no
separable continua can be found inH ∗ (in particularβH cannot be embedded intoH ∗).
Therefore the only question aboutω is about compact separable spaces. We can show the
following:

Theorem 18. Any non-trivial closed subspace ofω∗ can be mapped onto any separable
compact space.

Proof. LetK be a separable compact space, and letF be any non-trivial closed subset of
ω∗. It is well known that any infinite closed subset ofω∗ contains a copy ofβω; let S be
one of these. SinceS has countableπ -weight,S is a retract ofβω [11], hence it is a retract
of K with retractionr. Let f be a function mappingS ontoK, thenf ◦ r is the required
surjection. 2
Question 19. Can we map any non-degenerate subcontinuum ofH ∗ onto any separable
continuum ?
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In particular,

Question 20. Can we map any non-degenerate subcontinuum ofH ∗ onto any separable
continuum that is aGδ-subset (or better, a countable intersection of strongly nested
pathwise connected sets) of a Tychonoff cube of weight6 c?
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