
PERGAMON Computers and Mathematics with Applications 37 (1999) 111-120

Intmm~v~ JaumJ

computers &
mathematics
w*th ,p~WUon,

Near Optimal Multiple Choice
Index Selection for

Relational Databases

T. I. GONDEM
C o m p u t e r E ng i nee r i ng D e p a r t m e n t , Bo~azi~i Un ive r s i ty

80815 Bebek , I s t anbu l , Turkey
gundem@boun, edu . t r

(Received September 1997; accepted October 1997)

A b s t r a c t - - I n d e x selection for relational databases is an important issue which has been researched
quite extensively [1-5]. In the literature, in index selection algorithms for relational databases, a t
most one index is considered as a candidate for each a t t r ibute of a relation. However, it is possible
t ha t more t h a n one different type of indexes with different storage space requirements may be present
as candidates for an at t r ibute. Also, it may not be possible to eliminate locally all bu t one of the
candidate indexes for an a t t r ibute due to different benefits and storage space requirements associated
with the candidates. Thus, the algorithms available in the l i terature for optimal index selection may
not be used when there are multiple candidates for each a t t r ibute and there is a need for a global
optimization algori thm in which at most one index can be selected from a set of candidate indexes
for an at t r ibute . The problem of index selection in the presence of multiple candidate indexes for
each a t t r ibu te (which we call the multiple choice index selection problem) has not been addressed
in the literature. In this paper, we present the multiple choice index selection problem, show tha t it
is NP-hard, and present an algori thm which gives an approximately optimal solution within a user
specified error bound in a logarithmic t ime order. ~) 1999 Elsevier Science Ltd. All rights reserved.

K e y w o r d s - - D a t a b a s e systems, Knapsack problem, Discrete optimization.

U

R~
F

f/

A

a (i ~)

UP

S

N O M E N C L A T U R E

the set of relations in the database ai

a relation name fr(o~)

the set of all files for U

a file in F
r(o~)

a function giving us the file associ-
ated with a relation P~

the set of all a t t r ibutes in U a(o/)
an a t t r ibu te

a function giving us the set of
a t t r ibutes of a relation P~ X

the set of frequently used updates z/

an update operation b/

the set of frequently used selections sti

a selection operation

a function giving us the expected
frequency of occurrence of a selection
or an update

a function giving us the relation
associated with a selection or an
update

a function giving us the set of at-
t r ibutes associated with a selection or
an update

the set of all candidate indexes

an index

the benefit of an index z/

the storage space requirements of an
index z~

I would like to t hank M. Ksrayel for beneficial discussions on combinatorial optimizations.

0898-1221/99/$ - see front mat te r ~) 1999 Elsevier Science Ltd. All rights reserved. Typeset by .AA4.q-TEX

PII: S0898-1221 (98)00256-9

112 T.I. GONDEM

at(x~)

idx(~j)

AS(x~)

a function giving us the set of at- AU(z~)
t r ibutes associated with z~ sbk,i

the equivalence class of candidate ubk j
indexes associated with an a t t r ibute aj M

the set of selections associated with z~

the set of updates associated with z~

the benefit contr ibuted by a~ to zi

the benefit contributed by u;~ to zi

the maximum storage space reserved
for the indexes for U

I . I N T R O D U C T I O N

The efficiency of a relational database depends on the physical level of the database. Creating
indexes for the attributes of the relations may significantly contribute to the efficiency of the
physical level of a relational database. Although an index on an attribute A of a relation R
expedites the processing of selection operations on attribute A, it slows down the processing
of modification operations associated with attribute A and insertion and deletion operations on
relation R. Thus, it must be determined whether or not the advantages of an index overweigh its
disadvantages. Also, even if the advantages overweigh the disadvantages for all the attributes, it
may not be possible to create an index for every attribute of a relation because of the maximum
storage space constraint of the system. Thus, there is a need for a global optimization in selecting
the set of indexes for a relational database that will make the selection and update operations
on the database as efficient as possible while satisfying the maximum storage space constraint.
The problem of selecting an optimal set of indexes has been shown to be NP-hard and studied by
many researchers [1-5]. However, there is an important dimension to this problem which occurs
in real life database design but has been overlooked in the studies that appear in the literature.

What has been overlooked is the possibility of having more than one index with different
storage space requirements as candidates for an attribute of a relation. For example, we may
have the following alternatives for an attribute:

(i) a B-tree [6],
(ii) an ordinary index [6],

(iii) a set of partial indexes [7-9],
(iv) both a set of partial indexes and a regular index.

Other possible alternative index types may also be considered. Since each alternative may have
a different benefit and storage space requirement, it may not be possible to choose one of them
locally as the "best" and use an index selection algorithm available in the literature. There is a
need for a global optimization in which more than one alternative are considered for an attribute.
We call this the multiple choice index selection problem.

In this paper, we show that the multiple choice index selection problem is NP-hard and present
an algorithm which gives an approximate solution within a user specified error tolerance in a loga-
rithmic time order. The methodology we present in this paper chooses the set of indexes Iv (from
a given set of candidates) that minimizes (within a given error tolerance) the cost of processing
the given set of selection and update operations without violating the specified maximum storage
space constraint. In Iv, there may be at most one index for an attribute. In the methodology
presented, we assume that the alternatives fur each attribute and the frequently used selections
and updates (i.e., insertion, deletion, and modification operations) are given. For the problem of
choosing alternative indexes for the attributes of a given database from a set of usage patterns
of the database, one may refer to [10].

In the next section, we present the basic concepts. In Section 3, we give the cost functions. In
Section 4, the multiple choice index selection problem is formally presented and an approximate
solution to it is given. The last section contains the conclusions.

2. P R E L I M I N A R Y C O N C E P T S

Let us assume we have a database with a set of relations U = {R1, R2, . . . , Rr} and a set of
storage structures F = { f l , f2 , . . . ,f~} where the relations in U are stored. Let g(P~) give us

Near Optimal Multiple Choice 113

the file where the tuples of P~ are stored. Let A = (al,a2,. . . ,at) be the set of all attributes
associated with the relations in U. Let c~(P~) = (a i l , a i~, . . . , aik), where k ~_ 1 and each aa E A,
give us the attributes associated with P~.

Let the set of frequently used updates (i.e., insertions, deletions, and modifications) be spec-
ified by the set UP = (ul, us , . . . , up). We also have a set of frequently used selections S =
(sl, s~ , . . . , sk). Selection operation is one of the most frequently used operations in query pro-
cessing. We assume that each selection operation is associated with just one attribute of a base
relation. A selection query referring to n attributes of a relation may be represented by n selection
operations, each of which refers to just one attribute. Each update operation is associated with a
number of attributes, whereas each selection operation is associated with just one attribute. Each
insertion or deletion operation on relation P~ is associated with all the attributes of relation P~
since the indexes on all the attributes of P~ have to be updated when an insertion or deletion is
applied t o / ~ . A modification operation is associated with only the attributes whose values it
modifies.

Let oi represent an si or ui. Associated with each oi, we have the following properties.

(i) fr(oi) gives us the expected frequency of occurrence of oi.
(ii) r(oi) gives us the relation associated with a selection or an update.

(iii) a(oi) gives us the set of attributes associated with a selection or an update. In case oi
represents a selection, a(oi) contains just one attribute.

We assume that the set of frequently incurred updates UP and selections S are provided by the
database administrator.

Let X = {xl ,x2, . . . ,mxt) be the set of all indexes. Let at(xi) give us the attribute associated
with index zi. For each attribute aj of each relation R~, let idx(aj) = { z ~ , x ~ , . . . ,zj~), where
each xj~ ~ X, give us the set of candidate indexes for attribute aj. Let us call idx(a~) the
equivalence class associated with aj. The set of all equivalence classes partitions the set of all
indexes X for the attributes in A. Each candidate index ~ may be an index such as a B-tree,
an ordinary index, a set of partial indexes, or any combination of these. For example, ~ may
be a set of partial indexes and an ordinary index on an attribute. The set of candidate access
structures idx(a~) (i.e., the equivalence class) for each a~ has to be provided by the database
administrator. In obtaining different sorts of candidate indexes of any complexity, one may make
use of the work done by Giindem [10]. Each index structure xi has a benefit b~ and a secondary
storage space requirement sty. The benefit of an index is related to the cost of processing all the
associated selections and updates using the index and is going to be defined in the next section.

3. C O M P U T A T I O N O F B E N E F I T S A N D C O S T S

METHOD 1. The benefit bi associated with an index structure x~ is computed as follows.

(i.a) For x~, find the set of associated selections. AS(xi) = ~s~ I at(xi) E a(sk)). For all the
indexes in equivalence class idx((at(xi)), we have the same AS. That is to say, AS(xi) =
AS(xj), if at(xi) -- at(xj), where i ~ j.

(i.b) For x~, find the set of associated updates. AU(xi) -- (u~ I at(xi) E a(u~)). For all the
indexes in equivalence class idx(at(x~)), we have the same AU.

(ii.a) For each sk E AS(xi), compute benefit sbk,~ contributed by sk to xi. For sk, the benefit
gives us the gain in the cost of processing sk due to the presence of index x~:

sbk,~ = fr(s~) • (sfc~ - sick,~),

where fr(sk) is the frequency of occurrence of sk, sic&,i is the cost of processing sk using
using the index xi, and sfck is the cost of processing s~ in the absence of index x~ (i.e.,
just using the file g(r(si)) where the tuples of the relation r(s~) are stored).

(ii.b) For each uk E AU(xi), compute benefit ubk,i contributed by uk to xi. For uk, the benefit
gives us the gain in the cost of processing uk due to the presence of index x~. The benefit

114 T . I . GONDEM

ubkj is usually negative and represents the burden in processing uk due to the presence
of the index zi. This is due to the fact that in updating the relation, the index z~ has to
be updated too:

ub~,i = fr(ue) * (ufck - uick,~),

where fr(uk) is the frequency of occurrence of uk, uickj is the cost of processing uk using
the index x~, and ufck is the cost of processing uk without using the index x~ (i.e., just
using the file g(r(uk)) where the tuples of the relation r(uk) are stored).

(iii) Compute bi using formula (1) given in the following (in Definition 1). |

For a selection sk, usually sfck > sickj and for an update u~, usually ufck < uick#. In
computing ufck (sfck) or uickj (sick,i), the number of pages accessed in processing uk (s~) are
computed. In a database management system, there is an algorithm alg~ (alg,) that is used to
process an update (selection) operation in the presence of an index. The number of pages accessed
during the execution of algorithm algu (algm) consitutes uick# (sick#). There is another algorithm
al L (alga) that is used to process an update (selection) operation in the absence of an index. The
number of pages accessed during the execution of algorithm alg~u (al~) constitutes ufck (sfck).
The methodology that we present is independent of any specific database management system or
specific algorithms algu, alg,, altO, u, and al~. Thus, we do not and cannot give detailed formulas
for the computation of the costs uickj, sic~,~, ufck, and sfck. In computing these costs, one can
make use of the profusion of work done in the literature such as [11,12].

DEFINITION 1. The total benefit bi of an index xi is given by

b,_- (z
\kEufd I \kEsfd I

where cb~ is the cost of building the index x~, uf~ = {k [at(x~) E a(uk)} gives us the identifiers
of update operations associated with x~, and sfi = {k I at(zi) E a(sk)} gives as the identh~ers of
selection operations associated with z~. |

DEFINITION 2. A d/sjoint set of indexes I= for the relations in U is ~ set o£ indexes such that for
any pair of indexes z~ and x~ in I~, where i ~ j , at (~) ~ at(z~) and I~ C_ X. |

LEMMA 1. /n a disjoint set of indexes I~ for the relations in U, there can be at most one index
from each equivalence class.

PROOF. Associated with each equivalence class idx(a~), there is an attribute a~. For the equiva-
lence idx(a~), ifx~ 6 idx(a~) and ~ 6 idx(a~), then at(z~) = at(z#). Thus, both ~ and z~ cannot
be in I= from Definition 2. |

ELIMINATION 1. Eliminate all zj in a disjoint set of indexes I~ if b~ _~ 0.

THEOREM 1. Given a disjoint set of indexes I= (to which Eliml.ation 1 is applied) for a relational
database of relations U, the total cost of processing all the updates in UP and all the selections
in S in the presence of the indexes in f= plus the total cost of building all the indexes in fz is
given by T, defined as £ollow~. Let

FC = UFC + SFC,

where

and

UFC = ~ fr(u0 * ufc~
~,e{~, I (~)(~euP))

SFC = fr(s0 * sfc,. (2)

Near Optimed Multiple Choice 115

FC gives us the total cost of processing all the updates and selections in the absence of any index.
Let

B = E bi. (3)
i~LL----{i [(~zi)(x~l=)}

B gives us the total behests of all the ~ndexes in Ix.

T = FC - B. (4)

PROOF. The proof is constructive. We are going to show that the total cost of processing (i) all
the selections in S and that of (ii) all the updates in UP in the presence of the indexes in Ix plus
the total cost of (iii) building all the indexes in Ix are included in T and nothing else is.

(i) Selections. We are going to show that the total cost of processing all the selections in S are

included in T.
Let ATL = {atr [atr E A A (qxi)(z~ E Ix A at(x~) ---- atr)}. ATL gives the set of attributes on

which there are indexes from the set -?x.

CASE 1. For any selection sk, if a(sk) N ATL = 0, then the cost of processing s~ is fr(sk) * sfck
and is included in SFC which can be seen from the definition of SFC, formula (2).

CASE 2. For any selection whose associated attribute a(sk) is the same as that of an index in Ix
(i.e., a(sk) N ATL ~ 0), consider the following. We know that for a selection sk, a(sk) has one
attribute. Let a(s~) = {ah}. Since a(sk) N ATL ~ 0, there must be an index, say xl E Ix, such
that at(xt) -- ah. The cost of processing sk is fr(sk) * sic~j = (fr(sk) * sfck) - sb~j. The cost
fr(sk) * sfck is included in FC since sk is in $. The cost sbkj is included in b~ due to formula (1).
B includes bl because z~ ~ Ix. In formula (4), we have -B.

(ii) Updates. We are going to show that the total cost of processing all the updates in UP in the
presence of the indexes in Ix are included in T.

Let uc~ designate the total cost of processing an update uk. uck -- uclk - UC2k, where

uclk = fr(uk) * ufck and

uc2k -- E ubk,j,
~EL

where n = {j [(3zj)(zj E Ix) A at(xj) E a(uk)}.
The cost uclk represents the cost of processing uk using the file g(r(uh)) where the relation

associated with u~ is stored. It is included in UFC in T. The cost uc2k represents the effect of
the indexes in Iz whose attributes are included in the set of attributes associated with u~. This
effect is usually negative. Thus, the presence of indexes usually adds to the cost of processing
updates. Each ubkj in uc2~ is included in bj of formula (1) since at(xj) is in a(uh). And each bj
such that j is in L is included in B because L is a subset of LL in formula (3). Thus, uc2~ is
included in T. We conclude that the cost of processing uk (i.e., uc~) is included in T.

(iii) There is a b~ associated with each x~ in Iffi. A bi includes the cost of building the access
structure x~ as can be seen from formula (1). The bi associated with each x~ in Ix is included
in B. Thus, the cost of building all the indexes are included in T.

Only the costs specified above in (i), (ii), and (iii) are included in T and nothing else. To see
this, let us examine the costs in UFC, SFC, and B which comprise T.

Ca) UFC: Let us assume that uh is an update not in UP whose ufch is included in UFC. Then
by the definition of UFC, h has to be in {i [(qu~)(ui E UP)} which means that uh is
in UP. This is a contradiction. Thus, UFC does not include ufch, if uh is not in UP.

(b) SFC: Let us assume that sh is an update not in S but its cost of processing, sfch, is
included in SF. Then by the definition of SFC, h has to be in {i I (qsi)(si E 8)} which

116 T.I. Gi)NDBbi

means that sh is in S. This is a contradiction. Thus, SFC does not include sfch, if Sh is
not in S.

(c) B: By the definition of the formula for B (formula (3)), B includes b~ only if xi is in Ix.
Consider the following for each bi.

(i) Let us assume b~ includes sbk,i for a selection sk whose attr ibute a(sk) is different
from the associated attr ibute of x~. But we can see from formula (1) that if bi includes
sb~,~, then at(xi) E a(s~), which is a contradiction. Thus, we can conclude that b~
does not include sb~,~ for a selection sk, if at(xi) ~ a(sk).

(ii) Let us assume that b~ includes ubk,~ for an update uk whose associated attribute set
a(uk) does not include the associated attribute of xi. But since b~ includes ubk,~, then
from formula (1) we see that at(xi) E a(uk), which is a contradiction. Thus, we can
conclude that bi does not include ubk,~ for an update uk, if at(xi) ~ a(uk).

This completes the proof of Theorem 1.

4. O P T I M I Z A T I O N P R O B L E M FOR O B T A I N I N G
T H E O P T I M A L D I S J O I N T SET OF I N D E X E S

In index selection problems, there is a storage space constraint. The total storage space re-
quirements of all the indexes for a database cannot be greater than a constant, M. The multiple
choice index selection problem can be stated as follows. Given a set of equivalence classes of
indexes associated with the attributes of the relations in U, find a disjoint set of indexes (over
all possible disjoint sets of indexes) that minimizes the total cost of processing all the updates
and selections in UP and S, respectively, and satisfies the storage space constraint. Formally, the
problem is given in Problem 1.

PROBLEM 1. Given a set of equivalence classes of indexes (at most one equivalence class, idx(a~),
for each attr ibute a~) and the amount of maximum storage space M reserved for the indexes in
a database, find a disjoint set of indexes Ix over all possible disjoint sets of indexes, such that

(i) T = FC - B (as given by formula (4)) has its minimum value for the set of all possible
disjoint sets of indexes (i.e., the total cost of processing all the selections and updates in
S and U, respectively, is minimized from Theorem 1), and

(ii) ~-~{~lx~l.} st~ _< M,
(i.e., the total storage space requirements of the indexes in Ix is less than M). 1

LEMMA 2. In Problem 1, T has its m/n/mum va/ue when B in formula (4) has its max/mum
value.

PROOF. It is straightforward as can be seen from formula (4). In formula (2), FC, the cost of
processing selections and updates due to the file structures, is fixed. (We do not change the
file structures associated with the relations in U during the methodology.) In formula (4), B is
present due to indexes. Depending on the indexes in a disjoint set of indexes, B changes, as can
be seen from formula (3). Thus, when we find the disjoint set of indexes that makes B have its
maximum value, then T has the minimum possible value for any disjoint set of indexes for the
problem. 1

PROBLEM 2. It is the same as Problem 1 with the condition (i) replaced by the following:

(i) ~-~e(~lx, e1~} b~ has its maximum value for the set of all possible disjoint sets of indexes. 1

THEOREM 3. A solution to Problem 1 is also a solution to Problem 2 and vice versa.

PROOF. It follows from Lemma 2. 1

DEFINITION 3. The multiple choice 0-1 knapsack optimization problem is defined as follows.
Given a set of n objects X X = {ZXl,ZZ2,... , xz , } , where each object xx~ has a benefit b~ and a

Near Optimal Multiple Choice 117

weight wi; a max imum weight capacity M M and m equivalence classes where each equ/va/ence
class e~ has a set of objects,

max/mize Z bi * ai,
iE{~ I ~x~EXX}

subject to the constraints

(i) * as < M,
j~{j I xxj~XX}

(ii) ~ a s _< 1, i = 1 ,2 , . . . ,m,
S~{Slxx~e~}

a s • {0,1}, j = 1,2,...,n.

(5)

It is known that the multiple choice 0-1 knapsack optimization problem is NP-hard, since its

subset, the 0-1 knapsack optimization problem, is NP-hard [13]. When there is at most one

object in each equivalence class, the multiple choice 0-1 knapsack problem becomes the same as
the 0-1 knapsack optimization problem.

THEOREM 4. Problem 2 is NP-hard.

PROOF. In the proof, we will obtain in polynomial time an instance, IP2, of Problem 2 from an
instance, IKS, of the multiple choice 0-1 knapsack problem such that from the solution of IP2,
we can determine in polynomial time the solution to IKS.

Let IKS be the instance specified in Definition 3. We obtain IP2 by the following conversions: an
object xx~ is converted into in index xi; benefit bi of an object xxi is converted into the benefit b~
of an index x~; weight w~ of an object xz~ is converted into the storage space requirement sti of
an index xi; maximum weight capacity MM is converted into maximum storage space reserved
for indexes M; and an equivalence class ei of objects is converted into an equivalence class idx(ai)
of indexes associated with attribute ai such that if xxl is in ei, then xl is in idx(a~).

Let I~ be the disjoint set of indexes that is a solution of IP2. The solution for IKS is obtained
as follows. Go over the set of objects in XX. For each object zxi in XX, if the corresponding xi
is in Ix, then a~ -- 1, otherwise a~ = 0. Now we show that this is a solution to IKS.

The constraint (i) in Definition 3 is satisfied because the condition (ii) in Problem 2 is satisfied.
The constraint (ii) in Definition 3 is satisfied as one can see from Lemma 1 which states that

in a disjoint set of indexes there is at most one index from each equivalence class. We see that
formula (5) is maximized because the condition (i) in Problem 2 is maximized. |

Since Problem 2 is NP-hard, we will give an approximate solution within a user specified error
bound. The approximate solution that we will present is based on an approximate solution to
the multiple choice 0-I knapsack optimization problem.

METHOD 2.

1. Convert an instance, IP2, of Problem 2 into an instance, IKS, of the multiple choice 0-1
knapsack optimization problem by the following conversions: an index z~ is converted

into an object zz~; the benefit bi of an index xi is converted into the benefit b~ of an
object zz~; the storage space requirement st~ of an index xi is converted into the weight wi

of object xz~; the maximum storage space reserved for indexes M is converted into the
maximum weight capacity MM, and an equivalence class idx(ai) of indexes is converted
into an equivalence class ei of objects such that if x~ is in idx(ai), then zxl is in ei.

2. Solve IKS using the fully polynomial time approximation algorithm given by Lawler in [14].
3. Using the solution to IKS, obtain a solution to IP2. The solution to IP2 is the disjoint set

of indexes Iz which is obtained as follows. If a# = 1 in IKS, then z# is in Ix. Otherwise,

x# is not in Ix. |

118 T . I . G/JNDEM

For a total of n objects (or indexes) and m equivalence classes, Lawler's algorithm [14] gives
an approximate solution to the multiple choice 0-1 knapsack optimization problem in time order
O(n log(n) + m * n/c) and space order O(n + m2/g) for a given accuracy e > 0. That is, if P*
is the optimal solution and P is the solution we obtain for a given ¢ using the approximation
algorithm given by Lawler, then P* - P < eP. This approximate solution is desirable because
of its reasonable time and space requirements. Additionally, since the frequencies of updates and
insertions are only expected statistical values, an accuracy of e is permissible in index selection
problems.

THEOREM 5. Method 2 finds an approximate solution to Problem 2.

PROOF. Let AKS be the approximate solution to IKS obtained at Step 2 of Method 2. AKS
must satisfy the constraints in Definition 3. The fact that AKS satisfies constraints (ii) and (iii)
implies that I= obtained at Step 3 of Method 2 is indeed a disjoint set of indexes as elaborated
in the following. Due to constraints (ii) and (iii), any two objects in AKS, say x z j and zxk such
that aj -- ak -- 1, must be from two different equivalence classes, say ez and %, respectively.
Thus, the indexes Xz and x~ (corresponding to ez and e~, respectively) are associated with two
different equivalent classes of indexes idx(az) and idx(a~), respectively, as can be seen from the
conversions at Step 1 of Method 2. Since Xz and x~ are from two different equivalence classes,
a t(zj) ~ at(xk), by the definition of equivalence classes of indexes. By Definition 2, Iz is a
disjoint set of indexes.

It is simple to show that since AKS satisfies the constraints (i) and (iii), the condition (ii) in
Problem 2 is satisfied by Ix for IP2.

It is also simple to show that since AKS maximizes the formula (5) for an accuracy of ~, the
condition (i) in Problem 2 is also maximized with the same degree of accuracy. In fact, for AKS
and Ix obtained in Method 2, we have the following equivalence:

2_, bi * ai = 2_., bk. |

In some cases, it is beneficial to apply the following elimination to each equivalence class
before Method 2. The application of the following elimination may help decrease the number of
candidate index structures depending on their benefits and storage space requirements.

ELIMINATION 2. For an equivalence class idx(ai), if we have two indexes zk and xz in idx(ai)
such that stk _> stl and b~ _> bk, then eliminate xk from the equivalence class idx(ai).

THEOREM 6. Indexes eliminated by the application of Elimination 2 to each equivalence class
do not prevent an optimal solution from being computed for an instance of Problem 2.

PROOF. Let IPL be an instance of Problem 2 and Ix be an optimal solution to it. Let xk be an
index eliminated by Elimination 2. Let us consider the following cases.

(a) If an index xk is eliminated because stk _> stt and bl > bk, then zk cannot be in an optimal
solution to Problem 2. Let us assume that zk is in optimal solution I v. Then replace xk
with z~, and the formula in condition (i) of Problem 2 has a higher value than that for I v.

This means that I v is not optimal, which is a contradiction. Thus, xk cannot be in an
optimal solution.

(b) If an index zk is eliminated because st~ = stt and bl = bk, then ~k may be in an optimal
solution to Problem 2. But now instead of xk, we have xt in an optimal solution.

(c) If an index zk is eliminated because st~ > st/ and bl = bk, then z~ may or may not
be in an optimal solution to Problem 2. Now we have zl in an optimal solution instead
of xk. Conditions (i) and (ii) in Problem 2 are still satisfied and an optimal solution is
not prevented. |

Near Optimal Multiple Choice 119

We can use the algorithm whose summary is given in the following to apply Elimination 2 to

each equivalence class in (n log n) + n time order for n indexes.

ALGORITHM 1.

1. Sort all of the indexes according to increasing storage space, sti. Those that have the same
storage space are sorted according to increasing benefit, bi.

2. Store the maximum benefit associated with each equivalence class in a separate data

structure. Initially equate them all to 0.
3. Starting with the first index in the sorted list, repeat the following until after the last

element in the list is read.
- Read the benefit, b~, of the next index zi. Let the maximum benefit so far for the equiva-

lence class idx(at(zi)) be max(idx(at(zi))). Eliminate z~, if b~ _< max(idx(at(x~))). (This
elimination is according to Elimination 2.) If not, max(idx(at(xi))) = bi. |

The worst case time complexity of all the methods presented so far may be summarized as
follows. Let us assume we have a total n indexes, m equivalence classes, and an error tolerance
of ~ is specified. IS[and [U I be the number of selections and updates, respectively.

- Method 1 for benefit computations takes O(n • IS I • IUI).
- Elimination 1 takes O(n).
- Method 2 for optimization takes O(n log(n) + m • n/e) .
- Algorithm 1 for applying Elimination 2 takes O(n log n).

The worst case time complexity of the whole methodology is O((n* ISI. [UI) + (n log(n) + m . n / e)) .

5. C O N C L U S I O N S

Index selection is an important problem as far as the efficiency of relational databases are
considered. In index selection problems in the literature, only one index is considered as candidate
for each attribute. However, it is likely that more than one different indexes of various type,
storage space requirement, and benefit may be present as candidates for an attribute, and it may
not be possible to eliminate locally all but one. Thus, it may not be possible to use the index
selection algorithms presented in the literature.

In this paper, we consider the problem of index selection for relational databases in the presence
of multiple candidates with different benefits and storage space requirements. We show that the
problem is NP-hard. We present a methodology that finds a fully polynomial time approximation
to the problem. In the methodology that we present, we first compute the benefits associated with
candidates from the given set of commonly used selections and updates on the database. Then
we apply the optimization algorithm to find a subset of the candidate indexes that minimizes the
cost of processing the selections and the updates within a user given error tolerance subject to the
maximum storage space constraint and to the condition that at most one candidate is selected
for each attribute. Candidates are determined by the database administrator. A candidate may
be a combination of different types of indexes for an attribute (for example, a set of partial
indexes and a B-tree on the same attribute). We also present an algorithm to possibly eliminate
(without effecting the result of the global optimization) some of the candidates associated with
an attribute locally before the global optimization is applied.

Approximately optimal solutions obtained by our methodology are permissible in index selec-
tion problems since the given selections and updates on the database are only expected values.
However, the user is able to change the error tolerance to suit his/her needs. The implementation
of the benefit computations and cost functions for a specific system are given by Sahin [15]. The
major contributions of the paper can be summarized as follows. The methodology presented
gives a solution to the index selection problem when more than one candidate is present for each
attribute. The solution given to the global optimization is fully polynomial time approximation
and not a heuristic.

120 T . I . GONDEM

R E F E R E N C E S

1. M.Y.L. Ip, L.V. Saxton and V.V. Raghavsn, On the selection of an optimal set of indexes, IEEE Transactions
on Software Engineering SE-9 (9), 135-143 (March 1983).

2. B. Falkowski, Comments on an optimal set of indexes for a relational database, IEEE Transactions on
Software Engineering SE-18 (2), 168-171 (February 1992).

3. R. Bonanna, D. Malo and P. Tiberio, An approximation algorithm for secondary index selection in relational
database physical design, The Computer Journal 28 (4), 398-404 (1985).

4. E. Barcucci, R. Pinzani and 1t. Sprugnoli, Optimal selection of secondary indexes, IEEE Transactions on
Software Engineerin9 SF_,-16 (1), 32-38 (January 1990).

5. M. Frank, E.R. Omiecinski and S.B. Nsvathe, Adaptive and automated index selection in RDBM's, Proceed-
ings of the 3 rd International Conference on Extending Database Technology, March 1992, Vienna, Austria,
pp. 277-292, Springer-Verlag.

6. J.D. Ullman, Principles of Database and Knowledge-Base Systems, Vol. 1, Computer Science Press, Mary-
land, (1988).

7. M. Stonebraker, The case for partial indexes, ACM Sigmod Record 18 (4), 4-12 (December 1989).
8. P. Seshadri and A. Swami, Generalized partial indexes, Proceedings of the Eleventh International Conference

on Data Engineering, March 6--10, 1995, Taiwan, pp. 420-427.
9. C. Sartori and M.R. Scalas, Partial indexing for nonuniform data distributions in relational DBMS's, IEEE

Transactions on Knowledge and Data Engineering 6 (3), 420--429 (June 1994).
10. T.I. Giindem, Fundamentals of the metamorphosis of access specifications into simple and complex ac-

cees structures and a model of complex access structures, International Journal of Systems Research and
Information Science 7, 169-187 (1997).

11. K.Y. Whang, G. Wiederhold and D. Ssgalowitz, Estimating block accesses database organizations: A closed
non-iterative formula, Communications of the ACM 26 (11) (1983).

12. T.Y. Cheung, A statistical model for estimating the number of records in a relational database, Information
Processing Letters 15 (3) (1982).

13. E. Horowitz and S. Sshni, Fundamentals of Computer Algorithms, Computer Science Press, Maryland,
(1978).

14. E.L. Lawler, Fast approximation algorithms for knapsack problems, Mathematics of Operations Research 4
(4), 339-356 (November 1979).

15. S. Sahin, Database optimization for internal storage structures, Project No. R9 92K, Computer Engineering
Department, Bo~aziqi University, Istanbul, Turkey, (1992).

