Problems on \((f^2)^{(k)}\)

Pai Yang

Department of Computational Science, Chengdu University of Information Technology, Chengdu 610225, China

Received 21 December 2004
Available online 16 February 2007
Submitted by A.V. Isaev

Abstract

Let \(f\) be a transcendental meromorphic function in complex plane and have only zeros of multiplicity at least \(\left\lfloor \frac{k}{2} \right\rfloor + 1\), and \(k (\geq 1)\) be an integer. Then \((f^2)^{(k)}\) assumes every finite non-zero value infinitely often.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Meromorphic function; Value distribution; Normal families

1. Introduction and main results

In 1992, Yuefei Wang [3] proved the following result.

Theorem A. Let \(f\) be a transcendental meromorphic function in complex plane and let \(n \geq 3\), \(k \geq 0\) be two integers. Then \((f^n)^{(k)}\) assumes every finite non-zero value infinitely often.

In 1995, Huaihui Chen and Mingliang Fang [1] proved one of Hayman’s conjecture.

Theorem B. Let \(f\) be a transcendental meromorphic function in complex plane. Then \(f'f\) assumes every finite non-zero value infinitely often.

It is obvious that we can replace \(f'f\) by \((f^2)’\). In this note, we consider the value distribution of \((f^n)^{(k)}\) with \(n = 2\), \(k \geq 1\), and generalize Theorem B. Our main results are stated as follows.
Theorem 1. Let \(f \) be a transcendental meromorphic function in complex plane and have only zeros of multiplicity at least \(\left[\frac{k}{2} \right] + 1 \), \(k \geq 1 \) be an integer. Then \((f^{\frac{k}{2}})^{(k)} \) assumes every finite non-zero value infinitely often.

Theorem 2. Let \(n \geq 2 \), \(k \geq 0 \) be two integers, and \(k + n \neq 2 \). Let \(F \) be a family of functions meromorphic in a domain \(D \subset \mathbb{C} \) and \(b \) be a finite non-zero value in \(\mathbb{C} \), if each function \(f \in F \) satisfies \((f^{n})^{(k)} \neq b \) and has only zeros of multiplicity \(\geq 1 + \left[\frac{k}{n} \right] \), then \(F \) is normal.

Remark 1. The condition that all zeros of \(f \) have multiplicity \(\geq 1 + \left[\frac{k}{n} \right] \) cannot be dropped in Theorem 2, as showed by the following.

Example 1. \(D = \{ z : |z| < 1 \} \), \(F = \{ f_{j}(z) : f_{j} = \left(\frac{j + 1}{(n \cdot k)!} \right)^{\frac{1}{n}} \cdot z^{k}, \ z \in D, \ n \in \mathbb{N}, \ k \in \mathbb{N}, \ j = 1, 2, \ldots \} \).

clearly, all zeros of \(f_{j}(z) \) have multiplicity \(k \), \((f_{j}^{n}(z))^{n} \neq 1 \), and \(k < 1 + \left[\frac{n}{k} \right] = l + 1 \), but \(F \) fails to be normal in \(z = 0 \).

Remark 2. Let \(n = 2, k = 0 \) in Theorem 2, however, \(F \) may fail to be normal in \(D \).

Example 2. \(D = \{ z : |z| < 1 \} \), \(F = \{ f_{n} : f_{n}(z) = \frac{2}{(e^{z})^{n} - 1} + 1, \ z \in D, \ n = 1, 2, 3, \ldots \} \).

Obviously, for each \(n \in \mathbb{N} \), \(f_{n}^{2} \neq 1 \), but \(F \) fails to be normal in \(D \).

Remark 3. Let \(n = 1, k \geq 0 \) in Theorem 2. Obviously, \(F \) may be not normal and we do not give examples.

2. Lemmas

Lemma 1. (See [5].) Let \(k \) be a positive integer and \(f(z) \) be a transcendental meromorphic function in the complex plane. Then

\[
T(r, f) < \left(2 + \frac{1}{k} \right) N \left(r, \frac{1}{f} \right) + \left(2 + \frac{2}{k} \right) N \left(r, \frac{1}{f^{(k)} - 1} \right) + S(r, f).
\]

Lemma 2. (See [4].) Let \(f \) be a meromorphic function of finite order. If \(f \) has infinitely many multiple zeros, then \(f' \) assumes every finite non-zero value infinitely often.

Lemma 3. (See [6].) Let \(Q(z) = a_{n}z_{n} + a_{n-1}z_{n-1} + \cdots + a_{0} + \frac{q(z)}{p(z)} \), where \(a_{0}, a_{1}, \ldots, a_{n} \) are constants with \(a_{n} \neq 0 \), \(q(z) \) and \(p(z) \) be two co-prime polynomials with \(\deg(q(z)) < \deg(p(z)) \), \(m \) be a positive integer. If \(Q^{(m)}(z) \neq 1 \) for each \(z \in C \), then

\[
Q(z) = \frac{z^{m}}{m!} + \cdots + a_{0} + \frac{1}{(az + b)^{n}}.
\]
If all zeros of $Q(z)$ have multiplicity at least $m + 1$, then

$$Q(z) = \frac{(cz + d)^{m+1}}{az + b}$$

where $a (\neq 0)$, $c (\neq 0)$, b, d are constants.

Lemma 4. (See [2].) Let $k \in \mathbb{N}$ and F be a family of meromorphic functions in a domain $D \subset \mathbb{C}$ with the property that each function in F has only zeros of order at least k. If F is not normal at z_0, $z_0 \in D$, then for any real number $0 \leq \alpha < k$, there exist a sequence $\{f_j\} \subset F$, a sequence $z_j \to 0$ ($z_j \in D$) and a positive sequence $\rho_j \to 0$ such that $\rho_j^{-\alpha} f_j(z_j + \rho_j \xi)$ uniformly spherically convergent to a nonconstant meromorphic function $g(\xi)$ on compact subsets of \mathbb{C}. Moreover, the order of $g(\xi)$ is at most 2 and the zeros of $g(\xi)$ are of multiplicity $\geq k$.

Lemma 5. Let f be a transcendental meromorphic functions of finite order, and the zeros of f be of multiplicity $\geq 1 + \lfloor \frac{k}{2} \rfloor$, $k \in \mathbb{N}$. Then $(f^2)^{(k)}$ assumes every finite non-zero value infinitely often.

Proof. If f has finitely many zeros, then f^2 has finitely many zeros, and the conclusion follows from Lemma 1. If f has infinitely many zeros and z_0 is a zero of f, z_0 is a zero of $(f^2)^{(k-1)}$ with multiplicity $\geq 2 \times (1 + \lfloor \frac{k}{2} \rfloor) - (k - 1) \geq 2$ and $(f^2)^{(k-1)}$ has infinitely many multiple zeros. Applying Lemma 2 to $(f^2)^{(k-1)}$, the conclusion follows.

3. Proof of Theorem 1

If f is a transcendental meromorphic function of finite order, then the conclusion follows from Lemma 5. Hence we assume f is a transcendental meromorphic function of infinite order.

Step 1. Suppose that the equation $(f^2)^{(k)} = a$ has a finite set of solutions for some $a \neq 0$, we may assume without loss of generality that $a = 1$. Let

$$D = \left\{ z : \frac{1}{3} - \varepsilon < |z| < 3 + \varepsilon \right\}, \quad 0 < \varepsilon < \frac{1}{10}, \quad D_0 = \left\{ z : \frac{1}{3} < |z| < 3 \right\},$$

$$f^\# = \frac{|f'|}{1 + |f|^2}.$$

Define a family F consisting of all functions

$$f_n(z) = n^{-\frac{k}{2}} f(nz), \quad z \in D, \; n = 1, 2, \ldots.$$

This family cannot be normal in D. For otherwise we would have some $M > 0$,

$$M > f_n^\#(z) = \frac{n^{-\frac{k}{2} + 1} |f'(nz)|}{1 + n^{-k} |f(nz)|^2} \geq \frac{n^{-\frac{k}{2} + 1} |f'(nz)|}{1 + |f(nz)|^2} = n^{-\frac{k}{2} + 1} f^\#(nz), \quad z \in D_0. \quad (1)$$

From (1) we can obtain $f^\#(nz) \leq n^{\frac{k}{2} - 1} M$. Clearly, $\forall z \in D_0, \; \frac{1}{3} < |z|$, hence $n < 3|nz|$. Thus for each n, we have $f^\#(nz) \leq (3|nz|)^{\frac{k}{2} - 1} M$, $(z \in D_0)$, that is, for each $z \in \{ z : |\frac{1}{3} < |z| < \infty \}$, we have $f^\#(z) \leq (3|z|)^{\frac{k}{2} - 1} M$.

Without effect on the result, we can assume that for each $z \in C$, $f^\#(z) \leq (3|z|)^{\frac{1}{2}-1}M$. Let

$$A(r) = \frac{1}{\pi} \int_0^r \int_0^{2\pi} (f^\#(e^{\rho i}))^2 \rho d\theta d\rho \leq \frac{1}{\pi} \times 2\pi \int_0^r ((3\rho)^{\frac{1}{2}-1}M)^2 \rho d\rho = \frac{3^{k-2} \times 2\pi^k M^2}{k}.$$

Hence $T_0(r) = \int_0^r A(t) dt \leq \int_0^r \frac{3^{k-2} \times 2\pi^{k-1}M^2}{k} dt = O(r^k)$. So the order of f is finite and this contradicts the assumption. Hence F is not normal in D.

Now, notice that

$$\left(f_n^2\right)^{(k)}(z) = (f^2)^{(k)}(nz). \quad (2)$$

Let $t = \frac{1}{z} - \xi$. Obviously, $\forall z \in D$, $|z| > t > 0$. Since the equation $(f^2)^k = 1$ has a finite set of solutions, let $\{z_1, z_2, \ldots, z_j\}$ be all zeros of $(f^2)^k - 1$, $(j \in N)$.

Let

$$M_0 = \max\{|z_1|, |z_2|, \ldots, |z_j|\}. \quad (3)$$

Let $n_0 = \left\lceil \frac{M_0}{16} + 1 \right\rceil$. We claim that $\forall n > n_0$, $\forall z \in D$, $(f_n^2)^{(k)}(z) \neq 1$. For otherwise there exists $n_1 > n_0$, and exists $z_0 \in D$ satisfying $(f_n^2)^{(k)}(z_0) = 1$, by (2), we have $(f^2)^{(k)}(n_1z_0) = 1$, that is, n_0z is also a zero of $(f^2)^{(k)}(z) - 1$. However, $|nz_0| > \left\lceil \frac{M_0}{16} + 1 \right\rceil \times t > M_0$, this contradicts (3).

Without loss of generality, we assume $(f_n^2)^{(k)}(z) \neq 1$ in D for each $n \in N$. Since $f_n(z) = n^{-\frac{k}{2}}f(nz)$, the zeros of f_n are of multiplicity $\geq \left\lceil \frac{k}{2} \right\rceil + 1$.

Step 2. Assume F is not normal at z_0. Applying Lemma 4 to $\alpha = -\frac{k}{2}$, there exist a sequence $\{f_j\} \subset F$, a sequence $z_j \to z_0$ and a positive sequence $\rho_j \to 0$ such that $g_j(\xi) = \rho_j^{\frac{k}{2}}f_j(z_j + \rho_j \xi)$ uniformly spherically convergent to a nonconstant meromorphic function $g(\xi)$ on compact subsets of C. Moreover, the order of $g(\xi)$ is at most 2 and the zeros of $g(\xi)$ are of multiplicity $\geq 1 + \left\lceil \frac{k}{2} \right\rceil$.

By the assumption $g_j^2(\xi)^{(k)} - 1 = (f^2)(z_j + \rho_j \xi)^{(k)} - 1 \neq 0$. Thus, by Hurwitz’s theorem, we have either $(g_2^2(\xi))^{(k)} - 1 \equiv 0$ or $(g_2^2(\xi))^{(k)} - 1 \neq 0$. If $(g_2^2(\xi))^{(k)} - 1 \equiv 0$, there exists a polynomial $p(z)$ (deg$(p(z)) \leq k$) satisfying $g_2^2(\xi) = p(z)$. However, the zeros of $g_2^2(\xi)$ are of multiplicity $\geq (1 + \left\lceil \frac{k}{2} \right\rceil) \times 2 \geq k + 1$. This is impossible.

If

$$\left(g_2^2(\xi)\right)^{(k)} - 1 \neq 0. \quad (4)$$

Lemma 5 implies that $g(\xi)$ is not transcendental. If $g(\xi)$ is a nonconstant polynomial, then by (4), there exists a polynomial $q(z)$ (deg$(q(z)) \leq k - 1$) satisfying $g_2^2(\xi) = q(z)$. This also contradicts that the zeros of $g_2^2(\xi)$ are of multiplicity $\geq k + 1$. The remaining case is that $g(\xi)$ is a nonconstant rational function. By (4), there exists a polynomial $h(\xi)$ such that

$$\left(g_2^2(\xi)\right)^{(k)} = \frac{h(\xi) + 1}{h(\xi)}. \quad (5)$$

Let p_0 and q_0 be the degree of the numerator and the denominator of $g(\xi)$, respectively. It is easy to verify that the difference between the degree of the numerator of $(g_2^2(\xi))^{(k)}$ and the degree of the denominator of $(g_2^2(\xi))^{(k)}$ is $2p_0 - 2q_0 - k$. It follows form (5) that $2p_0 - 2q_0 - k = 0$, that is, $k = 2(p_0 - q_0)$ $(k \geq 1)$, the zeros of $g_2^2(\xi)$ are of multiplicity $\geq 2 \times (1 + \left\lceil \frac{2(p_0 - q_0)}{2} \right\rceil) \times 2 = 2(p_0 - q_0) + 2 = k + 2$. It follows form Lemma 3 that $Q(z) = \frac{(cz + d)^{k+1}}{az + b}$ where $a \neq 0$, $c \neq 0$, b
and d are constants, this contradicts that $g^2(\zeta)$ is of multiplicity $\geq k + 2$. Hence the equation $(f^2)^{(k)} = 1$ has a infinite set of solutions.

This completes the proof of Theorem 1.

4. Proof of Theorem 2

By using Theorem A, Theorem 2 can be proved like the argument of Step 2 of Theorem 1 without much difficult. We here omit the detail.

References