Subnormality for arbitrary powers of 2-variable weighted shifts whose restrictions to a large invariant subspace are tensor products ${ }^{\star}$

Raúl E. Curto ${ }^{\text {a,* }}$, Sang Hoon Lee ${ }^{\text {b }}$, Jasang Yoon ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, The University of Iowa, Iowa City, IA 52242, United States
${ }^{\text {b }}$ Department of Mathematics, Chungnam National University, Daejeon, 305-764, Republic of Korea
${ }^{\text {c }}$ Department of Mathematics, The University of Texas-Pan American, Edinburg, TX 78539, United States

Received 28 February 2010; accepted 28 September 2011
Available online 19 October 2011
Communicated by Gilles Godefroy

Abstract

The Lifting Problem for Commuting Subnormals (LPCS) asks for necessary and sufficient conditions for a pair of subnormal operators on Hilbert space to admit commuting normal extensions. We study LPCS within the class of commuting 2 -variable weighted shifts $\mathbf{T} \equiv\left(T_{1}, T_{2}\right)$ with subnormal components T_{1} and T_{2}, acting on the Hilbert space $\ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$ with canonical orthonormal basis $\left\{e_{\left(k_{1}, k_{2}\right)}\right\}_{k_{1}, k_{2} \geqslant 0}$. The core of a commuting 2-variable weighted shift $\mathbf{T}, c(\mathbf{T})$, is the restriction of \mathbf{T} to the invariant subspace generated by all vectors $e_{\left(k_{1}, k_{2}\right)}$ with $k_{1}, k_{2} \geqslant 1$; we say that $c(\mathbf{T})$ is of tensor form if it is unitarily equivalent to a shift of the form $\left(I \otimes W_{\alpha}, W_{\beta} \otimes I\right)$, where W_{α} and W_{β} are subnormal unilateral weighted shifts. Given a 2-variable weighted shift \mathbf{T} whose core is of tensor form, we prove that LPCS is solvable for \mathbf{T} if and only if LPCS is solvable for any power $\mathbf{T}^{(m, n)}:=\left(T_{1}^{m}, T_{2}^{n}\right)(m, n \geqslant 1)$.

© 2011 Elsevier Inc. All rights reserved.
Keywords: Jointly hyponormal pairs; Subnormal pairs; 2-Variable weighted shifts; Tensor form; Core

[^0]
1. Introduction

The Lifting Problem for Commuting Subnormals (LPCS) asks for necessary and sufficient conditions for a pair of subnormal operators on Hilbert space to admit commuting normal extensions. In previous work $[6-9,14-16,27]$ we have studied LPCS from a number of different approaches. One such approach is to consider commuting pairs $\mathbf{T} \equiv\left(T_{1}, T_{2}\right)$ of subnormal operators and to ask to what extent the existence of liftings for the powers $\mathbf{T}^{(m, n)}:=\left(T_{1}^{m}, T_{2}^{n}\right)$ ($m, n \geqslant 1$) can guarantee a lifting for \mathbf{T}. For the class of 2 -variable weighted shifts \mathbf{T}, it is often the case that the powers of \mathbf{T} are less complex than the initial pair; thus it becomes especially significant to unravel how subnormality behaves under the action $(m, n) \mapsto \mathbf{T}^{(m, n)}$ ($h, \ell \geqslant 1$).

Within the class of 2 -variable weighted shifts, we consider the subclass $\mathcal{T C}$ consisting of pairs whose cores are of tensor form; that is

$$
\mathcal{T C}:=\left\{\mathbf{T} \in \mathfrak{H}_{0}: c(\mathbf{T}) \text { is of tensor form }\right\} .
$$

This subclass has proved to be particularly attractive, since it is possible to separate, within it, subnormality from k-hyponormality; thus, results about LPCS for pairs in $\mathcal{T C}$ are especially useful. The class $\mathcal{T C}$ is small enough to allow for a simple description of its pairs, yet large enough to be used as test ground for many significant hypotheses.

Before we proceed, we briefly pause to establish our terminology. For $\alpha \equiv\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ a bounded sequence of positive real numbers (called weights), let $W_{\alpha}: \ell^{2}\left(\mathbb{Z}_{+}\right) \rightarrow \ell^{2}\left(\mathbb{Z}_{+}\right)$be the associated unilateral weighted shift, defined by $W_{\alpha} e_{n}:=\alpha_{n} e_{n+1}$ (all $n \geqslant 0$), where $\left\{e_{n}\right\}_{n=0}^{\infty}$ is the canonical orthonormal basis in $\ell^{2}\left(\mathbb{Z}_{+}\right)$. Similarly, consider double-indexed positive bounded sequences $\alpha_{\mathbf{k}}, \beta_{\mathbf{k}} \in \ell^{\infty}\left(\mathbb{Z}_{+}^{2}\right), \mathbf{k} \equiv\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2}$, and let $\left\{e_{\mathbf{k}}\right\}_{\mathbf{k} \in \mathbb{Z}_{+}^{2}}$ be the canonical orthonormal basis in $\ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$. We define the 2-variable weighted shift $\mathbf{T} \equiv\left(T_{1}, T_{2}\right)$ acting on $\ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$ by

$$
T_{1} e_{\mathbf{k}}:=\alpha_{\mathbf{k}} e_{\mathbf{k}+\varepsilon_{1}} \quad \text { and } \quad T_{2} e_{\mathbf{k}}:=\beta_{\mathbf{k}} e_{\mathbf{k}+\varepsilon_{2}}
$$

where $\varepsilon_{1}:=(1,0)$ and $\varepsilon_{2}:=(0,1)$. The core of a commuting 2 -variable weighted shift \mathbf{T} (in symbols, $c(\mathbf{T})$) is the restriction of \mathbf{T} to the invariant subspace generated by all vectors $e_{\left(k_{1}, k_{2}\right)}$ with $k_{1}, k_{2} \geqslant 1$; we say that $c(\mathbf{T})$ is of tensor form if it is unitarily equivalent to a shift of the form $\left(I \otimes W_{\alpha}, W_{\beta} \otimes I\right)$, where W_{α} and W_{β} are subnormal unilateral weighted shifts. Fig. 1 shows both the weight and Berger measure diagrams of a typical pair in $\mathcal{T C}$. As shown in [8], each $\mathbf{T} \in \mathcal{T C}$ is completely determined by five parameters, i.e., the 1 -variable measures σ, τ, ξ and η, and the positive number $a \equiv \alpha_{(0,1)}$. As we mentioned before, $\mathcal{T C}$ is of substantial interest to us, since it provides a fertile ground to test results on subnormality and k-hyponormality, and in particular about the solubility of LPCS.

Let us now denote the class of commuting pairs of subnormal operators on Hilbert space by \mathfrak{H}_{0}, the class of subnormal pairs by \mathfrak{H}_{∞}, and for an integer $k \geqslant 1$, the class of k-hyponormal pairs in \mathfrak{H}_{0} by \mathfrak{H}_{k}. Clearly, $\mathfrak{H}_{\infty} \subseteq \cdots \subseteq \mathfrak{H}_{k} \subseteq \cdots \subseteq \mathfrak{H}_{1} \subseteq \mathfrak{H}_{0}$; the main results in [14] and [6] show that these inclusions are all proper; moreover, examples illustrating these proper inclusions can be found in $\mathcal{T C}$.

In this paper we show that for $\mathbf{T} \in \mathcal{T C}$, the subnormality of any power $\mathbf{T}^{(m, n)}$ implies the subnormality of \mathbf{T}. To accomplish this, we first show that every power of $\mathbf{T} \in \mathcal{T C}$ is the orthogonal direct sum of 2 -variable weighted shifts in $\mathcal{T C}$. Since each 2 -variable weighted shift in $\mathcal{T C}$

Fig. 1. Weight and Berger measure diagrams of a typical 2-variable weighted shift in $\mathcal{T C}$.
is completely determined by five parameters, we then study how the five parameters of each direct summand in a power are related to the five parameters in the initial 2 -variable weighted shift. Next, we recall from [8] that each $\mathbf{T} \in \mathcal{T C}$ is associated with a pair of linear functionals $\varphi \equiv \varphi(\mathbf{T})$ and $\psi \equiv \psi(\mathbf{T})$ (each depending on the five parameters), and that \mathbf{T} is subnormal if and only if $\varphi \geqslant 0$ and $\psi \geqslant 0$. With all of this at our disposal, we proceed to establish a connection between the pair (φ, ψ) associated with \mathbf{T} and those associated with the summands in the orthogonal direct sum decomposition of $\mathbf{T}^{(m, n)}$. This eventually leads to the proof of our main result (Theorem 3.1).

This result provides a complete generalization of Theorem 3.9 in [7]. At the time we wrote [7], the techniques available to us allowed us to deal only with the quadratic powers $\mathbf{T}^{(1,2)}$ and $\mathbf{T}^{(2,1)}$; with the aid of a number of additional examples, together with the main result in [8], we have now been able to handle the case of arbitrary powers.

As an application of Theorem 3.1, we can exhibit a hyponormal 2-variable weighted shift such that none of its powers is subnormal. We describe the shift in Example 8.1. This provides a striking and concrete example of the big gap that exists between hyponormality and subnormality for 2-variable weighted shifts, even within a relatively simple class like $\mathcal{T C}$.

2. Notation and preliminaries

To describe our results in detail we need some notation; we further expand on our terminology later in this section. For $\mathbf{k}=\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2}$, we shall let $\mathcal{M}_{i}\left(\operatorname{resp} . \mathcal{N}_{j}\right)$ be the subspace of $\ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$ which is spanned by the canonical orthonormal basis vectors associated to indices \mathbf{k} with $k_{1} \geqslant 0$ and $k_{2} \geqslant i$ (resp. $k_{1} \geqslant j$ and $k_{2} \geqslant 0$). The core of a 2 -variable weighted shift \mathbf{T} is the restriction of \mathbf{T} to $\mathcal{M}_{1} \cap \mathcal{N}_{1}$; in symbols, $c(\mathbf{T}):=\left.\mathbf{T}\right|_{\mathcal{M}_{1} \cap \mathcal{N}_{1}}$. A 2-variable weighted shift \mathbf{T} is said to be of tensor form if $\mathbf{T} \cong\left(I \otimes W_{\xi}, W_{\eta} \otimes I\right)$, where W_{ξ} and W_{η} are unilateral weighted shifts. The class of all 2-variable weighted shifts $\mathbf{T} \in \mathfrak{H}_{0}$ whose cores are of tensor form is denoted by $\mathcal{T C}$; that is,

$$
\mathcal{T C}:=\left\{\mathbf{T} \in \mathfrak{H}_{0}: c(\mathbf{T}) \text { is of tensor form }\right\}
$$

(see Fig. 1(i)).
It is well known that the commutativity of a pair of subnormals is necessary but not sufficient for the existence of a lifting [1,20-22], and it has recently been shown that the joint hyponormality of the pair is necessary but not sufficient [14]. Our previous work [14-17,6-9,26,27] has revealed that the nontrivial aspects of the LPCS are best detected within the class \mathfrak{H}_{0}, especially within $\mathcal{T C}$; we thus focus our attention on this class.

For a single operator T, the subnormality of all powers $T^{n}(n \geqslant 2)$ does not imply the subnormality of T, even if T is a unilateral weighted shift [24, pp. 378-379]. Thus one might guess that if we were to impose a further condition such as the subnormality of a restriction of T to an invariant subspace, e.g., the subnormality of $\left.T\right|_{\bigvee\left\{e_{k} \in \ell^{2}\left(\mathbb{Z}_{+}\right): k \geqslant i\right\}}$ (for some $i \geqslant 1$), that T would then be subnormal. However, even if we assume this for $i=1$, the subnormality of T is not guaranteed. For example, let $T:=\operatorname{shift}\left(\frac{1}{3}, \frac{1}{2}, 1,1, \ldots\right)$. Then $\left.T\right|_{\bigvee\left\{e_{k} \in \ell^{2}\left(\mathbb{Z}_{+}\right): k \geqslant 1\right\}} \equiv \operatorname{shift}\left(\frac{1}{2}, 1,1, \ldots\right)$ is subnormal, and also all powers $T^{n}(n \geqslant 2)$ are subnormal, but T is not subnormal. As a mater of fact, no backward extension $\operatorname{shift}\left(\alpha_{0}, \frac{1}{2}, 1,1, \ldots\right)$ can be subnormal [5, Corollary 6]. More generally, the necessary and sufficient conditions for a unilateral weighted shift W_{α} to be subnormal when we assume that $\left.W_{\alpha}\right|_{\bigvee\left\{e_{k} \in \ell^{2}\left(\mathbb{Z}_{+}\right): k \geqslant 1\right\}}$ is subnormal (with Berger measure μ) were obtained in [5, Proposition 8]: W_{α} is subnormal if and only if $\frac{1}{t} \in L^{1}(\mu)$ and $\alpha_{0}^{2}\left\|\frac{1}{t}\right\|_{L^{1}(\mu)} \leqslant 1$.

In the multivariable case, the analogous results are highly nontrivial, if one further assumes that each component is subnormal. In 1-variable, the subspace $\bigvee\left\{e_{k} \in \ell^{2}\left(\mathbb{Z}_{+}\right): k \geqslant 1\right\}$ can be regarded as "the core of T "; as we move into two variables it is therefore natural to consider the condition $\mathbf{T} \in \mathcal{T} \mathcal{C}$.

To prove our results, we require a number of tools and techniques introduced in previous work, e.g., the Six-point Test (Lemma 4.1), the Backward Extension Theorem for 2-variable weighted shifts (Lemma 4.2) and the formula to reconstruct the Berger measure of a unilateral weighted shift (4.1), together with a new direct sum decomposition for powers of 2-variable weighted shifts which parallels the decomposition used in [11] to analyze k-hyponormality for powers of (1-variable) weighted shifts. Concretely, to analyze the power $\mathbf{T}^{(m, n)}$ of a 2-variable weighted shift $\mathbf{T} \equiv\left(T_{1}, T_{2}\right)$, we split the ambient space $\ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$ as an orthogonal direct sum $\bigoplus_{p=0}^{m-1} \bigoplus_{q=0}^{n-1} \mathcal{H}_{(p, q)}^{(m, n)}$, where for $p=0,1, \ldots, m-1$, and $q=0,1, \ldots, n-1$,

$$
\begin{equation*}
\mathcal{H}_{(p, q)}^{(m, n)}:=\bigvee\left\{e_{(m \ell+p, n k+q)}: k, \ell \geqslant 0\right\} . \tag{2.1}
\end{equation*}
$$

Each of the subspaces $\mathcal{H}_{(p, q)}^{(m, n)}$ reduces T_{1}^{m} and T_{2}^{n}, and $\mathbf{T}^{(m, n)}$ is subnormal if and only if each summand $\left.\mathbf{T}^{(m, n)}\right|_{\mathcal{H}_{(p, q)}^{(m, n)}}$ is subnormal. For a set of pairs \mathcal{X}, let $\bigoplus \mathcal{X}$ denote the set of pairs that can be written as orthogonal sums of pairs in \mathcal{X}. We will show in Section 5 that $\bigoplus \mathcal{T C}$ is invariant under the action $(m, n) \mapsto \mathbf{T}^{(m, n)}(m, n \geqslant 1)$.

Briefly stated, our strategy to prove our main result (Theorem 3.1) is as follows: (i) if $\mathbf{T} \in$ $\mathcal{T C}$ then each power $\mathbf{T}^{(m, n)} \in \bigoplus \mathcal{T C}$; (ii) without loss of generality, we can always assume $m=1$; (iii) the pair (φ, ψ) associated with \mathbf{T} is directly related to the pairs $\left(\varphi^{(p, q)}, \psi^{(p, q)}\right)$ associated to the direct summands in the orthogonal decomposition of $\mathbf{T}^{(1, n)}$; (iv) if a power $\mathbf{T}^{(1, n)}$ is subnormal, the functionals $\varphi^{(0,0)}$ and $\psi^{(0,1)}$ are both positive; and (v) it then follows that φ and ψ are both positive, and therefore \mathbf{T} is subnormal.

We devote the rest of this section to establishing some additional terminology and notation. Let \mathcal{H} be a complex Hilbert space and let $\mathcal{B}(\mathcal{H})$ denote the algebra of bounded linear operators on \mathcal{H}. Recall that a bounded linear operator $T \in \mathcal{B}(\mathcal{H})$ is normal if $T^{*} T=T T^{*}$, and subnormal if $T=\left.N\right|_{\mathcal{H}}$, where N is normal and $N(\mathcal{H}) \subseteq \mathcal{H}$. An operator T is said to be hyponormal if $T^{*} T \geqslant T T^{*}$. For $S, T \in \mathcal{B}(\mathcal{H})$, let $[S, T]:=S T-T S$. An n-tuple $\mathbf{T}:=\left(T_{1}, \ldots, T_{n}\right)$ of operators on \mathcal{H} is said to be (jointly) hyponormal if the operator matrix

$$
\left[\mathbf{T}^{*}, \mathbf{T}\right]:=\left(\begin{array}{cccc}
{\left[T_{1}^{*}, T_{1}\right]} & {\left[T_{2}^{*}, T_{1}\right]} & \cdots & {\left[T_{n}^{*}, T_{1}\right]} \\
{\left[T_{1}^{*}, T_{2}\right]} & {\left[T_{2}^{*}, T_{2}\right]} & \cdots & {\left[T_{n}^{*}, T_{2}\right]} \\
\vdots & \vdots & \ddots & \vdots \\
{\left[T_{1}^{*}, T_{n}\right]} & {\left[T_{2}^{*}, T_{n}\right]} & \cdots & {\left[T_{n}^{*}, T_{n}\right]}
\end{array}\right)
$$

is positive semidefinite on the direct sum of n copies of \mathcal{H} (cf. [2,10,12,13,23]). For instance, if $n=2$,

$$
\left[\mathbf{T}^{*}, \mathbf{T}\right]:=\left(\begin{array}{cc}
{\left[T_{1}^{*}, T_{1}\right]} & {\left[T_{2}^{*}, T_{1}\right]} \\
{\left[T_{1}^{*}, T_{2}\right]} & {\left[T_{2}^{*}, T_{2}\right]}
\end{array}\right) .
$$

The n-tuple $\mathbf{T} \equiv\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ is said to be normal if \mathbf{T} is commuting and each T_{i} is normal, and \mathbf{T} is subnormal if \mathbf{T} is the restriction of a normal n-tuple to a common invariant subspace. In particular, a commuting pair $\mathbf{T} \equiv\left(T_{1}, T_{2}\right)$ is said to be k-hyponormal $(k \geqslant 1)$ [6] if

$$
\mathbf{T}(k):=\left(T_{1}, T_{2}, T_{1}^{2}, T_{2} T_{1}, T_{2}^{2}, \ldots, T_{1}^{k}, T_{2} T_{1}^{k-1}, \ldots, T_{2}^{k}\right)
$$

is hyponormal, or equivalently

$$
\left.\left[\mathbf{T}(k)^{*}, \mathbf{T}(k)\right]=\left(\left[\left(T_{2}^{q} T_{1}^{p}\right)^{*}, T_{2}^{m} T_{1}^{n}\right]\right)\right)_{\substack{1 \leqslant p+q \leqslant k \\ 1 \leqslant n+m \leqslant k}} \geqslant 0
$$

Clearly, normal \Rightarrow subnormal $\Rightarrow k$-hyponormal. For $\alpha \equiv\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ a bounded sequence of positive real numbers (called weights), let $W_{\alpha}: \ell^{2}\left(\mathbb{Z}_{+}\right) \rightarrow \ell^{2}\left(\mathbb{Z}_{+}\right)$be the associated unilateral weighted shift, defined by $W_{\alpha} e_{n}:=\alpha_{n} e_{n+1}$ (all $n \geqslant 0$), where $\left\{e_{n}\right\}_{n=0}^{\infty}$ is the canonical orthonormal basis in $\ell^{2}\left(\mathbb{Z}_{+}\right)$. For a weighted shift W_{α}, the moments of α are given as

$$
\gamma_{k} \equiv \gamma_{k}(\alpha):= \begin{cases}1 & \text { if } k=0 \tag{2.2}\\ \alpha_{0}^{2} \cdots \alpha_{k-1}^{2} & \text { if } k>0\end{cases}
$$

It is easy to see that W_{α} is never normal, and that it is hyponormal if and only if $\alpha_{0} \leqslant$ $\alpha_{1} \leqslant \cdots$. Similarly, consider double-indexed positive bounded sequences $\alpha_{\mathbf{k}}, \beta_{\mathbf{k}} \in \ell^{\infty}\left(\mathbb{Z}_{+}^{2}\right)$, $\mathbf{k} \equiv\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2}$. We define the 2-variable weighted shift $\mathbf{T} \equiv\left(T_{1}, T_{2}\right)$ by

$$
T_{1} e_{\mathbf{k}}:=\alpha_{\mathbf{k}} e_{\mathbf{k}+\varepsilon_{1}} \quad \text { and } \quad T_{2} e_{\mathbf{k}}:=\beta_{\mathbf{k}} e_{\mathbf{k}+\varepsilon_{2}}
$$

where $\varepsilon_{1}:=(1,0)$ and $\varepsilon_{2}:=(0,1)$. Clearly,

$$
\begin{equation*}
T_{1} T_{2}=T_{2} T_{1} \quad \Leftrightarrow \quad \beta_{\mathbf{k}+\varepsilon_{1}} \alpha_{\mathbf{k}}=\alpha_{\mathbf{k}+\varepsilon_{2}} \beta_{\mathbf{k}} \quad\left(\text { all } \mathbf{k} \in \mathbb{Z}_{+}^{2}\right) \tag{2.3}
\end{equation*}
$$

In an entirely similar way one can define multivariable weighted shifts. Given $\mathbf{k} \equiv\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2}$, the moment of (α, β) of order \mathbf{k} is

$$
\gamma_{\mathbf{k}} \equiv \gamma_{\mathbf{k}}(\alpha, \beta):= \begin{cases}1 & \text { if } k_{1}=0 \text { and } k_{2}=0 \\ \alpha_{(0,0)}^{2} \cdots \alpha_{\left(k_{1}-1,0\right)}^{2} & \text { if } k_{1} \geqslant 1 \text { and } k_{2}=0 \\ \beta_{(0,0)}^{2} \cdots \beta_{\left(0, k_{2}-1\right)}^{2} & \text { if } k_{1}=0 \text { and } k_{2} \geqslant 1 \\ \alpha_{(0,0)}^{2} \cdots \alpha_{\left(k_{1}-1,0\right)}^{2} \cdot \beta_{\left(k_{1}, 0\right)}^{2} \cdots \beta_{\left(k_{1}, k_{2}-1\right)}^{2} & \text { if } k_{1} \geqslant 1 \text { and } k_{2} \geqslant 1\end{cases}
$$

We remark that, due to the commutativity condition (2.3), $\gamma_{\mathbf{k}}$ can be computed using any nondecreasing path from $(0,0)$ to $\left(k_{1}, k_{2}\right)$.

We now recall a well-known characterization of subnormality for multivariable weighted shifts [19] (due to C. Berger [3, II.6.10] and independently established by R. Gellar and L.J. Wallen [18] in the single variable case): \mathbf{T} admits a commuting normal extension if and only if there is a probability measure μ (which we call the Berger measure of \mathbf{T}) defined on the 2-dimensional rectangle $R=\left[0, a_{1}\right] \times\left[0, a_{2}\right]$ (where $a_{i}:=\left\|T_{i}\right\|^{2}$) such that $\gamma_{\mathbf{k}}=$ $\int_{R} s^{k_{1}} t^{k_{2}} d \mu(s, t)$, for all $\mathbf{k} \equiv\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2}$.

The following well-known result, which links the Berger measure of a subnormal unilateral weighted shift with the Berger measure of its restriction to a suitable invariant subspace, will be needed in Section 5.

Lemma 2.1. (See [14, p. 5140].) Let W_{α} be a subnormal unilateral weighted shift and let ξ denote its Berger measure. For $n \geqslant 1$ let $\mathcal{L}_{n}:=\bigvee\left\{e_{h}: h \geqslant n\right\}$ denote the invariant subspace obtained by removing the first n vectors in the canonical orthonormal basis of $\ell^{2}\left(\mathbb{Z}_{+}\right)$. Then the Berger measure of $\left.W_{\alpha}\right|_{\mathcal{L}_{n}}$ is

$$
\begin{equation*}
d \xi_{n}(s):=\frac{s^{n}}{\gamma_{n}} d \xi(s) \tag{2.4}
\end{equation*}
$$

where γ_{n} is the n-th moment of α, given by (2.2).
We will occasionally write $\operatorname{shift}\left(\alpha_{0}, \alpha_{1}, \ldots\right)$ to denote the weighted shift with weight sequence $\left\{\alpha_{k}\right\}_{k=0}^{\infty}$. We also denote by $U_{+}:=\operatorname{shift}(1,1, \ldots)$ the (unweighted) unilateral shift, and for $0<a<1$ we let $S_{a}:=\operatorname{shift}(a, 1,1, \ldots)$. Observe that U_{+}and S_{a} are subnormal, with Berger measures δ_{1} and $\left(1-a^{2}\right) \delta_{0}+a^{2} \delta_{1}$, respectively, where δ_{p} denotes the point-mass probability measure with support the singleton $\{p\}$.

Given integers i and $m(m \geqslant 1,0 \leqslant i \leqslant m-1)$, consider $\mathcal{H} \equiv \ell^{2}\left(\mathbb{Z}_{+}\right)=\bigvee\left\{e_{n}: n \geqslant 0\right\}$ and define $\mathcal{H}_{i}:=\bigvee\left\{e_{m j+i}: j \geqslant 0\right\}$, so $\mathcal{H}=\bigoplus_{i=0}^{m-1} \mathcal{H}_{i}$. For a sequence $\alpha \equiv\left\{\alpha_{n}\right\}_{n=0}^{\infty}$, let $\alpha(m: i):=\left\{\Pi_{k=0}^{m-1} \alpha_{m j+i+k}\right\}_{j=0}^{\infty}$, that is, $\alpha(m: i)$ denotes the sequence of products of numbers in adjacent packets of size m, beginning with the product $\alpha_{i} \cdots \alpha_{i+m-1}$. For example, $\alpha(2: 0): \alpha_{0} \alpha_{1}, \alpha_{2} \alpha_{3}, \alpha_{4} \alpha_{5}, \ldots$, and $\alpha(3: 2): \alpha_{2} \alpha_{3} \alpha_{4}, \alpha_{5} \alpha_{6} \alpha_{7}, \ldots$ Then for $m \geqslant 1$ and $0 \leqslant$ $i \leqslant m-1, W_{\alpha(m: i)}$ is unitarily equivalent to $\left.W_{\alpha}^{m}\right|_{\mathcal{H}_{i}}$. Therefore, W_{α}^{m} is unitarily equivalent to $\bigoplus_{i=0}^{m-1} W_{\alpha(m: i)}$. This analysis naturally leads to the following result, which will be needed in Section 6.

Lemma 2.2. (See [11, Theorem 2.9].) Let W_{α} be a subnormal unilateral weighted shift with Berger measure μ. Then $W_{\alpha(m, i)}$ is subnormal with Berger measure $\mu_{(m, i)}$, where

$$
d \mu_{(m, 0)}(s)=d \mu\left(s^{\frac{1}{m}}\right) \quad \text { and } \quad d \mu_{(m, i)}(s)=\frac{s^{\frac{i}{m}}}{\gamma_{i}} d \mu\left(s^{\frac{1}{m}}\right) \quad \text { for } 1 \leqslant i \leqslant m-1
$$

3. Statement of the main result

In [7] we showed that if $\mathbf{T} \in \mathcal{T C}$ (see Fig. 1(i)), then

$$
\begin{equation*}
\mathbf{T}^{(1,2)} \in \mathfrak{H}_{\infty} \quad \Leftrightarrow \quad \mathbf{T}^{(2,1)} \in \mathfrak{H}_{\infty} \quad \Leftrightarrow \quad \mathbf{T} \in \mathfrak{H}_{\infty} . \tag{3.1}
\end{equation*}
$$

The main result in this paper, which follows, is based on (3.1) and a myriad of examples that have arisen in our previous research.

Theorem 3.1. Let $\mathbf{T} \in \mathcal{T C}$. The following statements are equivalent.
(i) $\mathbf{T} \in \mathfrak{H}_{\infty}$;
(ii) $\mathbf{T}^{(m, n)} \in \bigoplus \mathfrak{H}_{\infty}$ for all $m, n \geqslant 1$;
(iii) $\mathbf{T}^{(m, n)} \in \bigoplus \mathfrak{H}_{\infty}$ for some $m, n \geqslant 1$.

4. Some basic facts

For the reader's convenience, in this section we list several well-known auxiliary results and definitions which are needed for the proof of the main result. First, to detect hyponormality for 2 -variable weighted shifts we use a simple criterion involving a base point \mathbf{k} in \mathbb{Z}_{+}^{2} and its five neighboring points in $\mathbf{k}+\mathbb{Z}_{+}^{2}$ at path distance at most 2 .

Lemma 4.1 (Six-point Test). (See [4].) Let $\mathbf{T} \equiv\left(T_{1}, T_{2}\right)$ be a 2 -variable weighted shift, with weight sequences α and β. Then

$$
\begin{aligned}
& {\left[\mathbf{T}^{*}, \mathbf{T}\right] \geqslant 0} \\
& \quad \Leftrightarrow \quad H_{\left(k_{1}, k_{2}\right)}(1):=\left(\begin{array}{cc}
\alpha_{\mathbf{k}+\varepsilon_{1}}^{2}-\alpha_{\mathbf{k}}^{2} & \alpha_{\mathbf{k}+\varepsilon_{2}} \beta_{\mathbf{k}+\varepsilon_{1}}-\alpha_{\mathbf{k}} \beta_{\mathbf{k}} \\
\alpha_{\mathbf{k}+\varepsilon_{2}} \beta_{\mathbf{k}+\varepsilon_{1}}-\alpha_{\mathbf{k}} \beta_{\mathbf{k}} & \beta_{\mathbf{k}+\varepsilon_{2}}^{2}-\beta_{\mathbf{k}}^{2}
\end{array}\right) \geqslant 0 \quad\left(\text { all } \mathbf{k} \in \mathbb{Z}_{+}^{2}\right) .
\end{aligned}
$$

Next, we present a criterion to detect the subnormality of 2-variable weighted shifts. First, we need some definitions.
(i) Let μ and v be two positive measures on \mathbb{R}_{+}. We say that $\mu \leqslant v$ on $X:=\mathbb{R}_{+}$, if $\mu(E) \leqslant$ $\nu(E)$ for all Borel subset $E \subseteq \mathbb{R}_{+}$; equivalently, $\mu \leqslant \nu$ if and only if $\int f d \mu \leqslant \int f d \nu$ for all $f \in C(X)$ such that $f \geqslant 0$ on \mathbb{R}_{+}.
(ii) Let μ be a probability measure on $X \times Y$, and assume that $\frac{1}{t} \in L^{1}(\mu)$. The extremal measure $\mu_{\text {ext }}$ (which is also a probability measure) on $X \times Y$ is given by $d \mu_{\text {ext }}(s, t):=$ $\left(1-\delta_{0}(t)\right) \frac{1}{t \|^{\frac{1}{t} \|_{L^{1}}(\mu)}} d \mu(s, t)$.
(iii) Given a measure μ on $X \times Y$, the marginal measure μ^{X} is given by $\mu^{X}:=\mu \circ \pi_{X}^{-1}$, where $\pi_{X}: X \times Y \rightarrow X$ is the canonical projection onto X. Thus $\mu^{X}(E)=\mu(E \times Y)$, for every $E \subseteq X$.

To state the following result, recall the notation in (2.1), and let $\mathcal{M}:=\mathcal{M}_{1} \equiv \mathcal{H}_{(0,1)}^{(1,1)}$.
Lemma 4.2 (Subnormal backward extension). (See [14, Proposition 3.10].) Let $\mathbf{T} \equiv\left(T_{1}, T_{2}\right)$ be a 2-variable weighted shift, and assume that $\left.\mathbf{T}\right|_{\mathcal{M}}$ is subnormal with associated measure $\mu_{\mathcal{M}}$
and that $W_{0}:=\operatorname{shift}\left(\alpha_{00}, \alpha_{10}, \ldots\right)$ is subnormal with associated measure σ. Then \mathbf{T} is subnormal if and only if
(i) $\frac{1}{t} \in L^{1}\left(\mu_{\mathcal{M}}\right)$;
(ii) $\beta_{00}^{2} \leqslant\left(\left\|\frac{1}{t}\right\|_{L^{1}\left(\mu_{\mathcal{M}}\right)}\right)^{-1}$;
(iii) $\beta_{00}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\mu_{\mathcal{M}}\right)}\left(\mu_{\mathcal{M}}\right)_{e x t}^{X} \leqslant \sigma$.

Moreover, if $\beta_{00}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\mu_{\mathcal{M}}\right)}=1$, then $\left(\mu_{\mathcal{M}}\right)_{\text {ext }}^{X}=\sigma$. In the case when \mathbf{T} is subnormal, its Berger measure μ is given by

$$
\begin{align*}
d \mu(s, t)= & \beta_{00}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\mu_{\mathcal{M}}\right)} d\left(\mu_{\mathcal{M}}\right)_{\text {ext }}(s, t) \\
& +\left(d \sigma(s)-\beta_{00}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\mu_{\mathcal{M}}\right)} d\left(\mu_{\mathcal{M}}\right)_{\text {ext }}^{X}(s)\right) d \delta_{0}(t) \tag{4.1}
\end{align*}
$$

5. The structure of powers of $\mathbf{2}$-variable weighted shifts in $\mathcal{T} \mathcal{C}$

Consider a 2-variable weighted shift $\mathbf{T} \equiv\left(T_{1}, T_{2}\right) \in \mathcal{T C}$ (see Fig. 1(i)). Since T_{1} (resp. T_{2}) is subnormal, we know that $\operatorname{shift}\left(\alpha_{1}, \alpha_{2}, \alpha_{3} \cdots\right)$ (resp. $\operatorname{shift}\left(\beta_{1}, \beta_{2}, \beta_{3} \cdots\right)$) is subnormal; let ξ (resp. η) be its Berger measure. Similarly, let σ (resp. τ) denote the Berger measure of $\operatorname{shift}\left(x_{0}, x_{1}, x_{2}, \ldots\right)\left(\operatorname{resp} . \operatorname{shift}\left(y_{0}, y_{1}, y_{2}, \ldots\right)\right)$. Finally, let τ_{1} be the Berger measure of $\left.\operatorname{shift}\left(y_{1}, y_{2}, y_{3}, \ldots\right) \equiv \operatorname{shift}\left(y_{0}, y_{1}, y_{2}, \ldots\right)\right|_{\backslash\left\{e_{k}: k \geqslant 1\right\}}$. Fig. 1 shows the general form of a pair in $\mathcal{T C}$, and that it is uniquely determined by the five parameters σ, τ, a, ξ and η. Thus, in what follows we will identify a pair $\mathbf{T} \in \mathcal{T C}$ with the 5-tuple $\langle\sigma, \tau, a, \xi, \eta\rangle$. We shall also let $[a, \xi]$ denote the Berger measure of the subnormal unilateral weighted shift W whose 0 -th weight is a and with ξ as the Berger measure of $\left.W\right|_{\mathcal{L}_{1}}$, where $\mathcal{L}_{1}:=\bigvee\left\{e_{k}: k \geqslant 1\right\}$. For instance, in Fig. 1(i) the Berger measure for the first row is $[a, \xi]$, and for the second row is $\left[\frac{a \beta_{1}}{y_{1}}, \xi\right]$. Finally, we shall let $z_{j} \equiv z_{j}(\eta)$ denote the j-th weight of the unilateral weighted shift whose Berger measure is η; that is, $\operatorname{shift}\left(z_{0}, z_{1}, \ldots\right)$ has Berger measure η.

Lemma 5.1. Let $\mathbf{T} \in \mathcal{T C}$, and let $m, n \geqslant 1$. Then $\mathbf{T}^{(m, n)} \in \bigoplus \mathcal{T C}$.
Proof. First recall from (2.1) that $\ell^{2}\left(\mathbb{Z}_{+}^{2}\right)$ can be written as an orthogonal direct sum $\bigoplus_{p=0}^{m-1} \bigoplus_{q=0}^{n-1} \mathcal{H}_{(p, q)}^{(m, n)}$, where for $p=0,1, \ldots, m-1$ and $q=0,1, \ldots, n-1$ we have $\mathcal{H}_{(p, q)}^{(m, n)}:=$ $\bigvee\left\{e_{(m \ell+p, n k+q)}: k, \ell \geqslant 0\right\}$. Now write $\mathbf{T} \equiv\langle\sigma, \tau, a, \xi, \eta\rangle$. We shall establish that

$$
\begin{equation*}
\mathbf{T}^{(m, n)}=\bigoplus_{p=0}^{m-1} \bigoplus_{q=0}^{n-1}\left\langle\sigma^{(p, q)}, \tau^{(p, q)}, a^{(p, q)}, \xi^{(p, q)}, \eta^{(p, q)}\right\rangle \tag{5.1}
\end{equation*}
$$

where $\left\langle\sigma^{(p, q)}, \tau^{(p, q)}, a^{(p, q)}, \xi^{(p, q)}, \eta^{(p, q)}\right\rangle$ is the 5-tuple associated to the restriction of $\mathbf{T}^{(m, n)}$ to the reducing subspace $\mathcal{H}_{(p, q)}^{(m, n)}$. Since $\mathbf{T}^{(m, n)}=\left(\mathbf{T}^{(m, 1)}\right)^{(1, n)}$, and since $\mathbf{T}^{(m, 1)} \in \bigoplus \mathcal{T} \mathcal{C}$ if and only if $\mathbf{T}^{(1, m)} \in \bigoplus \mathcal{T C}$, it suffices to prove (5.1) in the case $m=1$. The proof is simple but a bit tedious, and it entails careful diagram chasing in Fig. 3. Visual inspection of that figure reveals that when $m=1$ we have $\sigma^{(0,0)}=\sigma, \sigma^{(0,1)}=[a, \xi], \ldots, \sigma^{(0, n-1)}=\left[\frac{a z_{0} \cdots z_{n-3}}{y_{1} \cdots y_{n-2}}, \xi\right](n \geqslant 3)$; moreover,

Fig. 2. Berger measure diagram and weight diagram of the 2-variable weighted shifts in Lemma 5.3 and Example 5.4, respectively.
$\tau^{(0, q)}=\tau_{(n, q)}$, where the latter notation was introduced in Lemma 2.2. Still looking at Fig. 1, we observe that $a^{(0, q)}=\frac{a z_{0} \cdots z_{n-2+q}}{y_{1} \cdots y_{n-1+q}}$ and that $\xi^{(0, q)}=\xi, \eta^{(0,0)}=\eta_{(n, n-1)}$ and $\eta^{(0, q)}=\left(\eta_{(n, q-1)}\right)_{1}$ $(q \geqslant 1)$. This completes the proof.

Corollary 5.2. For $m, n \geqslant 1$ we have $(\bigoplus \mathcal{T C})^{(m, n)} \subseteq \bigoplus \mathcal{T C}$.
We now restate the main result in [8]. First, recall that if τ is the Berger measure of $\operatorname{shift}\left(y_{0}, y_{1}, \ldots\right)$, we denote by τ_{1} the Berger measure of $\operatorname{shift}\left(y_{1}, y_{2}, \ldots\right)$. As described in Lemma 2.1, we know that $d \tau_{1}(t) \equiv \frac{t}{y_{0}^{2}} d \tau(t)$.

Lemma 5.3. (See [8, Theorem 2.3].) Let $\mathbf{T} \equiv\langle\sigma, \tau, a, \xi, \eta\rangle \in \mathcal{T C}$ be as in Fig. 2(i) and let

$$
\begin{align*}
\psi & :=\tau_{1}-a^{2}\left\|\frac{1}{s}\right\|_{L^{1}(\xi)} \eta, \\
\varphi & :=\sigma-y_{0}^{2}\left\|\frac{1}{t}\right\|_{L^{1}(\psi)} \delta_{0}-a^{2} y_{0}^{2}\left\|\frac{1}{t}\right\|_{L^{1}(\eta)} \frac{\xi}{s}, \tag{5.2}
\end{align*}
$$

where $y_{0} \equiv \beta_{00}:=\sqrt{\int t d \tau(t)}$. Then \mathbf{T} is subnormal if and only if $\psi \geqslant 0$ and $\varphi \geqslant 0$.
Example 5.4. Assume the very simple case of $\mathbf{T} \equiv\langle\sigma, \tau, a, \xi, \eta\rangle$, where $\sigma:=\left[x, \delta_{1}\right], \tau:=$ $\left[y, \delta_{1}\right], 0<a<1, \xi:=\delta_{1}$ and $\eta:=\delta_{1}$ (cf. Fig. 2(ii)). Then $\psi=\delta_{1}-a^{2} \delta_{1}=\left(1-a^{2}\right) \delta_{1}$ and $\varphi=\left(1-x^{2}\right) \delta_{0}+x^{2} \delta_{1}-y^{2}\left(1-a^{2}\right) \delta_{0}-a^{2} y^{2} \delta_{1}=\left\{\left(1-x^{2}\right)-y^{2}\left(1-a^{2}\right)\right\} \delta_{0}+\left(x^{2}-a^{2} y^{2}\right) \delta_{1}$. Thus, \mathbf{T} is subnormal if and only if $\left(1-x^{2}\right)-y^{2}\left(1-a^{2}\right) \geqslant 0$, a condition identical to that in [14, Proposition 2.11].

Fig. 3. Weight diagrams of $\left.\mathbf{T}^{(1, n)}\right|_{\mathcal{H}_{(0,0)}^{(1, n)}}$ and $\left.\mathbf{T}^{(1, n)}\right|_{\mathcal{H}_{(0,1)}^{(1, n)}}$.
6. The pairs (ψ, φ) for $\langle\sigma, \tau, a, \xi, \eta\rangle$ and $\left\langle\sigma^{(p, q)}, \tau^{(p, q)}, a^{(p, q)}, \xi^{(p, q)}, \eta^{(p, q)}\right\rangle$

In this section we establish a direct relationship between the pair (ψ, φ) associated to $\langle\sigma, \tau, a, \xi, \eta\rangle \in \mathcal{T C}$ and some of the pairs $\left(\psi^{(p, q)}, \varphi^{(p, q)}\right)$ associated to the direct summands $\left\langle\sigma^{(p, q)}, \tau^{(p, q)}, a^{(p, q)}, \xi^{(p, q)}, \eta^{(p, q)}\right\rangle$ in $\langle\sigma, \tau, a, \xi, \eta\rangle^{(m, n)}$.

Proposition 6.1. Let $\langle\sigma, \tau, a, \xi, \eta\rangle \in \mathcal{T C}$, and let $n \geqslant 2$. Consider the decomposition $\langle\sigma, \tau, a$, $\xi, \eta\rangle^{(1, n)}=\bigoplus_{q=0}^{n-1}\left\langle\sigma^{(0, q)}, \tau^{(0, q)}, a^{(0, q)}, \xi^{(0, q)}, \eta^{(0, q)}\right\rangle$, and let $(\psi, \varphi)\left(r e s p .\left(\psi^{(0, q)}, \varphi^{(0, q)}\right)\right)$ be the associated pair in Lemma 5.3. Then
(i) $\psi^{(0,1)} \geqslant 0 \Leftrightarrow \psi \geqslant 0$; and
(ii) $\varphi^{(0,0)} \geqslant 0 \Leftrightarrow \varphi \geqslant 0$.

Proof. We refer the reader to Fig. 3. By Lemma 5.1, we have $\sigma^{(0,0)}=\sigma, \sigma^{(0,1)}=[a, \xi], \tau^{(0,0)}=$ $\tau_{(n, 0)}, \tau^{(0,1)}=\tau_{(n, 1)}, a^{(0,0)}=\frac{a z_{0} \cdots z_{n-2}}{y_{1} \cdots y_{n-1}}, a^{(0,1)}=\frac{a z_{0} \cdots z_{n-1}}{y_{1} \cdots y_{n}}, \xi^{(0,0)}=\xi^{(0,1)}=\xi, \eta^{(0,0)}=\eta_{(n, n-1)}$ and $\eta^{(0,1)}=\left(\eta_{(n, 0)}\right)_{1}$. Then

$$
\begin{align*}
\psi^{(0,1)} & =\left(\tau^{(0,1)}\right)_{1}-\left(a^{(0,1)}\right)^{2}\left\|\frac{1}{s}\right\|_{L^{1}\left(\xi^{(0,1)}\right)} \eta^{(0,1)} \\
& =\left(\tau_{(n, 1)}\right)_{1}-\frac{a^{2} z_{0}^{2} \cdots z_{n-1}^{2}}{y_{1}^{2} \cdots y_{n}^{2}}\left\|\frac{1}{s}\right\|_{L^{1}(\xi)}\left(\eta_{(n, 0)}\right)_{1} . \tag{6.1}
\end{align*}
$$

We now calculate $\left(\tau_{(n, 1)}\right)_{1}$ and $\left(\eta_{(n, 0)}\right)_{1}$. From Lemma 2.2 we know that

$$
d \tau_{(n, 1)}(t)=\frac{t^{\frac{1}{n}}}{y_{0}^{2}} d \tau\left(t^{\frac{1}{n}}\right)
$$

so that

$$
d\left(\tau_{(n, 1)}\right)_{1}(t)=\frac{t}{y_{1}^{2} \cdots y_{n}^{2}} d \tau_{(n, 1)}(t)=\frac{t^{1+\frac{1}{n}}}{y_{0}^{2} y_{1}^{2} \cdots y_{n}^{2}} d \tau\left(t^{\frac{1}{n}}\right) \quad(\text { by Lemma 2.1 })
$$

On the other hand, and again using Lemma 2.2, we have

$$
d \eta_{(n, 0)}(t)=d \eta\left(t^{\frac{1}{n}}\right)
$$

so that

$$
d\left(\eta_{(n, 0)}\right)_{1}(t)=\frac{t}{z_{0}^{2} \cdots z_{n-1}^{2}} d \eta_{(n, 0)}(t)=\frac{t}{z_{0}^{2} \cdots z_{n-1}^{2}} d \eta\left(t^{\frac{1}{n}}\right) \quad \text { (again by Lemma 2.1). }
$$

It follows from (6.1) that

$$
\begin{aligned}
d \psi^{(0,1)}(t) & =\frac{t^{1+\frac{1}{n}}}{y_{0}^{2} y_{1}^{2} \cdots y_{n}^{2}} d \tau\left(t^{\frac{1}{n}}\right)-\frac{a^{2} z_{0}^{2} \cdots z_{n-1}^{2}}{y_{1}^{2} \cdots y_{n}^{2}}\left\|\frac{1}{s}\right\|_{L^{1}(\xi)} \cdot \frac{t}{z_{0}^{2} \cdots z_{n-1}^{2}} d \eta\left(t^{\frac{1}{n}}\right) \\
& =\frac{t}{y_{1}^{2} \cdots y_{n}^{2}}\left\{\frac{t^{\frac{1}{n}}}{y_{0}^{2}} d \tau\left(t^{\frac{1}{n}}\right)-a^{2}\left\|\frac{1}{s}\right\|_{L^{1}(\xi)} d \eta\left(t^{\frac{1}{n}}\right)\right\} \\
& =\frac{t}{y_{1}^{2} \cdots y_{n}^{2}}\left\{d \tau_{1}\left(t^{\frac{1}{n}}\right)-a^{2}\left\|\frac{1}{s}\right\|_{L^{1}(\xi)} d \eta\left(t^{\frac{1}{n}}\right)\right\} \\
& =\frac{t}{y_{1}^{2} \cdots y_{n}^{2}} d \psi\left(t^{\frac{1}{n}}\right) .
\end{aligned}
$$

It now readily follows that $\psi^{(0,1)} \geqslant 0$ if and only if $\psi \geqslant 0$, which establishes (i).
To prove (ii), we begin by calculating $\psi^{(0,0)}$. As in (6.1), we have

$$
\begin{aligned}
d \psi^{(0,0)}(t) & =d\left(\tau^{(0,0)}\right)_{1}(t)-\left(a^{(0,0)}\right)^{2}\left\|\frac{1}{s}\right\|_{L^{1}\left(\xi^{(0,0)}\right)} d \eta^{(0,0)}(t) \\
& =d\left(\tau_{(n, 0)}\right)_{1}(t)-\frac{a^{2} z_{0}^{2} \cdots z_{n-2}^{2}}{y_{1}^{2} \cdots y_{n-1}^{2}}\left\|\frac{1}{s}\right\|_{L^{1}(\xi)} d \eta_{(n, n-1)}(t) \\
& =\frac{t}{y_{0}^{2} \cdots y_{n-1}^{2}} d \tau\left(t^{\frac{1}{n}}\right)-\frac{a^{2} z_{0}^{2} \cdots z_{n-2}^{2}}{y_{1}^{2} \cdots y_{n-1}^{2}}\left\|\frac{1}{s}\right\|_{L^{1}(\xi)} \frac{t^{\frac{n-1}{n}}}{z_{0}^{2} \cdots z_{n-2}^{2}} d \eta\left(t^{\frac{1}{n}}\right)
\end{aligned}
$$

(by Lemmas 2.1 and 2.2)

$$
=\frac{1}{y_{0}^{2} y_{1}^{2} \cdots y_{n-1}^{2}}\left\{t d \tau\left(t^{\frac{1}{n}}\right)-a^{2} y_{0}^{2}\left\|\frac{1}{s}\right\|_{L^{1}(\xi)} t^{\frac{n-1}{n}} d \eta\left(t^{\frac{1}{n}}\right)\right\} .
$$

It follows that

$$
\begin{aligned}
y_{0}^{2} y_{1}^{2} \cdots y_{n-1}^{2} \int \frac{1}{t} d \psi^{(0,0)}(t) & =\int d \tau\left(t^{\frac{1}{n}}\right)-a^{2} y_{0}^{2}\left\|\frac{1}{s}\right\|_{L^{1}(\xi)} \int t^{-\frac{1}{n}} d \eta\left(t^{\frac{1}{n}}\right) \\
& =1-a^{2} y_{0}^{2}\left\|\frac{1}{s}\right\|_{L^{1}(\xi)}\left\|\frac{1}{t}\right\|_{L^{1}(\eta)} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
y_{0}^{2} \int \frac{1}{t} d \psi(t) & =y_{0}^{2}\left\{\int \frac{1}{t} d \tau_{1}(t)-a^{2}\left\|\frac{1}{s}\right\|_{L^{1}(\xi)} \int \frac{1}{t} d \eta(t)\right\} \\
& =y_{0}^{2} \int \frac{1}{t} \cdot \frac{t}{y_{0}^{2}} d \tau(t)-a^{2} y_{0}^{2}\left\|\frac{1}{s}\right\|_{L^{1}(\xi)}\left\|\frac{1}{t}\right\|_{L^{1}(\eta)} \\
& =1-a^{2} y_{0}^{2}\left\|\frac{1}{s}\right\|_{L^{1}(\xi)}\left\|\frac{1}{t}\right\|_{L^{1}(\eta)} .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
y_{0}^{2} y_{1}^{2} \cdots y_{n-1}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\psi^{(0,0)}\right)}=y_{0}^{2}\left\|\frac{1}{t}\right\|_{L^{1}(\psi)} . \tag{6.2}
\end{equation*}
$$

Consider now

$$
\varphi^{(0,0)}=\sigma^{(0,0)}-y_{0}^{2} \cdots y_{n-1}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\psi^{(0,0)}\right)} \delta_{0}-\left(a^{(0,0)}\right)^{2} y_{0}^{2} \cdots y_{n-1}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\eta^{(0,0)}\right)} \frac{\xi^{(0,0)}}{s} .
$$

We know that $\sigma^{(0,0)}=\sigma$, that $a^{(0,0)}=\frac{a z_{0} \cdots z_{n-2}}{y_{1} \cdots y_{n-1}}$ and that $\xi^{(0,0)}=\xi$, so using (6.2) we obtain

$$
\varphi^{(0,0)}=\sigma-y_{0}^{2}\left\|\frac{1}{t}\right\|_{L^{1}(\psi)} \delta_{0}-a^{2} y_{0}^{2} z_{0}^{2} \cdots z_{n-2}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\eta^{(0,0)}\right)} \frac{\xi}{s} .
$$

Since $\varphi=\sigma-y_{0}^{2}\left\|\frac{1}{t}\right\|_{L^{1}(\psi)} \delta_{0}-a^{2} y_{0}^{2}\left\|\frac{1}{t}\right\|_{L^{1}(\eta) \frac{\xi}{s}}$, it is easy to see that it suffices to prove that $z_{0}^{2} \cdots z_{n-2}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\eta^{(0,0)}\right)}=\left\|\frac{1}{t}\right\|_{L^{1}(\eta)}$. We know that $\eta^{(0,0)}=\eta_{(n, n-1)}$, so

$$
\begin{aligned}
z_{0}^{2} \cdots z_{n-2}^{2}\left\|\frac{1}{t}\right\|_{L^{1}\left(\eta^{(0,0)}\right)} & =z_{0}^{2} \cdots z_{n-2}^{2} \int \frac{1}{t} d \eta_{(n, n-1)}(t) \\
& =z_{0}^{2} \cdots z_{n-2}^{2} \int \frac{1}{t} \frac{t^{\frac{n-1}{n}}}{z_{0}^{2} \cdots z_{n-2}^{2}} d \eta\left(t^{\frac{1}{n}}\right) \\
& =\int t^{-\frac{1}{n}} d \eta\left(t^{\frac{1}{n}}\right)=\left\|\frac{1}{t}\right\|_{L^{1}(\eta)},
\end{aligned}
$$

as desired.
Corollary 6.2. Let $\langle\sigma, \tau, a, \xi, \eta\rangle \in \mathcal{T C}$, and let $n \geqslant 2$. Assume that $\langle\sigma, \tau, a, \xi, \eta\rangle^{(1, n)}$ is subnormal. Then $\langle\sigma, \tau, a, \xi, \eta\rangle$ is subnormal.

Proof. Assume that $\langle\sigma, \tau, a, \xi, \eta\rangle^{(1, n)}$ is subnormal, and recall that the power of a 2-variable weighted shift splits as an orthogonal direct sum of 2-variable weighted shifts. Moreover, each summand is in $\mathcal{T} \mathcal{C}$ (because $\langle\sigma, \tau, a, \xi, \eta\rangle \in \mathcal{T C}$). The fact that $\langle\sigma, \tau, a, \xi, \eta\rangle^{(1, n)}$ is subnormal readily implies that each direct summand is subnormal, and then Lemma 5.3 says that $\psi^{(0, q)} \geqslant 0$ and $\varphi^{(0, q)} \geqslant 0$ (all $q \geqslant 0$). In particular, $\psi^{(0,1)} \geqslant 0$ and $\varphi^{(0,0)} \geqslant 0$. It follows from Proposition 6.1 that $\psi \geqslant 0$ and $\varphi \geqslant 0$. Applying Lemma 5.3 once again, we see that $\langle\sigma, \tau, a, \xi, \eta\rangle$ is subnormal.

Corollary 6.3. Let $\langle\sigma, \tau, a, \xi, \eta\rangle \in \mathcal{T C}$, and let $m \geqslant 2$. Assume that $\langle\sigma, \tau, a, \xi, \eta\rangle^{(m, 1)}$ is subnormal. Then $\langle\sigma, \tau, a, \xi, \eta\rangle$ is subnormal.

7. Proof of the main theorem

We are now ready to prove our main result, which we restate for the reader's convenience.
Theorem 7.1. Let $\mathbf{T} \in \mathcal{T C}$. The following statements are equivalent.
(i) $\mathbf{T} \in \mathfrak{H}_{\infty}$;
(ii) $\mathbf{T}^{(m, n)} \in \bigoplus \mathfrak{H}_{\infty}$ for all $m, n \geqslant 1$;
(iii) $\mathbf{T}^{(m, n)} \in \bigoplus \mathfrak{H}_{\infty}$ for some $m, n \geqslant 1$.

Proof. It is clear that (i) \Rightarrow (ii) and that (ii) \Rightarrow (iii). Assume that (iii) holds, with $n \geqslant 2$. Since $\mathbf{T}^{(m, n)}=\left(\mathbf{T}^{(m, 1)}\right)^{(1, n)}$, we can use Corollary 6.2 to conclude that $\mathbf{T}^{(m, 1)}$ is subnormal. If we now apply Corollary 6.3 , we obtain that \mathbf{T} is subnormal, as desired.

8. An application

In our previous work [14-17,6-9,26,27], we have shown that there are many different families of commuting pairs of subnormal operators, jointly hyponormal but not admitting commuting normal extensions, that is, $\mathbf{T} \in \mathfrak{H}_{1}$ but $\mathbf{T} \notin \mathfrak{H}_{\infty}$ (all $m, n \geqslant 1$). As a simple application of Theorem 7.1, we now show that $\mathfrak{H}_{1} \cap \mathcal{T C} \neq \mathfrak{H}_{\infty} \cap \mathcal{T C}$; moreover, there exists $\mathbf{T} \in \mathcal{T C}$, such that $\mathbf{T} \in \mathfrak{H}_{1}$ but $\mathbf{T}^{(m, n)} \notin \bigoplus \mathfrak{H}_{\infty}($ all $m, n \geqslant 1)$. We recall that $\operatorname{shift}\left(x_{0}, x_{1}, \ldots\right)$ and $\operatorname{shift}\left(y_{0}, y_{1}, \ldots\right)$ are subnormal unilateral weighted shifts with Berger measures σ and τ, respectively. Consider a contractive 2 -variable weighted shift $\mathbf{T} \in \mathfrak{H}_{0}$ whose weight diagram is given by Fig. 4(i); that is, in the 5-tuple $\langle\sigma, \tau, a, \xi, \eta\rangle$, we have

$$
\begin{aligned}
& * d \sigma(t):=\left(1-\kappa^{2}\right) d \delta_{0}(t)+\frac{\kappa^{2}}{2} d t+\frac{\kappa^{2}}{2} d \delta_{1}(t), \\
& * \tau \text { is the Berger measure of shift }\left(y_{0}, y_{1}, \ldots\right) \text {, with } \tau_{1} \text { the } 2 \text {-atomic Berger measure } \\
& \quad \rho_{0} \delta_{t_{0}}+\rho_{1} \delta_{t_{1}} \text { of the Stampfli subnormal completion of } \sqrt{\omega_{0}}<\sqrt{\omega_{1}}<\sqrt{\omega_{2}}, \\
& * a \text { is a positive number, } \\
& * \xi:=\delta_{1}, \text { and } \\
& * \eta:=\delta_{1} .
\end{aligned}
$$

Example 8.1. Let $\mathbf{T} \equiv\langle\sigma, \tau, a, \xi, \eta\rangle$ be the 2-variable weighted shift given by Fig. 4(i), with σ, τ_{1}, a, ξ and η as above. Then $\mathbf{T} \in \mathfrak{H}_{1}$ and $\mathbf{T}^{(m, n)} \notin \mathfrak{H}_{\infty}($ all $m, n \geqslant 1)$ if and only if $s(\kappa)<y_{0}<$ $h(\kappa)$, where

Fig. 4. Weight diagram of the 2-variable weighted shift in Example 8.1 and graphs of $s(\kappa)$ and $h(\kappa)$ on the interval $[0,1]$, respectively; here $\omega_{0}:=\frac{5}{6}, \omega_{1}:=\frac{6}{7}, \omega_{2}:=\frac{7}{8}$ and $y_{0}:=\beta_{0}$.

$$
s(\kappa):=\min \left\{\frac{\sqrt{t_{1}}}{a} \sqrt{\rho_{1}}, \sqrt{\frac{\left(1-\kappa^{2}\right)}{\left\|\frac{1}{t}\right\|_{L^{1}\left(\tau_{1}\right)}-\frac{a^{2}}{t_{1}}}}, \frac{\sqrt{t_{1}}}{a} \sqrt{\frac{\kappa^{2}}{2}}, \sqrt{\frac{1}{\left\|\frac{1}{t}\right\|_{L^{1}\left(\tau_{1}\right)}}}\right\}
$$

and

$$
h(\kappa):=\sqrt{\frac{x_{0}^{2} y_{1}^{2}\left(x_{1}^{2}-x_{0}^{2}\right)}{x_{0}^{2}\left(x_{1}^{2}-x_{0}^{2}\right)+\left(a^{2}-x_{0}^{2}\right)^{2}}} .
$$

Fig. 4(ii) specifies a region in the (κ, β_{0}) plane where \mathbf{T} is hyponormal but none of its powers is subnormal. A detailed analysis of Example 8.1 and of other applications of Theorem 3.1 will be discussed elsewhere.

Acknowledgment

The authors are deeply indebted to the referee for several suggestions that improved the presentation. The specific formulas for $s(\kappa)$ and $h(\kappa)$ in Example 8.1 were obtained using calculations with the software tool Mathematica [25].

References

[1] M. Abrahamse, Commuting subnormal operators, Illinois J. Math. 22 (1978) 171-176.
[2] A. Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc. 103 (1988) 417-423.
[3] J. Conway, The Theory of Subnormal Operators, Math. Surveys Monogr., vol. 36, Amer. Math. Soc., Providence, 1991.
[4] R. Curto, Joint hyponormality: A bridge between hyponormality and subnormality, Proc. Sympos. Pure Math. 51 (1990) 69-91.
[5] R. Curto, Quadratically hyponormal weighted shifts, Integral Equations Operator Theory 13 (1990) 49-66.
[6] R. Curto, S.H. Lee, J. Yoon, k-Hyponormality of multivariable weighted shifts, J. Funct. Anal. 229 (2005) 462-480.
[7] R. Curto, S.H. Lee, J. Yoon, Hyponormality and subnormality for powers of commuting pairs of subnormal operators, J. Funct. Anal. 245 (2007) 390-412.
[8] R. Curto, S.H. Lee, J. Yoon, Reconstruction of the Berger measure when the core is of tensor form, in: Actas del XVI Coloquio Latinoamericano de Álgebra, Bibl. Rev. Mat. Iberoamericana (2007) 317-331.
[9] R. Curto, S.H. Lee, J. Yoon, Which 2-hyponormal 2-variable weighted shifts are subnormal?, Linear Algebra Appl. 429 (2008) 2227-2238.
[10] R. Curto, P. Muhly, J. Xia, Hyponormal pairs of commuting operators, Oper. Theory Adv. Appl. 35 (1988) 1-22.
[11] R. Curto, S. Park, k-Hyponormality of powers of weighted shifts, Proc. Amer. Math. Soc. 131 (2003) 2761-2769.
[12] R. Curto, M. Putinar, Existence of non-subnormal polynomially hyponormal operators, Bull. Amer. Math. Soc. (N.S.) 25 (1991) 373-378.
[13] R. Curto, M. Putinar, Nearly subnormal operators and moments problems, J. Funct. Anal. 115 (1993) 480-497.
[14] R. Curto, J. Yoon, Jointly hyponormal pairs of subnormal operators need not be jointly subnormal, Trans. Amer. Math. Soc. 358 (2006) 5139-5159.
[15] R. Curto, J. Yoon, Disintegration-of-measure techniques for multivariable weighted shifts, Proc. London Math. Soc. 93 (2006) 381-402.
[16] R. Curto, J. Yoon, Propagation phenomena for hyponormal 2-variable weighted shifts, J. Operator Theory 58 (2007) 175-203.
[17] R. Curto, J. Yoon, When is hyponormality for 2-variable weighted shifts invariant under powers?, Indiana Univ. Math. J., in press.
[18] R. Gellar, L.J. Wallen, Subnormal weighted shifts and the Halmos-Bram criterion, Proc. Japan Acad. 46 (1970) 375-378.
[19] N.P. Jewell, A.R. Lubin, Commuting weighted shifts and analytic function theory in several variables, J. Operator Theory 1 (1979) 207-223.
[20] A. Lubin, Weighted shifts and product of subnormal operators, Indiana Univ. Math. J. 26 (1977) 839-845.
[21] A. Lubin, Extensions of commuting subnormal operators, Lecture Notes in Math. 693 (1978) 115-120.
[22] A. Lubin, A subnormal semigroup without normal extension, Proc. Amer. Math. Soc. 68 (1978) 176-178.
[23] S. McCullough, V. Paulsen, A note on joint hyponormality, Proc. Amer. Math. Soc. 107 (1989) 187-195.
[24] J. Stampfli, Which weighted shifts are subnormal?, Pacific J. Math. 17 (1966) 367-379.
[25] Wolfram Research, Inc., Mathematica, Version 4.2, Wolfram Research, Inc., Champaign, IL, 2002.
[26] J. Yoon, Disintegration of measures and contractive 2-variable weighted shifts, Integral Equations Operator Theory 59 (2007) 281-298.
[27] J. Yoon, Schur product techniques for commuting multivariable weighted shifts, J. Math. Anal. Appl. 333 (2007) 626-641.

[^0]: the Thirst named author was partially supported by NSF Grants DMS-0400741 and DMS-0801168. The second named author was partially supported by a National Research Foundation of Korea Grant funded by the Korean Government (2010-0028171). The third named author was partially supported by a Faculty Research Council Grant at The University of Texas-Pan American.

 * Corresponding author.

 E-mail addresses: raul-curto@uiowa.edu (R.E. Curto), slee@cnu.ac.kr (S.H. Lee), yoonj@utpa.edu (J. Yoon). URLs: http://www.math.uiowa.edu/~rcurto/ (R.E. Curto), http://www.math.utpa.edu/~yoonj/ (J. Yoon).

