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Abstract

The Lifting Problem for Commuting Subnormals (LPCS) asks for necessary and sufficient conditions
for a pair of subnormal operators on Hilbert space to admit commuting normal extensions. We study LPCS
within the class of commuting 2-variable weighted shifts T ≡ (T1, T2) with subnormal components T1
and T2, acting on the Hilbert space �2(Z2+) with canonical orthonormal basis {e(k1,k2)}k1,k2�0. The core of
a commuting 2-variable weighted shift T, c(T), is the restriction of T to the invariant subspace generated by
all vectors e(k1,k2) with k1, k2 � 1; we say that c(T) is of tensor form if it is unitarily equivalent to a shift of
the form (I ⊗Wα,Wβ ⊗ I ), where Wα and Wβ are subnormal unilateral weighted shifts. Given a 2-variable
weighted shift T whose core is of tensor form, we prove that LPCS is solvable for T if and only if LPCS is
solvable for any power T(m,n) := (T m

1 , T n
2 ) (m,n � 1).
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1. Introduction

The Lifting Problem for Commuting Subnormals (LPCS) asks for necessary and sufficient
conditions for a pair of subnormal operators on Hilbert space to admit commuting normal ex-
tensions. In previous work [6–9,14–16,27] we have studied LPCS from a number of different
approaches. One such approach is to consider commuting pairs T ≡ (T1, T2) of subnormal op-
erators and to ask to what extent the existence of liftings for the powers T(m,n) := (T m

1 , T n
2 )

(m,n � 1) can guarantee a lifting for T. For the class of 2-variable weighted shifts T, it is
often the case that the powers of T are less complex than the initial pair; thus it becomes
especially significant to unravel how subnormality behaves under the action (m,n) �→ T(m,n)

(h, � � 1).
Within the class of 2-variable weighted shifts, we consider the subclass T C consisting of pairs

whose cores are of tensor form; that is

T C := {T ∈ H0: c(T) is of tensor form
}
.

This subclass has proved to be particularly attractive, since it is possible to separate, within it,
subnormality from k-hyponormality; thus, results about LPCS for pairs in T C are especially
useful. The class T C is small enough to allow for a simple description of its pairs, yet large
enough to be used as test ground for many significant hypotheses.

Before we proceed, we briefly pause to establish our terminology. For α ≡ {αn}∞n=0 a bounded
sequence of positive real numbers (called weights), let Wα : �2(Z+) → �2(Z+) be the associated
unilateral weighted shift, defined by Wαen := αnen+1 (all n � 0), where {en}∞n=0 is the canonical
orthonormal basis in �2(Z+). Similarly, consider double-indexed positive bounded sequences
αk, βk ∈ �∞(Z2+), k ≡ (k1, k2) ∈ Z

2+, and let {ek}k∈Z
2+ be the canonical orthonormal basis in

�2(Z2+). We define the 2-variable weighted shift T ≡ (T1, T2) acting on �2(Z2+) by

T1ek := αkek+ε1 and T2ek := βkek+ε2 ,

where ε1 := (1,0) and ε2 := (0,1). The core of a commuting 2-variable weighted shift T (in
symbols, c(T)) is the restriction of T to the invariant subspace generated by all vectors e(k1,k2)

with k1, k2 � 1; we say that c(T) is of tensor form if it is unitarily equivalent to a shift of the form
(I ⊗Wα,Wβ ⊗I ), where Wα and Wβ are subnormal unilateral weighted shifts. Fig. 1 shows both
the weight and Berger measure diagrams of a typical pair in T C . As shown in [8], each T ∈ T C
is completely determined by five parameters, i.e., the 1-variable measures σ , τ , ξ and η, and the
positive number a ≡ α(0,1). As we mentioned before, T C is of substantial interest to us, since it
provides a fertile ground to test results on subnormality and k-hyponormality, and in particular
about the solubility of LPCS.

Let us now denote the class of commuting pairs of subnormal operators on Hilbert space
by H0, the class of subnormal pairs by H∞, and for an integer k � 1, the class of k-hyponormal
pairs in H0 by Hk . Clearly, H∞ ⊆ · · · ⊆ Hk ⊆ · · · ⊆ H1 ⊆ H0; the main results in [14] and [6]
show that these inclusions are all proper; moreover, examples illustrating these proper inclusions
can be found in T C .

In this paper we show that for T ∈ T C , the subnormality of any power T(m,n) implies the
subnormality of T. To accomplish this, we first show that every power of T ∈ T C is the orthog-
onal direct sum of 2-variable weighted shifts in T C . Since each 2-variable weighted shift in T C
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Fig. 1. Weight and Berger measure diagrams of a typical 2-variable weighted shift in T C .

is completely determined by five parameters, we then study how the five parameters of each
direct summand in a power are related to the five parameters in the initial 2-variable weighted
shift. Next, we recall from [8] that each T ∈ T C is associated with a pair of linear functionals
ϕ ≡ ϕ(T) and ψ ≡ ψ(T) (each depending on the five parameters), and that T is subnormal if
and only if ϕ � 0 and ψ � 0. With all of this at our disposal, we proceed to establish a connec-
tion between the pair (ϕ,ψ) associated with T and those associated with the summands in the
orthogonal direct sum decomposition of T(m,n). This eventually leads to the proof of our main
result (Theorem 3.1).

This result provides a complete generalization of Theorem 3.9 in [7]. At the time we wrote [7],
the techniques available to us allowed us to deal only with the quadratic powers T(1,2) and T(2,1);
with the aid of a number of additional examples, together with the main result in [8], we have
now been able to handle the case of arbitrary powers.

As an application of Theorem 3.1, we can exhibit a hyponormal 2-variable weighted shift
such that none of its powers is subnormal. We describe the shift in Example 8.1. This provides a
striking and concrete example of the big gap that exists between hyponormality and subnormality
for 2-variable weighted shifts, even within a relatively simple class like T C .

2. Notation and preliminaries

To describe our results in detail we need some notation; we further expand on our terminology
later in this section. For k = (k1, k2) ∈ Z

2+, we shall let Mi (resp. Nj ) be the subspace of �2(Z2+)

which is spanned by the canonical orthonormal basis vectors associated to indices k with k1 � 0
and k2 � i (resp. k1 � j and k2 � 0). The core of a 2-variable weighted shift T is the restriction
of T to M1 ∩ N1; in symbols, c(T) := T|M1∩N1 . A 2-variable weighted shift T is said to be of
tensor form if T ∼= (I ⊗Wξ,Wη ⊗ I ), where Wξ and Wη are unilateral weighted shifts. The class
of all 2-variable weighted shifts T ∈ H0 whose cores are of tensor form is denoted by T C ; that
is,
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T C := {T ∈ H0: c(T) is of tensor form
}

(see Fig. 1(i)).
It is well known that the commutativity of a pair of subnormals is necessary but not sufficient

for the existence of a lifting [1,20–22], and it has recently been shown that the joint hyponor-
mality of the pair is necessary but not sufficient [14]. Our previous work [14–17,6–9,26,27] has
revealed that the nontrivial aspects of the LPCS are best detected within the class H0, especially
within T C ; we thus focus our attention on this class.

For a single operator T , the subnormality of all powers T n (n � 2) does not imply the sub-
normality of T , even if T is a unilateral weighted shift [24, pp. 378–379]. Thus one might guess
that if we were to impose a further condition such as the subnormality of a restriction of T to an
invariant subspace, e.g., the subnormality of T |∨{ek∈�2(Z+): k�i} (for some i � 1), that T would
then be subnormal. However, even if we assume this for i = 1, the subnormality of T is not guar-
anteed. For example, let T := shift( 1

3 , 1
2 ,1,1, . . .). Then T |∨{ek∈�2(Z+): k�1} ≡ shift( 1

2 ,1,1, . . .)

is subnormal, and also all powers T n (n � 2) are subnormal, but T is not subnormal. As a mater
of fact, no backward extension shift(α0,

1
2 ,1,1, . . .) can be subnormal [5, Corollary 6]. More

generally, the necessary and sufficient conditions for a unilateral weighted shift Wα to be sub-
normal when we assume that Wα|∨{ek∈�2(Z+): k�1} is subnormal (with Berger measure μ) were

obtained in [5, Proposition 8]: Wα is subnormal if and only if 1
t
∈ L1(μ) and α2

0‖ 1
t
‖L1(μ) � 1.

In the multivariable case, the analogous results are highly nontrivial, if one further assumes
that each component is subnormal. In 1-variable, the subspace

∨{ek ∈ �2(Z+): k � 1} can be
regarded as “the core of T ”; as we move into two variables it is therefore natural to consider the
condition T ∈ T C .

To prove our results, we require a number of tools and techniques introduced in previous
work, e.g., the Six-point Test (Lemma 4.1), the Backward Extension Theorem for 2-variable
weighted shifts (Lemma 4.2) and the formula to reconstruct the Berger measure of a unilateral
weighted shift (4.1), together with a new direct sum decomposition for powers of 2-variable
weighted shifts which parallels the decomposition used in [11] to analyze k-hyponormality for
powers of (1-variable) weighted shifts. Concretely, to analyze the power T(m,n) of a 2-variable
weighted shift T ≡ (T1, T2), we split the ambient space �2(Z2+) as an orthogonal direct sum⊕m−1

p=0
⊕n−1

q=0 H(m,n)
(p,q) , where for p = 0,1, . . . ,m − 1, and q = 0,1, . . . , n − 1,

H(m,n)
(p,q) :=

∨
{e(m�+p,nk+q): k, � � 0}. (2.1)

Each of the subspaces H(m,n)
(p,q) reduces T m

1 and T n
2 , and T(m,n) is subnormal if and only if each

summand T(m,n)|H(m,n)
(p,q)

is subnormal. For a set of pairs X , let
⊕

X denote the set of pairs that can

be written as orthogonal sums of pairs in X . We will show in Section 5 that
⊕

T C is invariant
under the action (m,n) �→ T(m,n) (m,n � 1).

Briefly stated, our strategy to prove our main result (Theorem 3.1) is as follows: (i) if T ∈
T C then each power T(m,n) ∈⊕T C ; (ii) without loss of generality, we can always assume
m = 1; (iii) the pair (ϕ,ψ) associated with T is directly related to the pairs (ϕ(p,q),ψ(p,q))

associated to the direct summands in the orthogonal decomposition of T(1,n); (iv) if a power
T(1,n) is subnormal, the functionals ϕ(0,0) and ψ(0,1) are both positive; and (v) it then follows
that ϕ and ψ are both positive, and therefore T is subnormal.
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We devote the rest of this section to establishing some additional terminology and notation.
Let H be a complex Hilbert space and let B(H) denote the algebra of bounded linear operators
on H. Recall that a bounded linear operator T ∈ B(H) is normal if T ∗T = T T ∗, and subnormal
if T = N |H , where N is normal and N(H) ⊆ H. An operator T is said to be hyponormal if
T ∗T � T T ∗. For S,T ∈ B(H), let [S,T ] := ST −T S. An n-tuple T := (T1, . . . , Tn) of operators
on H is said to be (jointly) hyponormal if the operator matrix

[
T∗,T

] :=
⎛
⎜⎜⎝

[T ∗
1 , T1] [T ∗

2 , T1] · · · [T ∗
n , T1]

[T ∗
1 , T2] [T ∗

2 , T2] · · · [T ∗
n , T2]

...
...

. . .
...

[T ∗
1 , Tn] [T ∗

2 , Tn] · · · [T ∗
n , Tn]

⎞
⎟⎟⎠

is positive semidefinite on the direct sum of n copies of H (cf. [2,10,12,13,23]). For instance, if
n = 2,

[
T∗,T

] := ( [T ∗
1 , T1] [T ∗

2 , T1]
[T ∗

1 , T2] [T ∗
2 , T2]

)
.

The n-tuple T ≡ (T1, T2, . . . , Tn) is said to be normal if T is commuting and each Ti is normal,
and T is subnormal if T is the restriction of a normal n-tuple to a common invariant subspace. In
particular, a commuting pair T ≡ (T1, T2) is said to be k-hyponormal (k � 1) [6] if

T(k) := (T1, T2, T
2
1 , T2T1, T

2
2 , . . . , T k

1 , T2T
k−1
1 , . . . , T k

2

)
is hyponormal, or equivalently[

T(k)∗,T(k)
]= ([(T q

2 T
p

1

)∗
, T m

2 T n
1

])
1�p+q�k
1�n+m�k

� 0.

Clearly, normal ⇒ subnormal ⇒ k-hyponormal. For α ≡ {αn}∞n=0 a bounded sequence of
positive real numbers (called weights), let Wα : �2(Z+) → �2(Z+) be the associated unilateral
weighted shift, defined by Wαen := αnen+1 (all n � 0), where {en}∞n=0 is the canonical orthonor-
mal basis in �2(Z+). For a weighted shift Wα , the moments of α are given as

γk ≡ γk(α) :=
{1 if k = 0,

α2
0 · · ·α2

k−1 if k > 0.
(2.2)

It is easy to see that Wα is never normal, and that it is hyponormal if and only if α0 �
α1 � · · · . Similarly, consider double-indexed positive bounded sequences αk, βk ∈ �∞(Z2+),
k ≡ (k1, k2) ∈ Z

2+. We define the 2-variable weighted shift T ≡ (T1, T2) by

T1ek := αkek+ε1 and T2ek := βkek+ε2 ,

where ε1 := (1,0) and ε2 := (0,1). Clearly,

T1T2 = T2T1 ⇔ βk+ε1αk = αk+ε2βk
(
all k ∈ Z

2+
)
. (2.3)

In an entirely similar way one can define multivariable weighted shifts. Given k ≡ (k1, k2) ∈ Z
2+,

the moment of (α,β) of order k is
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γk ≡ γk(α,β) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if k1 = 0 and k2 = 0,

α2
(0,0) · · ·α2

(k1−1,0) if k1 � 1 and k2 = 0,

β2
(0,0) · · ·β2

(0,k2−1) if k1 = 0 and k2 � 1,

α2
(0,0)

· · ·α2
(k1−1,0)

· β2
(k1,0)

· · ·β2
(k1,k2−1)

if k1 � 1 and k2 � 1.

We remark that, due to the commutativity condition (2.3), γk can be computed using any nonde-
creasing path from (0,0) to (k1, k2).

We now recall a well-known characterization of subnormality for multivariable weighted
shifts [19] (due to C. Berger [3, II.6.10] and independently established by R. Gellar and
L.J. Wallen [18] in the single variable case): T admits a commuting normal extension if
and only if there is a probability measure μ (which we call the Berger measure of T) de-
fined on the 2-dimensional rectangle R = [0, a1] × [0, a2] (where ai := ‖Ti‖2) such that γk =∫
R

sk1 tk2 dμ(s, t), for all k ≡ (k1, k2) ∈ Z
2+.

The following well-known result, which links the Berger measure of a subnormal unilateral
weighted shift with the Berger measure of its restriction to a suitable invariant subspace, will be
needed in Section 5.

Lemma 2.1. (See [14, p. 5140].) Let Wα be a subnormal unilateral weighted shift and let ξ

denote its Berger measure. For n � 1 let Ln :=∨{eh: h � n} denote the invariant subspace
obtained by removing the first n vectors in the canonical orthonormal basis of �2(Z+). Then the
Berger measure of Wα|Ln

is

dξn(s) := sn

γn

dξ(s), (2.4)

where γn is the n-th moment of α, given by (2.2).

We will occasionally write shift(α0, α1, . . .) to denote the weighted shift with weight se-
quence {αk}∞k=0. We also denote by U+ := shift(1,1, . . .) the (unweighted) unilateral shift, and
for 0 < a < 1 we let Sa := shift(a,1,1, . . .). Observe that U+ and Sa are subnormal, with Berger
measures δ1 and (1 − a2)δ0 + a2δ1, respectively, where δp denotes the point-mass probability
measure with support the singleton {p}.

Given integers i and m (m � 1, 0 � i � m − 1), consider H ≡ �2(Z+) =∨{en: n � 0}
and define Hi := ∨{emj+i : j � 0}, so H = ⊕m−1

i=0 Hi . For a sequence α ≡ {αn}∞n=0, let
α(m : i) := {Πm−1

k=0 αmj+i+k}∞j=0, that is, α(m : i) denotes the sequence of products of num-
bers in adjacent packets of size m, beginning with the product αi · · ·αi+m−1. For example,
α(2 : 0) : α0α1, α2α3, α4α5, . . . , and α(3 : 2) : α2α3α4, α5α6α7, . . . . Then for m � 1 and 0 �
i � m − 1, Wα(m:i) is unitarily equivalent to Wm

α |Hi
. Therefore, Wm

α is unitarily equivalent to⊕m−1
i=0 Wα(m:i). This analysis naturally leads to the following result, which will be needed in

Section 6.

Lemma 2.2. (See [11, Theorem 2.9].) Let Wα be a subnormal unilateral weighted shift with
Berger measure μ. Then Wα(m,i) is subnormal with Berger measure μ(m,i), where

dμ(m,0)(s) = dμ
(
s

1
m
)

and dμ(m,i)(s) = s
i
m

γi

dμ
(
s

1
m
)

for 1 � i � m − 1.
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3. Statement of the main result

In [7] we showed that if T ∈ T C (see Fig. 1(i)), then

T(1,2) ∈ H∞ ⇔ T(2,1) ∈ H∞ ⇔ T ∈ H∞. (3.1)

The main result in this paper, which follows, is based on (3.1) and a myriad of examples that
have arisen in our previous research.

Theorem 3.1. Let T ∈ T C . The following statements are equivalent.

(i) T ∈ H∞;
(ii) T(m,n) ∈⊕H∞ for all m,n � 1;

(iii) T(m,n) ∈⊕H∞ for some m,n � 1.

4. Some basic facts

For the reader’s convenience, in this section we list several well-known auxiliary results and
definitions which are needed for the proof of the main result. First, to detect hyponormality for
2-variable weighted shifts we use a simple criterion involving a base point k in Z

2+ and its five
neighboring points in k + Z

2+ at path distance at most 2.

Lemma 4.1 (Six-point Test). (See [4].) Let T ≡ (T1, T2) be a 2-variable weighted shift, with
weight sequences α and β . Then

[T∗,T] �0

⇔ H(k1,k2)(1) :=
(

α2
k+ε1

− α2
k αk+ε2βk+ε1 − αkβk

αk+ε2βk+ε1 − αkβk β2
k+ε2

− β2
k

)
� 0

(
all k ∈ Z

2+
)
.

Next, we present a criterion to detect the subnormality of 2-variable weighted shifts. First, we
need some definitions.

(i) Let μ and ν be two positive measures on R+. We say that μ � ν on X := R+, if μ(E) �
ν(E) for all Borel subset E ⊆ R+; equivalently, μ � ν if and only if

∫
f dμ �

∫
f dν for

all f ∈ C(X) such that f � 0 on R+.
(ii) Let μ be a probability measure on X × Y , and assume that 1

t
∈ L1(μ). The extremal

measure μext (which is also a probability measure) on X × Y is given by dμext(s, t) :=
(1 − δ0(t))

1
t‖ 1

t
‖
L1(μ)

dμ(s, t).

(iii) Given a measure μ on X × Y , the marginal measure μX is given by μX := μ ◦ π−1
X , where

πX : X × Y → X is the canonical projection onto X. Thus μX(E) = μ(E × Y), for every
E ⊆ X.

To state the following result, recall the notation in (2.1), and let M := M1 ≡ H(1,1)
(0,1)

.

Lemma 4.2 (Subnormal backward extension). (See [14, Proposition 3.10].) Let T ≡ (T1, T2) be
a 2-variable weighted shift, and assume that T|M is subnormal with associated measure μM
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and that W0 := shift(α00, α10, . . .) is subnormal with associated measure σ . Then T is subnormal
if and only if

(i) 1
t
∈ L1(μM);

(ii) β2
00 � (‖ 1

t
‖L1(μM))

−1;

(iii) β2
00‖ 1

t
‖L1(μM)(μM)Xext � σ .

Moreover, if β2
00‖ 1

t
‖L1(μM) = 1, then (μM)Xext = σ . In the case when T is subnormal, its

Berger measure μ is given by

dμ(s, t) = β2
00

∥∥∥∥1

t

∥∥∥∥
L1(μM)

d(μM)ext(s, t)

+
(

dσ(s) − β2
00

∥∥∥∥1

t

∥∥∥∥
L1(μM)

d(μM)Xext(s)

)
dδ0(t). (4.1)

5. The structure of powers of 2-variable weighted shifts in T C

Consider a 2-variable weighted shift T ≡ (T1, T2) ∈ T C (see Fig. 1(i)). Since T1 (resp. T2)
is subnormal, we know that shift(α1, α2, α3 · · ·) (resp. shift(β1, β2, β3 · · ·)) is subnormal;
let ξ (resp. η) be its Berger measure. Similarly, let σ (resp. τ ) denote the Berger measure
of shift(x0, x1, x2, . . .) (resp. shift(y0, y1, y2, . . .)). Finally, let τ1 be the Berger measure of
shift(y1, y2, y3, . . .) ≡ shift(y0, y1, y2, . . .)|∨{ek : k�1}. Fig. 1 shows the general form of a pair
in T C , and that it is uniquely determined by the five parameters σ , τ , a, ξ and η. Thus, in what
follows we will identify a pair T ∈ T C with the 5-tuple 〈σ, τ, a, ξ, η〉. We shall also let [a, ξ ]
denote the Berger measure of the subnormal unilateral weighted shift W whose 0-th weight is a

and with ξ as the Berger measure of W |L1 , where L1 :=∨{ek: k � 1}. For instance, in Fig. 1(i)
the Berger measure for the first row is [a, ξ ], and for the second row is [ aβ1

y1
, ξ ]. Finally, we shall

let zj ≡ zj (η) denote the j -th weight of the unilateral weighted shift whose Berger measure is η;
that is, shift(z0, z1, . . .) has Berger measure η.

Lemma 5.1. Let T ∈ T C , and let m,n � 1. Then T(m,n) ∈⊕T C .

Proof. First recall from (2.1) that �2(Z2+) can be written as an orthogonal direct sum⊕m−1
p=0
⊕n−1

q=0 H(m,n)
(p,q) , where for p = 0,1, . . . ,m − 1 and q = 0,1, . . . , n − 1 we have H(m,n)

(p,q) :=∨{e(m�+p,nk+q): k, � � 0}. Now write T ≡ 〈σ, τ, a, ξ, η〉. We shall establish that

T(m,n) =
m−1⊕
p=0

n−1⊕
q=0

〈
σ (p,q), τ (p,q), a(p,q), ξ (p,q), η(p,q)

〉
, (5.1)

where 〈σ (p,q), τ (p,q), a(p,q), ξ (p,q), η(p,q)〉 is the 5-tuple associated to the restriction of T(m,n) to
the reducing subspace H(m,n)

(p,q) . Since T(m,n) = (T(m,1))(1,n), and since T(m,1) ∈⊕T C if and only

if T(1,m) ∈⊕T C , it suffices to prove (5.1) in the case m = 1. The proof is simple but a bit te-
dious, and it entails careful diagram chasing in Fig. 3. Visual inspection of that figure reveals that
when m = 1 we have σ (0,0) = σ , σ (0,1) = [a, ξ ], . . . , σ (0,n−1) = [ az0···zn−3 , ξ ] (n � 3); moreover,
y1···yn−2
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Fig. 2. Berger measure diagram and weight diagram of the 2-variable weighted shifts in Lemma 5.3 and Example 5.4,
respectively.

τ (0,q) = τ(n,q), where the latter notation was introduced in Lemma 2.2. Still looking at Fig. 1, we
observe that a(0,q) = az0···zn−2+q

y1···yn−1+q
and that ξ (0,q) = ξ , η(0,0) = η(n,n−1) and η(0,q) = (η(n,q−1))1

(q � 1). This completes the proof. �
Corollary 5.2. For m,n � 1 we have (

⊕
T C)(m,n) ⊆⊕T C .

We now restate the main result in [8]. First, recall that if τ is the Berger measure of
shift(y0, y1, . . .), we denote by τ1 the Berger measure of shift(y1, y2, . . .). As described in
Lemma 2.1, we know that dτ1(t) ≡ t

y2
0
dτ(t).

Lemma 5.3. (See [8, Theorem 2.3].) Let T ≡ 〈σ, τ, a, ξ, η〉 ∈ T C be as in Fig. 2(i) and let

ψ := τ1 − a2
∥∥∥∥1

s

∥∥∥∥
L1(ξ)

η,

ϕ := σ − y2
0

∥∥∥∥1

t

∥∥∥∥
L1(ψ)

δ0 − a2y2
0

∥∥∥∥1

t

∥∥∥∥
L1(η)

ξ

s
, (5.2)

where y0 ≡ β00 :=
√∫

t dτ (t). Then T is subnormal if and only if ψ � 0 and ϕ � 0.

Example 5.4. Assume the very simple case of T ≡ 〈σ, τ, a, ξ, η〉, where σ := [x, δ1], τ :=
[y, δ1], 0 < a < 1, ξ := δ1 and η := δ1 (cf. Fig. 2(ii)). Then ψ = δ1 − a2δ1 = (1 − a2)δ1 and
ϕ = (1 − x2)δ0 + x2δ1 − y2(1 − a2)δ0 − a2y2δ1 = {(1 − x2) − y2(1 − a2)}δ0 + (x2 − a2y2)δ1.
Thus, T is subnormal if and only if (1 − x2) − y2(1 − a2) � 0, a condition identical to that in
[14, Proposition 2.11].
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Fig. 3. Weight diagrams of T(1,n)|H(1,n)
(0,0)

and T(1,n)|H(1,n)
(0,1)

.

6. The pairs (ψ,ϕ) for 〈σ,τ,a, ξ,η〉 and 〈σ (p,q), τ (p,q), a(p,q), ξ (p,q), η(p,q)〉

In this section we establish a direct relationship between the pair (ψ,ϕ) associated to
〈σ, τ, a, ξ, η〉 ∈ T C and some of the pairs (ψ(p,q), ϕ(p,q)) associated to the direct summands
〈σ (p,q), τ (p,q), a(p,q), ξ (p,q), η(p,q)〉 in 〈σ, τ, a, ξ, η〉(m,n).

Proposition 6.1. Let 〈σ, τ, a, ξ, η〉 ∈ T C , and let n � 2. Consider the decomposition 〈σ, τ, a,

ξ, η〉(1,n) =⊕n−1
q=0〈σ (0,q), τ (0,q), a(0,q), ξ (0,q), η(0,q)〉, and let (ψ,ϕ) (resp. (ψ(0,q), ϕ(0,q))) be

the associated pair in Lemma 5.3. Then

(i) ψ(0,1) � 0 ⇔ ψ � 0; and
(ii) ϕ(0,0) � 0 ⇔ ϕ � 0.

Proof. We refer the reader to Fig. 3. By Lemma 5.1, we have σ (0,0) = σ , σ (0,1) = [a, ξ ], τ (0,0) =
τ(n,0), τ (0,1) = τ(n,1), a(0,0) = az0···zn−2

y1···yn−1
, a(0,1) = az0···zn−1

y1···yn
, ξ (0,0) = ξ (0,1) = ξ , η(0,0) = η(n,n−1)

and η(0,1) = (η(n,0))1. Then

ψ(0,1) = (τ (0,1)
)

1 − (a(0,1)
)2∥∥∥∥1

s

∥∥∥∥
L1(ξ (0,1))

η(0,1)

= (τ(n,1))1 − a2z2
0 · · · z2

n−1

y2
1 · · ·y2

n

∥∥∥∥1

s

∥∥∥∥
L1(ξ)

(η(n,0))1. (6.1)

We now calculate (τ(n,1))1 and (η(n,0))1. From Lemma 2.2 we know that
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dτ(n,1)(t) = t
1
n

y2
0

dτ
(
t

1
n
)
,

so that

d(τ(n,1))1(t) = t

y2
1 · · ·y2

n

dτ(n,1)(t) = t1+ 1
n

y2
0y2

1 · · ·y2
n

dτ
(
t

1
n
)

(by Lemma 2.1).

On the other hand, and again using Lemma 2.2, we have

dη(n,0)(t) = dη
(
t

1
n
)
,

so that

d(η(n,0))1(t) = t

z2
0 · · · z2

n−1

dη(n,0)(t) = t

z2
0 · · · z2

n−1

dη
(
t

1
n
)

(again by Lemma 2.1).

It follows from (6.1) that

dψ(0,1)(t) = t1+ 1
n

y2
0y2

1 · · ·y2
n

dτ
(
t

1
n
)− a2z2

0 · · · z2
n−1

y2
1 · · ·y2

n

∥∥∥∥1

s

∥∥∥∥
L1(ξ)

· t

z2
0 · · · z2

n−1

dη
(
t

1
n
)

= t

y2
1 · · ·y2

n

{
t

1
n

y2
0

dτ
(
t

1
n
)− a2

∥∥∥∥1

s

∥∥∥∥
L1(ξ)

dη
(
t

1
n
)}

= t

y2
1 · · ·y2

n

{
dτ1
(
t

1
n
)− a2

∥∥∥∥1

s

∥∥∥∥
L1(ξ)

dη
(
t

1
n
)}

= t

y2
1 · · ·y2

n

dψ
(
t

1
n
)
.

It now readily follows that ψ(0,1) � 0 if and only if ψ � 0, which establishes (i).
To prove (ii), we begin by calculating ψ(0,0). As in (6.1), we have

dψ(0,0)(t) = d
(
τ (0,0)

)
1(t) − (a(0,0)

)2∥∥∥∥1

s

∥∥∥∥
L1(ξ (0,0))

dη(0,0)(t)

= d(τ(n,0))1(t) − a2z2
0 · · · z2

n−2

y2
1 · · ·y2

n−1

∥∥∥∥1

s

∥∥∥∥
L1(ξ)

dη(n,n−1)(t)

= t

y2
0 · · ·y2

n−1

dτ
(
t

1
n
)− a2z2

0 · · · z2
n−2

y2
1 · · ·y2

n−1

∥∥∥∥1

s

∥∥∥∥
L1(ξ)

t
n−1
n

z2
0 · · · z2

n−2

dη
(
t

1
n
)

(by Lemmas 2.1 and 2.2)

= 1

y2
0y2

1 · · ·y2
n−1

{
t dτ
(
t

1
n
)− a2y2

0

∥∥∥∥1

s

∥∥∥∥
L1(ξ)

t
n−1
n dη

(
t

1
n
)}

.

It follows that
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y2
0y2

1 · · ·y2
n−1

∫
1

t
dψ(0,0)(t) =

∫
dτ
(
t

1
n
)− a2y2

0

∥∥∥∥1

s

∥∥∥∥
L1(ξ)

∫
t−

1
n dη
(
t

1
n
)

= 1 − a2y2
0

∥∥∥∥1

s

∥∥∥∥
L1(ξ)

∥∥∥∥1

t

∥∥∥∥
L1(η)

.

On the other hand,

y2
0

∫
1

t
dψ(t) = y2

0

{∫
1

t
dτ1(t) − a2

∥∥∥∥1

s

∥∥∥∥
L1(ξ)

∫
1

t
dη(t)

}

= y2
0

∫
1

t
· t

y2
0

dτ(t) − a2y2
0

∥∥∥∥1

s

∥∥∥∥
L1(ξ)

∥∥∥∥1

t

∥∥∥∥
L1(η)

= 1 − a2y2
0

∥∥∥∥1

s

∥∥∥∥
L1(ξ)

∥∥∥∥1

t

∥∥∥∥
L1(η)

.

Thus,

y2
0y2

1 · · ·y2
n−1

∥∥∥∥1

t

∥∥∥∥
L1(ψ(0,0))

= y2
0

∥∥∥∥1

t

∥∥∥∥
L1(ψ)

. (6.2)

Consider now

ϕ(0,0) = σ (0,0) − y2
0 · · ·y2

n−1

∥∥∥∥1

t

∥∥∥∥
L1(ψ(0,0))

δ0 − (a(0,0)
)2

y2
0 · · ·y2

n−1

∥∥∥∥1

t

∥∥∥∥
L1(η(0,0))

ξ (0,0)

s
.

We know that σ (0,0) = σ , that a(0,0) = az0···zn−2
y1···yn−1

and that ξ (0,0) = ξ , so using (6.2) we obtain

ϕ(0,0) = σ − y2
0

∥∥∥∥1

t

∥∥∥∥
L1(ψ)

δ0 − a2y2
0z2

0 · · · z2
n−2

∥∥∥∥1

t

∥∥∥∥
L1(η(0,0))

ξ

s
.

Since ϕ = σ − y2
0‖ 1

t
‖L1(ψ)δ0 − a2y2

0‖ 1
t
‖L1(η)

ξ
s

, it is easy to see that it suffices to prove that

z2
0 · · · z2

n−2‖ 1
t
‖L1(η(0,0)) = ‖ 1

t
‖L1(η). We know that η(0,0) = η(n,n−1), so

z2
0 · · · z2

n−2

∥∥∥∥1

t

∥∥∥∥
L1(η(0,0))

= z2
0 · · · z2

n−2

∫
1

t
dη(n,n−1)(t)

= z2
0 · · · z2

n−2

∫
1

t

t
n−1
n

z2
0 · · · z2

n−2

dη
(
t

1
n
)

=
∫

t−
1
n dη
(
t

1
n
)= ∥∥∥∥1

t

∥∥∥∥
L1(η)

,

as desired. �
Corollary 6.2. Let 〈σ, τ, a, ξ, η〉 ∈ T C , and let n � 2. Assume that 〈σ, τ, a, ξ, η〉(1,n) is subnor-
mal. Then 〈σ, τ, a, ξ, η〉 is subnormal.
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Proof. Assume that 〈σ, τ, a, ξ, η〉(1,n) is subnormal, and recall that the power of a 2-variable
weighted shift splits as an orthogonal direct sum of 2-variable weighted shifts. Moreover, each
summand is in T C (because 〈σ, τ, a, ξ, η〉 ∈ T C ). The fact that 〈σ, τ, a, ξ, η〉(1,n) is subnormal
readily implies that each direct summand is subnormal, and then Lemma 5.3 says that ψ(0,q) � 0
and ϕ(0,q) � 0 (all q � 0). In particular, ψ(0,1) � 0 and ϕ(0,0) � 0. It follows from Proposi-
tion 6.1 that ψ � 0 and ϕ � 0. Applying Lemma 5.3 once again, we see that 〈σ, τ, a, ξ, η〉 is
subnormal. �
Corollary 6.3. Let 〈σ, τ, a, ξ, η〉 ∈ T C , and let m � 2. Assume that 〈σ, τ, a, ξ, η〉(m,1) is subnor-
mal. Then 〈σ, τ, a, ξ, η〉 is subnormal.

7. Proof of the main theorem

We are now ready to prove our main result, which we restate for the reader’s convenience.

Theorem 7.1. Let T ∈ T C . The following statements are equivalent.

(i) T ∈ H∞;
(ii) T(m,n) ∈⊕H∞ for all m,n � 1;

(iii) T(m,n) ∈⊕H∞ for some m,n � 1.

Proof. It is clear that (i) ⇒ (ii) and that (ii) ⇒ (iii). Assume that (iii) holds, with n � 2. Since
T(m,n) = (T(m,1))(1,n), we can use Corollary 6.2 to conclude that T(m,1) is subnormal. If we now
apply Corollary 6.3, we obtain that T is subnormal, as desired. �
8. An application

In our previous work [14–17,6–9,26,27], we have shown that there are many different families
of commuting pairs of subnormal operators, jointly hyponormal but not admitting commuting
normal extensions, that is, T ∈ H1 but T /∈ H∞ (all m,n � 1). As a simple application of The-
orem 7.1, we now show that H1 ∩ T C �= H∞ ∩ T C ; moreover, there exists T ∈ T C , such that
T ∈ H1 but T(m,n) /∈⊕H∞ (all m,n � 1). We recall that shift(x0, x1, . . .) and shift(y0, y1, . . .)

are subnormal unilateral weighted shifts with Berger measures σ and τ , respectively. Consider a
contractive 2-variable weighted shift T ∈ H0 whose weight diagram is given by Fig. 4(i); that is,
in the 5-tuple 〈σ, τ, a, ξ, η〉, we have

∗ dσ(t) := (1 − κ2)dδ0(t) + κ2

2 dt + κ2

2 dδ1(t),
∗ τ is the Berger measure of shift (y0, y1, . . .), with τ1 the 2-atomic Berger measure

ρ0δt0 + ρ1δt1 of the Stampfli subnormal completion of
√

ω0 <
√

ω1 <
√

ω2,
∗ a is a positive number,
∗ ξ := δ1, and
∗ η := δ1.

Example 8.1. Let T ≡ 〈σ, τ, a, ξ, η〉 be the 2-variable weighted shift given by Fig. 4(i), with σ ,
τ1, a, ξ and η as above. Then T ∈ H1 and T(m,n) /∈ H∞ (all m,n � 1) if and only if s(κ) < y0 <

h(κ), where



582 R.E. Curto et al. / Journal of Functional Analysis 262 (2012) 569–583
Fig. 4. Weight diagram of the 2-variable weighted shift in Example 8.1 and graphs of s(κ) and h(κ) on the interval [0,1],
respectively; here ω0 := 5

6 , ω1 := 6
7 , ω2 := 7

8 and y0 := β0.

s(κ) := min

{√
t1

a

√
ρ1,

√√√√ (1 − κ2)

‖ 1
t
‖L1(τ1)

− a2

t1

,

√
t1

a

√
κ2

2
,

√
1

‖ 1
t
‖L1(τ1)

}

and

h(κ) :=
√

x2
0y2

1(x2
1 − x2

0)

x2
0(x2

1 − x2
0) + (a2 − x2

0)2
.

Fig. 4(ii) specifies a region in the (κ,β0) plane where T is hyponormal but none of its powers
is subnormal. A detailed analysis of Example 8.1 and of other applications of Theorem 3.1 will
be discussed elsewhere.
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